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Algebras of binary relations

Let us recall some standard results:

M. Stone: Every Boolean algebra is isomorphic to a subalgebra of all
subsets of some set U, with U, N, —, (), U as operations.

C. Holland: Every ¢-group is isomorphic to a subalgebra of all order-
automorphisms of a chain, with pointwise order and o, !, id as opera-
tions.

Let R, S be binary relations (C U?)

relation composition:

Ro S ={(u,v): Jw (u,w) € R and (w,v) € S}
inverse: R~' = {(v,u) : (u,v) € R} and
identity: idy = {(u,u) : u € U}

A representable relation algebra on U is a set A of relations that is
closed under U, N, —, 0,71, idy.

RRA = class of all algebras isomorphic to representable relation alge-
bras

Tarski: RRA is a variety.

Monk ’64: RRA is not finitely axiomatizable.
o is like a multiplication

o, N distribute over U as in ¢-groups

Naive question: Can we embed /-groups into representable relation
algebras?

Well, we don’t need complementation.

If Ro R°!' =idy = R7' o R then R is a permutation.
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So any /-group element would have to map to a permutation.

But this is incompatible with preserving the order of the ¢-group since
distinct permutation are disjoint as relations.

Also, if R, S Cidy then RoS=RNS.
But this is certainly no true in /-groups.

So forget about ~!,idy and instead look at the “residuated lattice
reducts” of relation algebras.

residuals: R\S = {(u,v) : Ro {(u,v)} C S} and
R/S = {(u,v) : {(u,v)} 0 S C R}

Definition: A residuated lattice of (binary) relations is a set A of
relations that is closed under U, N, o, \, / and contains a relation 1 such
that 1o R=Rol= R forall R € A.

(Note that 1 is usually not the identity relation.)

RLR denotes the quasivariety of all residuated lattices of relations.

Problem 1. Is RLR a variety?

It is obvious that every residuated lattice of relations is a distributive
residuated lattice.

Problem 2. Is the converse also true?

Andreka [1991] proved a general result that implies RLR is not finitely
axiomatizable.

Since distributive residuated lattices form a finitely axiomatizable va-
riety, the answer to Problem 2 would be no if RLR is a variety.

Embedding /-groups

LG denotes the variety of lattice-ordered groups (residuated lattices that
satisfy z(2\1) =1, so 271 = z\1).

They are distributive residuated lattices.

Question: Is LG C RLR?

This is answered by the following result.

Theorem. FEvery (-group is isomorphic to a residuated lattice of rela-

tions, hence LG C RLR.

Proof. Let G = (Aut(Q),V, A, o0,idg,\,/) be the f-group of order-

automorphisms of a chain €.



Note that V, A are calculated pointwise.

By Holland’s embedding theorem, it suffices to embed G into a resid-
uated lattice of relations on €.

For g € G, let R, = {(u,v) : u < g(v)}.
R, N Ry = Rypp, since
(u,v) € RyN Ry,
<— u<g(v)and u < h(v)
< w<min{g(v),h(v)} = (g A h)(v)
<~ (u,v) € Rynp,
Ry U Ry, = Ry, is similar, using max.
Ry o Ry = Ryop, since
(u,v) € Rgo Ry,

< Jw [(u,w) € R, and (w,v) € Ry

<— Jw [u < g(w) and w < h(v)]

—  u<g(h(v)) (w = h(v) for <)
< (u,v) € Ryop,

Ry\Ry, = Ry, since
(u,v) € R\ Ry,

< Rjo{(u,v)} CRy

Vw [(w,u) € Ry = (w,v) € Ry
—  Yw [w<g(u) = w < h)]
= g(u) < h(v)
= u<g(h(v) = (9\h)(v)
— (w,v) € Rpp

Ry /Ry = Ry, since
(u,v) € Ry/ Ry,
{(u,v)} o Ry C Ry

ARRE
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= u<g(h™(v) = (g/h)(v)

—  (w,v) € Ry

Finally, Ry = {(u,v) : u < v} = “<” is an identity element since

Ryo Rig = Ryoia = Ry = Rigo R,,.

