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Abstract. The main result is that the variety generated by complex
algebras of (commutative) semigroups is not finitely based. It is shown
that this variety coincides with the variety generated by complex alge-
bras of partial (commutative) semigroups. An example is given of an
8-element commutative Boolean semigroup that is not in this variety,
and an analysis of all smaller Boolean semigroups shows that there is no
smaller example. However, without associativity the situation is quite
different: the variety generated by complex algebras of (commutative)
binars is finitely based and is equal to the variety of all Boolean algebras
with a (commutative) binary operator.

A binar is a set A with a (total) binary operation ·, and in a partial binar
this operation is allowed to be partial. We write x · y ∈ A to indicate that the
product of x and y exists. A partial semigroup is an associative partial binar,
i.e. for all x, y, z ∈ A, if (x · y) · z ∈ A or x · (y · z) ∈ A, then both terms exist
and evaluate to the same element of A. Similarly, a commutative partial binar is
a binar such that if x · y ∈ A then x · y = y · x ∈ A.

Let (P)(C)Bn and (P)(C)Sg denote the class of all (partial) (commutative)
groupoids and all (partial) (commutative) semigroups respectively. For A ∈ PBn
the complex algebra of A is defined as Cm(A) = 〈P (A),∪, ∅,∩, A, \, ·〉, where

X · Y = {x · y | x ∈ X, y ∈ Y and x · y exists}

is the complex product of X, Y ∈ Cm(A). Algebras of the form Cm(A) are exam-
ples of Boolean algebras with a binary operator, i.e., algebras 〈B,∨, 0,∧, 1,¬, ·〉
such that 〈B,∨, 0,∧, 1,¬〉 is a Boolean algebra and · is a binary operation that
distributes over finite (including empty) joins in each argument. A Boolean semi-
group is a Boolean algebra with an associative binary operator.

For a class K of algebras, Cm(K) denotes the class of all complex algebras of
K, H(K) is the class of all homomorphic images of K, and V(K) is the variety
generated by K, i.e., the smallest equationally defined class that contains K.

The aim of this note is to contrast the equational theory of Cm((C)Bn) with
that of Cm((C)Sg). It turns out that the former is finitely based while the latter
is not.

Lemma 1 V(Cm(Sg)) = V(Cm(PSg), V(Cm(CSg)) = V(Cm(PCSg)),
V(Cm(Bn)) = V(Cm(PBn) and V(Cm(CBn)) = V(Cm(PCBn)).



Proof: We prove the first result and note that the argument for the other results
is identical. Since Sg ⊆ PSg, the forward inclusion is obvious.

Let A be a partial semigroup, and define A∞ = 〈A ∪ {∞}, ·〉 where

x · y =
{

xy if xy ∈ A
∞ otherwise.

It is easy to check that A∞ ∈ Sg. Define h : Cm(A∞) → Cm(A) by h(X) =
X \ {∞}. Then (X · Y ) \ {∞} = (X \ {∞})(Y \ {∞}) since

z = x · y and z 6= ∞ iff z = xy and x 6= ∞ and y 6= ∞.

Hence h is a homomorphism, and it follows that Cm(PSg) ⊆ HCm(Sg). There-
fore V(Cm(PSg)) ⊆ V(Cm(Sg)). �

Let Rel be the class of algebras that are isomorphic to algebras of binary re-
lations closed under Boolean operations (∪,∩, \, ∅, T ) and relation composition.
The subclass of algebras that are commutative under composition is denoted by
CRel.

Note that the top relation T is always transitive. The proof below shows
that the equational theory of Rel does not change even if we assume T is also
irreflexive (and hence a strict partial order).

Theorem 2 (C)Rel is a variety, and V(Cm((C)Sg)) = (C)Rel.

