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Abstract. Cancellative residuated lattices are a natural general-
ization of lattice-ordered groups (`-groups). Although cancellative
monoids are defined by quasi-equations, the class CanRL of can-
cellative residuated lattices is a variety. We prove that there are
only two commutative subvarieties of CanRL that cover the triv-
ial variety, namely the varieties generated by the integers and the
negative integers (with zero). We also construct examples show-
ing that in contrast to `-groups, the lattice reducts of cancellative
residuated lattices need not be distributive. In fact we prove that
every lattice can be embedded in the lattice reduct of a cancella-
tive residuated lattice. Moreover, we show that there exists an
order-preserving injection of the lattice of all lattice varieties into
the subvariety lattice of CanRL.

We define generalized MV-algebras and generalized BL-algebras
and prove that the cancellative integral members of these varieties
are precisely the negative cones of `-groups, hence the latter form a
variety, denoted by LG−. Furthermore we prove that the map that
sends a subvariety of `-groups to the corresponding class of negative
cones is a lattice isomorphism from the lattice of subvarieties of
LG to the lattice of subvarieties of LG−. Finally, we show how
to translate equational bases between corresponding subvarieties,
and briefly discuss these results in the context of R. McKenzie’s
characterization of categorically equivalent varieties.

1. Introduction

A residuated lattice-ordered monoid, or residuated lattice for short, is
an algebra L = 〈L,∧,∨, ·, e, \, /〉 such that 〈L,∧,∨〉 is a lattice, 〈L, ·, e〉
is a monoid, and multiplication is both left and right residuated, with
\ and / as residuals. This means that for all a, b, c ∈ L,

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c.

M. Ward and R. P. Dilworth were the first to introduce the concept of
a residuated lattice [26] as a generalization of ideal lattices of rings. In
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their original definition a residuated lattice was what we would call an
integral commutative one. Basic properties and facts in this restricted
setting were known, but in [7] one can find the first thorough study
of residuated lattices in their generality. For a survey of residuated
lattices we refer to [21].

The classRL of all residuated lattices is easily seen to be a variety [7].
It includes algebras term equivalent to many well studied and diverse
structures, such as generalized Boolean algebras, Brouwerian algebras,
relative Stone algebras and `-groups. Thus, residuated lattices allow
the study of all these algebras under a common language. For related
work on subreducts of integral commutative residuated lattices we refer
the reader to [6], [5] and [15].

In this paper we concentrate on cancellative residuated lattices, which
form a variety by Lemma 2.5. The variety of `-groups is the most stud-
ied cancellative variety of residuated lattices and it enjoys many inter-
esting properties. We investigate whether some of the properties of
`-groups extend to the whole variety of cancellative residuated lattices
and construct examples that illustrate the limitations. In particular,
we construct a cancellative commutative residuated lattice whose lat-
tice reduct is not distributive and further prove that every lattice is
a subreduct of a cancellative residuated lattice. Moreover, we provide
sufficient conditions for a residuated lattice to have a distributive lattice
reduct and prove that there are exactly two cancellative commutative
atoms in the subvariety lattice, the varieties generated by Z and Z−.

C. C. Chang introduced MV-algebras in 1958 as the algebraic coun-
terpart of multi-valued propositional calculus. Even though MV-algebras
are not cancellative, they are connected to abelian `-groups, as shown
in [12], [23] (see also [13]). We introduce the variety of generalized
MV-algebras and prove that the subvariety of cancellative members is
precisely the class of negative cones of `-groups. As a result we obtain
a finite equational basis for this class. We study further the connection
between `-groups and their negative cones and show that their subvari-
ety lattices are isomorphic. Finally, we describe an effective procedure
of translating equational bases between corresponding subvarieties of
these lattices.

2. Preliminaries

Throughout we use the convention that, in the absence of parenthe-
ses, · is performed first, followed by \, / and then ∨,∧.

The lattice of subvarieties of RL is denoted by L(RL). Some basic
properties of subvarieties of RL can be inferred from the fact that
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residuated lattices have lattice reducts. It follows for example that
they are congruence distributive, and hence L(RL) is distributive.