Therefore {R, : ¢ € G} is a residuated lattice of relations that is

isomorphic to G. 0
Embedding BL-algebras

Theorem. Every BL-algebra is isomorphic to some algebra of relations

Proof. The MV-algebra on [0,1] is isomorphic to {M, : r € [0,1]}
where M, = {(u,v) € (0,1]*:v <u—1+r}.

The Godel algebra on [0,1] is isomorphic to {G, : r € [0,1]} where
G, ={(u,v) € (0,1)* : v < min{u,r}}.

The product algebra on [0, 1] is isomorphic to {P,. : r € [0,1]} where
P, = {(u,v) € (0,1)? : v < r-u}.

To complete the proof it suffices to show that RLR is closed under
ordinal sums of integral members.

Suppose A, B € RLR, with A integral, A C P(U?) and B C P(V?),
where U and V' are disjoint.

Define C = AU{RU14 : R € B. Then it is easy to check that
C=A®B.

Note that integrality of A is required to ensure that 14 U 17 is an
identity of C'. U

Finite representable generalized BL-algebras

Generalized basic logic algebras, or GBL-algebras for short, are residu-
ated lattices that satisfy

ANy = ((xAy)/y)ly and zAy=yy\(=zAy)).

The variety of GBL-algebras contains LG, as well as the variety of basic
hoops (defined by adding zy = yx and x Ay = (z/y)y) to RL).

A residuated lattice is integral if the identity 1 is the top element.
This condition holds for basic hoops since x A 1 = (z/1)1 = z.

A GBL-algebra is called a GBL-chain if it is linearly ordered.
GBL-chains generate the variety of representable GBL-algebras.
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Pseudo BL-algebras are bounded integral GBL-algebras expanded with
a constant 0 denoting the least element, and that satisty prelinearity:

\yVy\r=1=uz/yVy/z.
BL-algebras are commutative pseudo BL-algebras (in which case pre-
linearity can be derived from the basic hoop axioms).

Hajek [1998] proved that all subdirectly irreducible BL-algebras are
BL-chains.

Also, by definition, BL-algebras are commutative and integral.

The lattice-reduct of any GBL-algebra is distributive (see e.g. J. and
Tsinakis [2002])

But in general, GBL-algebras are neither integral nor commutative nor
representable, (consider any nonrepresentable ¢-group).

Note that if a GBL-algebra has a top element T, then T = 1:
From z Ay = y(y\(z A y)), we deduce

1=1AT=T(T\(LAT))=T(T\1)

hence T = T1=TT(T\1) = T(T\1) = 1.

(More generally this shows 1 is a maximal idempotent in any GBL-
algebra.)

Therefore any finite GBL-algebra is integral.

We now prove that all finite GBL-chains are in fact commutative and
hence basic hoops.

This result also holds for pseudo BL-chains (since any finite GBL-chain
can be expanded to a pseudo BL-chain by adding a constant 0 to denote
the least element)

Problem 3. Are all finite GBL-algebras commutative?

The GBL identities are equivalent to the following property that is also
called divisibility:

r <y = (Jz(r = zy) and Iz(z = yz)).

As usual, the symbol < denotes the covering relation,
and =< denotes the covering-or-equal relation.

As usual, the symbol < denotes the covering relation,
and =< denotes the covering-or-equal relation.
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Lemma 1. In any integral GBL-chain, if a < b then for all ¢ we have
ac = bec and ca < cb.

Proof. We show the contrapositive. Suppose a, b, c, x are elements in
an integral GBL-chain such that ac < = < be.

By integrality x < ¢, hence by divisibility Jz such that x = zc.
Now zc < be = b £ z, so the linear order implies z < b.
Similarly, ac < zc implies a < z.

Hence a is not covered by b.

The argument for ca < x < c¢b is similar. O

Let L and M be integral residuated lattices with no elements in com-
mon.

Suppose further that the identity element of L is join-irreducible.

The ordinal sum of L and M is an integral residuated lattice defined
on the set (L\ {1}) U M as follows:

- restricted to L and M agrees with the original product on L and M
respectively, and for z € L\ {e} and y € M,

TYy=x=1y-T.
The order on the ordinal sum also agrees with the original order on L

and M, and all elements of L \ {e} are below all elements of M.

Let a be an idempotent element (aa = a) of an integral residuated
lattice L.