Proof: The class (C)Rel is easily seen to be closed under subalgebras and
products. The proof that (C)Rel is closed under homomorphic images is similar
to a proof in [2] Theorem 5.5.10 that shows cylindric-relativized set algebras are
a variety (see also [6] Theorem 1.5).

Moreover, it is easy to see that (C)Rel ⊆ V(Cm(P(C)Sg)) since the algebra of
all subsets of a transitive relation is the complex algebra of a partial semigroup,
with ordered pairs as elements, and (w, x) · (y, z) = (w, z) if x = y (undefined
otherwise).

To prove the opposite inclusion, we show that any complex algebra of a
semigroup can be embedded in a member of Rel. The commutative case follows
since if the semigroup is commutative then the image under this embedding will
be a member of CRel.

Let S be a semigroup. We would like to find a set U and a collection {Ra ⊆
U2 | a ∈ S} of disjoint nonempty binary relations on U such that Ra ◦
Rb = Rab. If S is a left-cancellative semigroup, we can simply take the Cayley
embedding Ra = {(x, xa) | x ∈ S}. However, if S is not cancellative then this
approach does not give disjoint relations, so we take a step-by-step approach and
use transfinite induction to build the Ra. A detailed discussion of this method
for representing relation algebras can be found in [3] or [4]. Since our setting is
somewhat different, and to avoid lengthy definitions, we take a rather informal
approach here. To simplify the argument, we will arrange that all the relations
are irreflexive and antisymmetric.



Suppose we have an “approximate embedding”, by which we mean a collec-
tion of disjoint irreflexive antisymmetric relations Ra,κ on a set Uκ such that
Ra,κ ◦Rb,κ ⊆ Rab,κ.

Using the well-ordering principle, we list all the pairs in Rab,κ \ (Ra,κ ◦Rb,κ)
for all a, b ∈ S, and proceed to extend Uκ and the Ra,κ so as to eventually obtain
Ra ◦Rb = Rab, where Ra is the union of all the Ra,κ constructed along the way.
For each u 6= v with 〈u, v〉 ∈ Rab,κ\(Ra,κ ◦Rb,κ), choose w /∈ Uκ and let

Uκ+1 = Uκ ∪ {w}
R′z =

⋃
{Rx,κ ◦ {〈u, w〉} : xa = z} ∪

⋃
{{〈w, v〉} ◦Ry,κ : by = z}

Ra,κ+1 = Ra,κ ∪ {〈u, w〉} ∪R′a
Rb,κ+1 = Rb,κ ∪ {〈w, v〉} ∪R′b and
Rz,κ+1 = Rz,κ ∪R′z if z 6= a, b.

For limit ordinals λ, we let Uλ =
⋃

κ<λ Uκ and Rx,λ =
⋃

κ<λ Rx,κ.
It remains to check that the new relations are still an approximate embedding.

By construction, they are disjoint, irreflexive and antisymmetric since w /∈ Uκ.
Checking the inclusion Rc,κ+1 ◦Rd,κ+1 ⊆ Rcd,κ+1 involves several cases, depend-
ing on whether c, d ∈ {a, b}. Since they are similar, we consider only the case
c, d /∈ {a, b}. Let 〈p, q〉 ∈ Rc,κ+1 ◦ Rd,κ+1. Then there exists r ∈ Uκ+1 such
that 〈p, r〉 ∈ Rc,κ+1 and 〈r, q〉 ∈ Rd,κ+1. If r ∈ Uκ then the conclusion follows
from the assumption that Rz,κ is an approximate embedding. So we may as-
sume r = w (the unique element in Uκ+1 \ Uκ). By construction 〈p, u〉 ∈ Rxa,κ

for some x such that xa = c and 〈v, q〉 ∈ Rby,κ for some y such that by = d.
Since 〈u, v〉 ∈ Rab,κ it follows that 〈p, q〉 ∈ Rx(ab)y,κ. By associativity we have
Rx(ab)y,κ ⊆ R(xa)(by),κ+1 = Rcd,κ+1, as required.