We quote below some results from [7] that we will be using in the
remainder of the paper. The following lemma provides some useful
identities that hold in all residuated lattices.

Lemma 2.1. [7] Let L be a residuated lattice. For all a, b, c ∈ L we

have:

(i) a(b ∨ c) = ab ∨ ac and (b ∨ c)a = ba ∨ ca.
(ii) (a ∧ b)/c = (a/c) ∧ (b/c) and c\(a ∧ b) = (c\a) ∧ (c\b).

(iii) a/(b ∨ c) = (a/b) ∧ (a/c) and (b ∨ c)\a = (b\a) ∧ (c\a).
(iv) (a/c)c ≤ a and c(c\a) ≤ a.
(v) a(c/b) ≤ ac/b and (a\c)b ≤ a\cb.

(vi) (c/b)(b/a) ≤ c/a and (a\b)(b\c) ≤ a\c.
(vii) c/b ≤ (c/a)/(b/a) and b\c ≤ (a\b)\(a\c).

(viii) b/a ≤ (c/b)\(c/a) and a\b ≤ (a\c)/(b\c).
(ix) c/b ≤ ca/ba and a\c ≤ ba\bc.
(x) (c/a)/b = c/ba and b\(a\c) = ab\c.

(xi) a\(c/b) = (a\c)/b.
(xii) c ≤ (a/c)\a and c ≤ a/(c\a).

(xiii) a/e = a and e\a = a.
(xiv) If L has a bottom element, 0, then L also has a top element,

1, and for all a ∈ L we have: a0 = 0a = 0, a/0 = 0\a = 1 and

1/a = a\1 = 1.

For a residuated lattice L, the negative part of L is L− = {x ∈ L :
x ≤ e}. The negative cone of L is defined as L− = 〈L−,∨,∧, ·, e, /L− , \L

−

〉,
where

a/L−b = a/b ∧ e and a\L
−

b = a\b ∧ e.

It is easy to check that L− is again a residuated lattice. For a class K of
residuated lattices, K− denotes the class of negative cones of members
of K.

Given an element a in a residuated lattice L, define the left-conjugation
map λa and the right-conjugation map ρa by λa(x) = (a\xa) ∧ e and
ρa(x) = (ax/a) ∧ e, for all x ∈ L. A subset is normal if it is closed
under λa and ρa for all a ∈ L. It is convex if for all a ≤ b in the subset,
all elements between a and b are also in the subset.

The class RL is an ideal variety, i.e., congruences are determined
by their e-congruence classes, and these are further characterized as
convex, normal subalgebras.

Theorem 2.2. [7] The lattice CN(L) of convex, normal subalgebras of
a residuated lattice L is isomorphic to its congruence lattice Con(L).
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The isomorphism is given by the mutually inverse maps H 7→ θH =
{〈a, b〉 : (a/b) ∧ e ∈ H and (b/a) ∧ e ∈ H} and θ 7→ [e]θ .

In fact the congruences are already determined by the negative part
of [e]θ.

Theorem 2.3. [7] Let S be a convex, normal submonoid of L such that

S ⊆ L−. Then defining the set HS by

HS = {a : s ≤ a ≤ s\e for some s ∈ S},

HS is a convex, normal subalgebra of L and S = H
−

S . Conversely,

if H is any convex, normal subalgebra of L then, setting SH = H−,

SH is a convex, normal submonoid of L and H can be recovered from

SH as described above. Moreover, the mutually inverse maps H 7→ SH

and S 7→ HS establish a lattice isomorphism between the lattice CN(L)
of convex, normal subalgebras of L and the lattice CNM(L) of convex,
normal submonoids of L whose underlying sets are subsets of L−.

Finally, the following lemma gives the construction of the convex,
normal submonoid generated by a subset of the negative part.