Then it is easy to check that Ta = {z € L : x < a} is a subalgebra of
L.

Similarly, la = {z € L : © < a} is closed under - and the lattice
operations, and

- is residuated by the operations
\'y=2\yAa and z/ly=zx/yAa.
The next result shows that for finite GBL-chains a acts as the identity

element on |a.

Lemma 2. If a finite GBL-chain L contains an idempotent a # 0,1
then |a is a residuated lattice with identity 1' = a, and L decomposes
as the ordinal sum of Ta and |a.
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Proof. To conclude that |a is a residuated lattice, it suffices to show
that ax = x = za for all x < a.
This follows from the preceding lemma since L is a finite chain,
aa = a, a0 = 0, and the map = — ax preserves <.
To see that L decomposes as an ordinal sum,
note that if x < a and y > a then yxr = z,
since lx = x, ax = x, and - is order preserving.

Similarly xy = x. U

Since ordinal sums of commutative integral GBL-algebras are commu-
tative, it now only remains to show that every finite integral GBL-
algebras without idempotents (other than 0 and 1) is commutative.

Lemma. Let A = {ag,a4,...,a,} be the elements of a finite GBL-
algebra, with ag =1, a, =0 and a; > a;y1 fori <n.

Suppose that A has no idempotents other than 1,0, and that for some
fized m < n and all i + j < m we have a; - a; = a;4;.

Then G, - ap = ap, for all k < m.
Lemma 3. Let A = {ag,ay,...,a,} be the elements of a finite GBL-
algebra, with ag =1, a, =0 and a; > a; 41 fori <n.

Suppose that A has no idempotents other than 1,0, and that for some
fized m < n and all i + j < m we have a; - a; = a;4;.

Then k. - ax = ay, for all k < m.

Proof. Assume the stated conditions hold, and let k£ < m.

If £ =0, then the conclusion follows immediately.

For k =1, Lemma 1 implies that a,,_1 - a; is either a,,_1 or a,,,
since a,,—1 - g = QApp—1-

We claim that the first case is impossible since it implies that a,,_; is
idempotent.

This follows from the observation that if a,,—1 - a1 = a,,,—1 then a,,—1 -
a1 -Q1--- QA = Gp_1, and

the product of m — 1 copies of a; is a,,—1 by assumption.
Therefore a,,_1 - a1 = a,,. (End of basis step)

Now suppose that A (k—1) * Ak—1 = Q-
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Then a0 = Ak - A1 - Qf—1 = A—f11 * Qf—1 = Q-

So the desired result follows by induction on k. O
The n-element Wajsberg chain is a basic hoop with elements ag > a; >
“++ = ap_1 such that a; - a; = apin(i+jn-1), hence commutative.
Theorem. FEvery finite GBL-chain is commutative (hence a basic hoop).
Proof. Suppose A is a GBL-chain that has elements ag > a; = --- >
a, = 0.

Any finite GBL-algebra is integral, hence ay = 1.

If n =1, then A is the 2-element Wajsberg chain (= BA).

Now suppose n > 1. If a; is idempotent for some 0 < i < n,

then A decomposes by Lemma 2 into the ordinal sum of two smaller
GBL-chains.

So we may assume that A has no idempotents other that 1, 0.
Therefore by Lemma 1, a; - a1 = as.

If n = 2, then A is the 3-element Wajsberg chain, and

if n > 2, then the assumptions of Lemma 3 are satisfied with m = 3.
Using this lemma as the inductive step we see that

A has the structure of the n + 1-element Wajsberg chain. U

So the finite GBL-chains are just ordinal sums of Wajsberg chains.

This makes it easy to count the number nonisomorphic (G)BL-chains
with n elements.

We just have to choose which of the n — 2 elements between 1 and 0
are idempotents.

For each of the 2"~2 different choices we obtain a nonisomorphic (G)BL-
chain.

Corollary. For n > 1 there are 2"~2 GBL-chains with n elements.

Since there are noncommutative representable integral GBL-algebras,
we also have the following result.

Corollary. The variety of representable GBL-algebras and the variety
of integral representable GBL-algebras are not generated by their finite
members (i.e. they do not have the finite model property).

*
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