Finally, to start the construction take U0 to be a disjoint union of S and
S′ = S × {0}, and for each a ∈ S define Ra,0 = {〈a, a′〉}, where a′ = 〈a, 0〉. �

Now the main result follows easily from the “representation theorem” that we
have just established. Previously it was known from [8] that the variety generated
by complex algebras of groups (i.e., the variety of group relation algebras) is not
finitely based. In this case the analogous representation theorem states that
every group relation algebra is representable, a result that follows directly from
Cayley’s theorem for groups.

Corollary 3 V(Cm(Sg)) and V(Cm(CSg)) are not finitely based.

Proof: In [1] (Theorem 4) Andreka shows that the class Rel (called R(∪,∩, |,−)
in [1]) is not finitely axiomatizable, and by the preceding result Rel = V(Cm(Sg)).
Andreka’s result is proved using a sequence of finite commutative relation alge-
bras (from [7]) such that the Boolean semigroup reducts of these algebras are
not in Rel, but the ultraproduct is in CRel. It follows that CRel = V(Cm(CSg))
is also not finitely axiomatizable. �

In fact one can find an 8-element commutative Boolean semigroup that is
not in V(Cm(Sg)): Let A be the finite Boolean algebra with atoms {a, b, c}, and



define
· a b c

a b ∨ c a ∨ b a ∨ c

b a ∨ b a ∨ c b ∨ c

c a ∨ c b ∨ c a ∨ b

It is straight forward to check that this operation is associative. The following
identity fails in this algebra but holds in V(Cm(Sg)): s ≤ t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5
where

s = x04 ∧ [(x02 ∧ (x01 · x12)) · (x24 ∧ (x23 · x34))]
t1 = x04 ∧ (x01 · ¬x14)
t2 = x01 · [x14 ∧ (x12 · x24) ∧ (¬y13 · x34)]
t3 = x04 ∧ (¬x03 · x34)
t4 = [x03 ∧ (x02 · x23) ∧ (x01 · ¬z13)] · x34

t5 = x01 · [y13 ∧ (x12 · x23) ∧ z13] · x34

This identity was derived from an identity of R. Maddux for a closely related re-
lation algebra (see e.g. [6]). To see that it holds in Cm(Sg), let S be a semigroup,
and assume a04 ∈ s ⊆ S. Then a04 ∈ x04 and there exist a02, a01, a12, a24, a23, a34

in S such that aij ∈ xij for the given subscripts, a02 · a24 = a04, a01 · a12 = a02

and a23 · a34 = a24. Suppose a04 /∈ ti for i = 1, 2, 3, 4. It remains to show
that a04 ∈ t5. Let a14 = a12 · a24, a13 = a12 · a23 and a03 = a02 · a23. Then
a04 = a01 ·a12 ·a24 = a01 ·a14 /∈ x01 ·¬x14, so a14 ∈ x14. Moreover, since a02 /∈ t2,
we have a14 /∈ ¬y13 ·x34, hence a13 ∈ y13. Similarly a03 ∈ x03 and a13 ∈ z13. But
now a04 = a01 · a13 · a34 ∈ t5.

The identity fails in the algebra A if one assigns x02 = x04 = a, x23 = x24 = b,
x01 = x12 = x34 = c, x03 = x14 = z13 = a ∨ c, and y13 = a ∨ b since in this case
s = a ∧ [a · b] = a, while t1 = t2 = t3 = t4 = t5 = 0.

The following result shows that there is no smaller example.

Theorem 4 All four-element Boolean semigroups are in V(Cm(Sg)).

Proof: P. Reich enumerated all four-element Boolean semigroups in [9]. There
are a total of 50 (including isomorphic copies), which reduces to 28 if isomor-
phic copies are excluded. Of these, 6 are non-commutative with a corresponding
“opposite” algebra, so only 22 need to be represented. Ten of the 22 algebras are
complex algebras of partial semigroups, so by Lemma 1, they are in V(Cm(Sg)).