Lemma 2.4. [7] Suppose S ⊆ L−. Let

Ŝ = {(γ1◦· · ·◦γn)(s) : n ∈ ω, s ∈ S, γi = ρa or γi = λa for some a ∈ L}

and let P (Ŝ) be the set of all finite products of members of Ŝ. Then

the convex, normal submonoid generated by S is M(S) = {x : a ≤ x ≤
e for some a ∈ P (Ŝ)}.

A residuated lattice is said to be commutative if its monoid reduct
is commutative and integral if it satisfies x∧ e ≈ x. The corresponding
varieties will be denoted by CRL and IRL, respectively. For members
of CRL, it is common to denote the residuals by x→ y = x\y = y/x.

Similarly, a residuated lattice is said to be cancellative if its monoid
reduct is cancellative. Although cancellativity is a quasi-equation in
the variety of monoids, it is equivalent to an identity in residuated
lattices.

Lemma 2.5. A residuated lattice is right cancellative as a monoid if

and only if it satisfies the identity xy/y ≈ x.

Proof. The identity (xy/y)y = xy holds in any residuated lattice since
xy/y ≤ xy/y implies (xy/y)y ≤ xy, and xy ≤ xy implies x ≤ xy/y,
hence xy ≤ (xy/y)y. By right cancellativity, we have xy/y = x. Con-
versely, suppose xy/y = x holds, and consider elements a, b, c such
that ac = bc. Then a = ac/c = bc/c = b, so right cancellativity is
satisfied. ¤
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Thus, a residuated lattice is cancellative if it satisfies both x\xy ≈ y
and yx/x ≈ y. The variety of cancellative residuated lattices will be
denoted by CanRL.

An `-group is (term equivalent to) a residuated lattice that satisfies
x(x\e) = e. In this case it is common to write x−1 = x\e. It follows
quite easily that x−1x = e, x\e = e/x, x/y = xy−1 and x\y = x−1y.
Clearly the variety LG of all `-groups is a subvariety of CanRL. A
standard reference on `-groups is [1].

The variety generated by all residuated chains is denoted by RLC

and its commutative subvariety by CRLC . RLC has been studied
extensively in [7] while an equational basis for CRLC is given by the
two identities e∧ (x∨ y) ≈ (e∧x)∨ (e∧ y) and e ≤ x/y∨ y/x (see also
[20]).

The variety generated by K is denoted V(K), and V({L}) is also
abbreviated as V(L).

3. Commutative cancellative varieties

As usual, the abelian lattice-ordered group based on the integers is
denoted by Z. A well known result due to Weinberg [27] (see also
[1]) asserts that V(Z) is the variety of abelian `-groups. We show in
Corollary 7.2 that V(Z−) consists of all negative cones of abelian `-
groups.

Theorem 3.1. The only atom in L(RL) below the variety of cancella-

tive, integral residuated lattices is V(Z−).

Proof. Let L be a nontrivial cancellative, integral residuated lattice.
Consider an element x 6= e. Then by cancellativity, xn < xm for all
integers n > m ≥ 0. The set {xn : n ∈ ω} is closed under meets and
joins, since it is a chain, and it is obviously closed under multiplication.
We get from cancellativity that xn/xm = xn−mxm/xm = xn−m for
n > m ≥ 0. On the other hand, if n ≤ m, then xn ≥ exm, so
xn/xm = e, as e is the largest element. Hence this set is a subalgebra,
and it is clearly isomorphic to Z−. Therefore Z− is contained in every
nontrivial variety of cancellative, integral residuated lattices. ¤

The preceding result may be compared to an analogous result by W.
Blok and J. Raftery in [6]. They show that the quasivariety of pocrims
generated by the natural numbers is minimal in the lattice of quasiva-
rieties of cancellative pocrims (pocrims are the division, multiplication
and e subreducts of integral commutative residuated lattices).

Lemma 3.2. The identities x\x ≈ e ≈ x/x hold in any cancellative

residuated lattice.
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Theorem 3.3. The only atoms below the variety of cancellative, com-

mutative residuated lattices are V(Z−) and V(Z).

Proof. Let L be a nontrivial cancellative, commutative residuated lat-
tice. Since x ≤ e implies e ≤ e/x, we have two cases:

Case 1. For all x ∈ L−, e/x = e. Then L− = L since y ≤ e/(y\e ∧
e) = e for all y ∈ L, so by the previous theorem it has a copy of Z− as
a subalgebra. Therefore, Z− is contained in V(L).

Case 2. There is a ∈ L− such that e/a > e. Then we consider
an equivalence ∼ on L defined by x ∼ y iff e/x = e/y. Let θ be
the least congruence containing ∼. First we observe that L/θ is an
`-group, since e/(e/x)x = (e/x)/(e/x) = e by the preceding lemma,
hence (e/x)x ∼ e. Therefore L/θ |= (e/x)x ≈ e, which is a defining
identity of `-groups in the setting of residuated lattices. Next we need
to show that L/θ is not trivial. We will show that a /∈ [e]θ. Assume
not. [e]θ is a convex, normal subalgebra of L generated by K = {x ∈
L : x ∼ e} (by Theorem 2.2). As all of these generators are negative,
and so is a, we can use Theorem 2.3 to conclude that a is in the convex,
normal submonoid of L generated by K. We can also delete “normal”
from the previous statement, since conjugates of negative elements y
in L satisfy

e ≥ ρx(y) = xy/x ∧ e = yx/x ∧ e ≥ y ∧ e = y.

So using Lemma 2.4, we finally arrive at b1b2 · · · bn ≤ a < e for some
b1, . . . , bn ∈ K. By Lemma 2.1(x),

e/b1b2 · · · bn = (e/bn)/b1b2 · · · bn−1 = e/b1b2 · · · bn−1 = · · · = e/b1 = e,

so e = e/b1b2 · · · bn ≥ e/a ≥ e, and hence e/a = e. But this contradicts
our original assumption that e/a > a.

We proved that L/θ is a nontrivial `-group, and every nontrivial
subalgebra of it generated by a negative element is isomorphic to Z.
Therefore Z is contained in V(L). ¤

N. Galatos has recently strengthened the preceding result in [17]
by showing that V(Z−) and V(Z) are the only cancellative atoms in
L(RL).

We now give an example of an integral, cancellative, commutative
residuated chain that is not the negative cone of an `-group, even
though its semigroup reduct is isomorphic to the semigroup reduct
of the negative cone of an `-group.

Example 3.4. Let F be the universe of the free 2-generated commu-
tative monoid on a and b. We denote the empty word by e and order
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F by dual shortlex order, i.e. for words u, v ∈ F we have u ≤ v iff
|u| > |v|, or |u| = |v| and u <lex v in the lexicographic order generated
by b < a. For example,

e > a > b > a2 > ab > b2 > a3 > a2b > ab2 > b3 > · · ·

Then F = 〈F,∧,∨, ·, e, \, /〉 is a cancellative, commutative, integral
residuated chain. However it is not the negative cone of an `-group.
Indeed, it is easy to see that the negative cone of an `-group satisfies
the law (x/y)y ≈ x ∧ y (see Corollary 6.3), whereas we have (b/a)a =
a2 6= b = a ∧ b in F .

4. Lattice reducts of cancellative residuated lattices

The following result generalizes a result in [2].

Proposition 4.1. The following conditions are equivalent in a lattice

L.

(i) L is distributive.

(ii) For all a, b ∈ L with a ≤ b, there exists a join-endomorphism

f of L such that f(b) = a and f(x) ≤ x, for all x ∈ L.
(iii) The dual of (ii): for all a, b ∈ L with a ≤ b, there exists a

meet-endomorphism f of L such that f(a) = b and x ≤ f(x),
for all x ∈ L.