This leaves 12 representation problems. The operation tables for the semi-
group operation of these algebras Ai = 〈{0 < a, b < 1},∨, 0,∧, 1,¬, ◦i〉 (i =
1, . . . , 12) are listed below. Reich [9] gives finite representations for 5 of them
(A1– A5 below), leaving the remaining 7 open.

◦1 a b
a 0 0
b 0 1

◦2 a b
a 0 0
b a 1

◦3 a b
a 0 a
b a 1

◦4 a b
a a a
b a 1

◦5 a b
a a b
b b 1

◦6 a b
a a b
b 1 b



◦7 a b
a a b
b 1 1

◦8 a b
a b 1
b 1 1

◦9 a b
a a a
b 1 1

◦10 a b
a a 1
b 1 b

◦11 a b
a a 1
b 1 1

◦12 a b
a 1 1
b 1 1

We now indicate how to construct partial semigroups S6, . . . , S12 and em-
beddings fi : Ai → Cm(Si) for i = 6, . . . , 12. In each case it suffices to specify
fi(a), since fi(0) = ∅, fi(1) = Si, and fi(b) = Si\fi(a).

The algebras A10, A11, and A12 are in fact subalgebras of complex algebras
of semilattices.

For A10 take the chain 〈N,∧〉 and define f10(a) to be the even numbers.
For A12 take a countable binary tree 〈B∞,∧〉 (with root as the bottom ele-

ment) and define f12(a) to be the elements of even height.
For A11 we construct a combination of these two semilattices. Let C∞ =

B∞ ∪ B′
∞ where B′

∞ = B∞ × {0}. Each element of height n in B′
∞ is inserted

into the order of B∞ directly below the corresponding element of height n in
B∞ (so the root of B∞ becomes the root of C∞), and f11(a) = B∞.

We note that A12 also has a finite representation in the rectangular band
B = 〈{0, 1}2, ∗〉, where 〈i, j〉 ∗ 〈k, l〉 = 〈i, l〉 and f12(a) = {〈0, 0〉, 〈1, 1〉}.

For the remaining four algebras we are only able to give step-by-step con-
structions of embeddings into the complex algebra of a partial semigroup defined
by a strict dense partial order. The details are similar to the proof of Theorem 2,
except that since the atoms of these algebras do not form a semigroup under ·
(= ◦i), the relation Rxy,κ is the union of relations Rz,κ where z ranges over all
atoms below x · y. Hence the set of pairs R′z = Rz,κ+1 \ Rz,κ is in general not
determined by a definition similar to the one given in Theorem 2. Instead it is
convenient to describe the approximate embedding relations Rz,κ by a partial
map mκ : Uκ × Uκ → {a, b}, where mκ(p, q) = z iff 〈p, q〉 ∈ Rz,κ. The definition
of Rz,κ+1 is then given by a partial map mκ+1. This map extends mκ and on
the new pairs 〈p, w〉, 〈w, q〉 ∈ Uκ+1×Uκ+1 it is defined by the following table for
the algebra A6:

1-step completion mκ(p, u) a a b b mκ(u, q) a a b b
for A6 mκ(p, v) a b a b mκ(v, q) a b a b

mκ(u, v) = a ≤ a ◦6 a mκ+1(p, w) a − a b mκ+1(w, q) a b − −
mκ(u, v) = a ≤ b ◦6 a mκ+1(p, w) b − b b mκ+1(w, q) a b − −
mκ(u, v) = b ≤ a ◦6 b mκ+1(p, w) − a − b mκ+1(w, q) a − b b
mκ(u, v) = b ≤ b ◦6 a mκ+1(p, w) − b − b mκ+1(w, q) a − a b
mκ(u, v) = b ≤ b ◦6 b mκ+1(p, w) − b − b mκ+1(w, q) a − b b