Proof. (i) implies (ii) since we can take f to be the map f(x) = a ∧ x.
Conversely, suppose (ii) holds, and consider the lattices in Figure 1.
If either one of them is a sublattice of L, then we have a = f(b) =
f(x ∨ y) = f(x) ∨ f(y), hence f(y) ≤ a. By assumption, f(y) ≤ y,
so f(y) ≤ a ∧ y = z. But then x ≥ f(x) ∨ f(y) = a, which is a
contradiction. Hence L does not contain either of these lattices, and
is therefore distributive. The equivalence of (i) and (iii) follows by
duality. ¤

We use the preceding result to establish three sufficient conditions
for distributivity. That the second condition implies distributivity was
first proved by Bosbach in [9].

Corollary 4.2. For residuated lattices, any of the following identities

imply the distributive law:

(i) x/x ≈ e and (x ∨ y)/z ≈ x/z ∨ y/z
(ii) x(x\(x ∧ y)) ≈ x ∧ y

(iii) x\xy ≈ y, xy ≈ yx and x(y ∧ z) ≈ xy ∧ xy.

Proof. In each case one may use the preceding lemma with an appropri-
ate definition of the endomorphism. For (i) take f(x) = (x/b)a and for
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b

a x y

z

b

a

x

y

z

Figure 1

(ii) take f(x) = x(b\(a∧ b)), then the second condition of the lemma is
satisfied. For (iii) take f(x) = a\xb, in which case the third condition
of the lemma holds. ¤

Note that (i) is a generalization of the well known fact that lattice
reducts of `-groups are distributive. However, cancellativity alone is
not enough to ensure distributivity, as the next result demonstrates.

Theorem 4.3. Any lattice is a sublattice of the lattice reduct of some

simple, cancellative, integral residuated lattice.

Proof. Let L be a lattice. Since any lattice can be embedded in a
lattice with a top element, we may assume that L has a top element,
say 1. Let L∗ be the ordinal sum of Ln (the cartesian power, ordered
pointwise) for n = 0, 1, 2, . . ., with Ln above Ln+1 (see Figure 2), and
define the multiplication by concatenation of sequences (where L0 is the
set containing the empty sequence). Then the monoid reduct of L∗ is
the free monoid generated by the elements in L1, so L∗ is cancellative.
It is residuated since each block has a largest element, namely the
constant sequence 1k = 〈1, 1, . . . , 1〉 ∈ Lk. The left residual can be
calculated explicitly:

〈x1, . . . , xm〉\〈y1, . . . , yn〉

=

{
〈ym+1, . . . , yn〉 if m ≤ n and xi ≤ yi for 1 ≤ i ≤ m

1k otherwise, where k = max(n−m + 1, 0),

and the right residual is similar. Note that the convex submonoid
generated by 〈1〉 is L∗, hence Theorem 2.2 implies that L∗ is simple. ¤

Note that the lattice reduct of L∗ is in the variety generated by L,
since lattice varieties are closed under the operation of ordinal sum
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e = 〈〉
〈1〉

L1

〈1, 1〉

L2

〈1, 1, 1〉

L3

...

Figure 2. L∗, a cancellative expansion of a given lattice L

and adding a top element. If we take L to be M3, the 5-element
modular lattice, then L∗ is a 3-generated modular, nondistributive,
cancellative, integral residuated lattice. If we take L to be N5, the
5-element nonmodular lattice, then L∗ is a nonmodular, cancellative,
integral residuated lattice. In fact, given any lattice variety V , we can
define a subvariety of CanRL by V̂ = V({L∗ : L ∈ V}).

Corollary 4.4. The map V 7→ V̂ is an order-preserving injection of

the lattice of all lattice varieties into L(CanRL).

The next example shows that there are even commutative, cancella-
tive residuated lattices that are not distributive.

Example 4.5. Let F = FCM(a, b, c) = {aibjck : i, j, k ∈ ω} be the 3-
generated free commutative monoid. For a word α ∈ F, we denote the
length of α by |α|, and for x ∈ {a, b, c}, we define |α|x to be the number
of occurrences of x in α. The order on F is defined by α ≤ β if |α| > |β|,
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or |α| = |β|, |α|b ≤ |β|b and |α|c ≤ |β|c (see Figure 3). Note that
each block of words of the same length is a finite join-subsemilattice
of a product of two chains, hence F is a lattice in which every join of
elements is attained by a finite subjoin. Recall that a binary operation
on a join-complete lattice is residuated iff it distributes over arbitrary
joins. To see that the monoid operation of F is residuated, it therefore
suffices to show that it distributes over finite joins. For two words α, β
of the same length, we have |α ∨ β|b = min(|α|b, |β|b), so

|(α ∨ β)γ|b = min(|α|b, |β|b) + |γ|b
= min(|α|b + |γ|b, |β|b + |γ|b) = |αγ ∨ βγ|b

and similarly for | |c. It follows that F is a residuated lattice, and since
the underlying commutative monoid is freely generated, F is cancella-
tive. Finally, F is not distributive since bb∨ (ab∧ cc) = bb∨ (aaa) = bb
while (bb ∨ ab) ∧ (bb ∨ cc) = (ab) ∧ (aa) = ab.

It should be noted that the example above, while not distributive, is
join-semidistributive: if α ∨ β = α ∨ γ = δ, then α ∨ (β ∧ γ) = δ. One
way to modify the example is to consider the free commutative monoid
generated by {a, b, c, d}. The ordering on this new monoid is similar
to the one above: α ≤ β if |α| > |β|, or |α| = |β| and |α|u ≤ |β|u,
where u ∈ {b, c, d}. As before, one shows that this new ordering gives
a residuated lattice which is not distributive. However, notice that now
b∨ c = b∨ d = a while b∨ (c∧ d) = b∨ (aa) = b, so this new residuated
lattice is not even join-semidistributive.

As noted in the introduction, the variety CRLC generated by com-
mutative residuated chains is axiomatized by e∧(x∨y) ≈ (e∧x)∨(e∧y)
and e ≤ x/y ∨ y/x.

The second identity also holds in all `-groups (since they satisfy
e ≤ x ∨ x−1). Since RLC and LG both have distributive lattice
reducts, the question arises whether this identity holds for all cancella-
tive, distributive residuated lattices. However, if we take L = {0, 1}
to be the two-element chain, then the lattice L∗ constructed above
in Theorem 4.3 is a distributive, cancellative residuated lattice. To
see that it fails e ≤ x/y ∨ y/x, take x = 〈0, 1〉 and y = 〈1, 0〉; then
x/y = 〈1〉 = y/x.

A smaller generating class for CanRLC. It is shown in [7] that the
subdirectly irreducible algebras in RLC are precisely the residuated
chains. So a generating set for CanRLC is the class of all cancellative
residuated chains. The next result shows that it suffices to consider the
subclass whose monoid reducts are countably generated free monoids.
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e

a

b c

aa

ab ac

bb bc cc

aaa

aab aac

abb abc acc

bbb bbc bcc ccc

a4

Figure 3. A nondistributive cancellative commutative example

Proposition 4.6. Every cancellative residuated chain is the homomor-

phic image of a residuated chain whose monoid reduct is a free monoid.

Proof. Let C be a cancellative residuated chain and let C∗ =
⋃
n∈ω C

n,
the free monoid generated by C1, with the multiplication given by
concatenation. The identity element of C is denoted by e and the
identity element of C∗ is the empty tuple 〈〉. Note that these are not
the same element. Let ¹ be a dual shortlex order on C∗ generated
by some dual well-ordering of C. This means α ¹ β iff |α| > |β|, or
|α| = |β| and α is lexicographically greater or equal to β with respect
to the chosen dual well-ordering of C. Finally, let f : C∗ → C be the
canonical monoid homomorphism, i.e. f(〈a1, a2, · · · , an〉) = a1a2 · · · an,
where ai ∈ C.

We now define a linear order on C∗, and then prove that C∗ is
a residuated chain and f is a residuated lattice homomorphism. For
α, β ∈ C∗ define α ≤ β iff f(α) < f(β) in C, or f(α) = f(β) and α ¹ β.
It follows from the definition that multiplication is order preserving,
and hence join preserving.