This table is to be interpreted as follows. Each row (after the first two)
represents a choice of x, y, z ∈ {a, b} and u, v ∈ Uκ such that mκ(u, v) = z ≤ x◦6y
(hence 〈u, v〉 ∈ Rz,κ), but 〈u, v〉 /∈ Rx,κ◦Ry,κ. So one chooses w /∈ Uκ and defines
mκ+1(u, w) = x and mκ+1(w, v) = y. To complete the definition of mκ+1, for
each p ∈ Uκ \ {u} the value of mκ+1(p, w) is given by the first half of the row,



and depends on the values of mκ(p, u) and mκ(p, v) (listed in the first two rows).
The table has a dash (−) as entry if mκ(p, u) ◦6 mκ(u, v) 6≥ mκ(p, v).

The definition of mκ+1(w, q) is similar and uses the second half of the row.
The entries in these rows are largely determined by the operation table for
◦6, but in those places where a choice needed to be made, the chosen atom
is listed in boldface. The appropriate choices were found by a backtrack search
algorithm. It remains to check that the given definition produces relations Rz,κ+1

that are again an approximate embedding. This involves a tedious but straight
forward case analysis. The process of refining approximate embeddings in this
step-by-step way is iterated in a suitable countable sequence to ensure that
Rz =

⋃
κ≤ω Rz,κ is indeed an embedding of A6 into the complex algebra of a

partial semigroup. Readers familiar with representing relation algebras by games
as in [3] or [4], may note that the table above specifies a winning strategy for
the existential player in such a game.

For the algebra A7, the procedure is identical, except that the definition of
mκ+1 is determined by the following table:

1-step completion mκ(p, u) a a b b mκ(u, q) a a b b
for A7 mκ(p, v) a b a b mκ(v, q) a b a b

mκ(u, v) = a ≤ a ◦7 a mκ+1(p, w) a − a b mκ+1(w, q) a b − −
mκ(u, v) = a ≤ b ◦7 a mκ+1(p, w) b − a b mκ+1(w, q) a b − −
mκ(u, v) = a ≤ b ◦7 b mκ+1(p, w) b − b b mκ+1(w, q) a a − −
mκ(u, v) = b ≤ a ◦7 b mκ+1(p, w) − a b b mκ+1(w, q) a a b b
mκ(u, v) = b ≤ b ◦7 a mκ+1(p, w) − b a b mκ+1(w, q) a b a b
mκ(u, v) = b ≤ b ◦7 b mκ+1(p, w) − b b b mκ+1(w, q) a a b b

For A8 one can give a similar 1-step completion table, but in this case the
information in the table can be summarized by mκ+1(p, w) = b = mκ+1(w, q)
for all p, q ∈ Uκ \ {u, v}. This definition produces an approximate embedding at
each step since b ≤ x ◦8 y, x ≤ b ◦8 y and x ≤ y ◦8 b for all x, y ∈ {a, b}.

Finally, for A9 the 1-step completion table is almost as easy to describe as
for A8. Here we set mκ+1(p, w) = b if mκ(p, u) = b = mκ(p, v) and otherwise let
mκ+1(p, w) = a = mκ+1(w, q) for all p, q ∈ Uκ\{u, v}. As before it is tedious, but
not difficult to check that this definition of mκ+1 again produces an approximate
embedding. �

It is not known whether the algebras A6, . . . , A11 can be embedded in complex
algebras of finite semigroups.

Finally we contrast the equational theory of complex algebras of semigroups
with the following result adapted from [5] (Theorem 3.20).

Theorem 5 Every Boolean algebra with a binary operator can be embedded in
a member of Cm(PBn). If the operator is commutative, then the algebra can be
embedded in a member of Cm(PCBn).

Corollary 6 V((C)Bn)) is the variety of Boolean algebras with a (commutative)
binary operator, and hence is finitely based.
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