Let α, β ∈ C∗. Notice that if γβ ≤ α, then f(γβ) = f(γ)f(β) ≤
f(α). So, we have that f(γ) ≤ f(α)/f(β). Hence, if α/β exists in
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C∗, then f(α/β) ≤ f(α)/f(β). (Similarly, we have that f(β\α) ≤
f(β)\f(α), if β\α exists in C∗.) Consider Γ = {γ : f(γ) = f(α)/f(β)}.

Let n = max{|α| − |β|, 0}. Let γ = 〈f(α)/f(β), e, . . . , e〉 ∈ Cn+1,
which is in Γ. Now, f(γβ) = (f(α)/f(β))f(β) ≤ f(α) and |γβ| =
1 + n + |β| > |α|. Hence γβ ≤ α. Let Γ′ = {γ : γ ∈ Γ, γβ ≤ α}.
In light of the preceding observations, we have that Γ′ 6= ∅. Also note
that Γ is dually well-ordered, and in particular δ =

∨
Γ′ exists. Now

δβ =
∨

γ∈Γ′

γβ ≤
∨

γ∈Γ′

α = α.

Therefore, if γ ≤ δ, then γβ ≤ α. If follows that γβ ≤ α implies that
f(γ) ≤ f(α)/f(β), which implies γ ≤ δ. Hence, δ = α/β in C∗. In a
similar manner β\α = ∨{γ : f(γ) = f(β)\f(α), βγ ≤ α}.

Notice that the paragraph above shows that α/β =
∨

Γ′. So, we
have that f(α/β) ≥ f(α)/f(β). Thus, we can conclude that f(α/β) =
f(α)/f(β). Similarly, we have that f(β\α) = f(β)\f(α). Since f is
a monoid homomorphism and an order homomorphism by definition,
we have that f is a residuated lattice homomorphism. Thus C is a
homomorphic image of C∗. ¤

Since the collection of all countable cancellative residuated chains
generates CanRLC , we have the following corollary.

Corollary 4.7. The collection of all residuated total orders on a count-

ably generated free monoid is a generating set for the variety CanRLC.

5. Generalized MV-algebras and BL-algebras

A residuated 0, 1-lattice is a bounded residuated lattice with the ad-
ditional constant operations 0 and 1 denoting the bottom and top ele-
ment of the lattice. Since 1 = 0/0 holds in any such lattice, it suffices
to only include 0 in the similarity type. (Note that the top element,
1, of a residuated lattice, whenever it exists, does not have to coincide
with the multiplicative identity e.)

MV-algebras were introduced as algebraic counterparts of the multi-
valued logic of ÃLukasiewics (see [13]). In this section we give a (some-
what nonstandard but term-equivalent) definition of MV-algebras as
a subvariety of 0,1-residuated lattices. In our context, commutativity
and the existence of a bottom element are not essential ingredients
of the algebraic theory. This leads us to the definition of generalized
MV-algebras as a subvariety of RL. Basic logic is another nonclassical
logic that has recently received some attention. It includes multi-valued
logic, and the algebraic counterparts are called BL-algebras. Here we
also define them in the context of 0,1-residuated lattices, as well as
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the larger class of generalized BL-algebras. In the following section
we prove that in the presence of cancellativity, generalized BL-algebras
are generalized MV-algebras, and are precisely the negative cones of
`-groups.

An MV-algebra is a commutative residuated 0,1-lattice that satisfies
the identity x ∨ y ≈ (x → y) → y. This identity implies that the
residuated lattice is also integral (see Lemma 5.2 below), hence we
write 1 for the monoid identity and obtain algebras of the form M =
〈M,∧,∨, ·, 1,→, 0〉.

Furthermore, one can show that xy ≈ (x → (y → 0)) → 0, x ∧ y ≈
x(x → y) and of course 1 ≈ 0 → 0, so it suffices to have → and 0
as fundamental operations (see e.g. [19], [24]). Such algebras are also
known as Wajsberg algebras. In the original definition of MV-algebras,
Chang [11] uses the operations +, ·,¬, 0, 1, where ¬x = x → 0 and
x+y = ¬(¬x ·¬y). In this case → is definable by x→ y ≈ ¬x+y, and
〈M,+, ·,¬, 0, 1〉 is an MV-algebra if 〈M, ·, 1〉 is a commutative monoid
and satisfies

¬¬x ≈ x, 0 = ¬1, x0 = 0, x + y = ¬(¬x · ¬y)
and (x→ y) → y ≈ (y → x) → x.

Standard examples of MV-algebras are Boolean algebras, and the
[0, 1]-algebra defined on the unit interval, with x ·y = max(0, x+y−1)
and ¬x = 1 − x (in which case x + y = min(1, x + y) and x → y =
min(1, 1− x + y)).

The latter example can be generalized to abelian `-groups as follows.
If G = 〈G,∧,∨, ·, \, /, e〉 is an abelian `-group and a a positive element,
then Γ(G, a) = 〈[e, a],∧,∨, ◦, a,→, e〉 is an MV-algebra, where x ◦
y = xy/a ∨ e, x → y = ya/x ∧ a. Chang [12] proved that if M

is a totally ordered MV-algebra then there is an abelian `-group G

and a positive element a of it such that M ∼= Γ(G, a). Moreover,
Mundici [23] generalized the result to all MV algebras and proved that Γ
is an equivalence between the category of MV-algebras and the category
of abelian `-groups with strong unit. A good reference for MV-algebras
is [13]. See [18] for a generalization of this result to arbitraty `-groups.

A generalized MV-algebra (or GMV-algebra for short) is a residuated
lattice that satisfies x/((x ∨ y)\x) ≈ x ∨ y ≈ (x/(x ∨ y))\x.

Note that MV-algebras are generalized in two directions: the ex-
istence of lattice bounds is not stipulated and the commutativity as-
sumption is dropped. In particular, bounded commutative generalized
MV-algebras are reducts of MV-algebras.

A BL-algebra is a commutative residuated 0, 1-lattice that satisfies
the identities x ∧ y ≈ x(x→ y) and x→ y ∨ y → x = e. Taking x = e
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in the first identity, we have e ∧ y = y. Hence as for MV-algebras,
BL-algebras are integral, and we may replace e by 1.

A generalized BL-algebra (or GBL-algebra for short) is a residuated
lattice that satisfies ((x∧ y)/y)y ≈ x∧ y ≈ y(y\(x∧ y)). The reader is
refered to [18] for a detailed study of GMV-algebras and GBL-algebras.
Note that GBL-algebras have distributive lattice reducts, by Corol-
lary 4.2(ii).

We note that the GBL and GMV identities are equivalent to simpler
quasi-identities.

Lemma 5.1.

(i) The GBL identity y(y\(x ∧ y)) ≈ x ∧ y is equivalent to the

quasi-identity x ≤ y ⇒ x = y(y\x).
(ii) The GMV identity x/((x∨ y)\x) ≈ x∨ y is equivalent to the

quasi-identity x ≤ y ⇒ y = x/(y\x).

The next result shows that GMV is subvariety of GBL. In particular,
it follows that GMV-algebras are distributive.

Lemma 5.2. Every GMV-algebra is a GBL-algebra.

Proof. We make use of the quasi-equational formulation from the pre-
ceding lemma. Assume that x ≤ y and let z = y(y\x). Note that
z ≤ x and y\z ≤ x\z. Hence,

x\z = ((y\z)/(x\z))\(y\z)
= (y\(z/(x\z)))\(y\z) since (u\v)/w = u\(v/w)
= (y\x)\(y\z) since z ≤ x⇒ x = z/(x\z)
= (y(y\x)\z since u\(v\w) = vu\w
= z\z.

Therefore, x = z/(x\z) = z/(z\z) = z, as required. The proof of
x = (x/y)y is similar. ¤

The following lemma provides an alternative equivalent axiomatiza-
tion for GBL and GMV-algebras.

Lemma 5.3.

(i) The GBL identity y(y\(x ∧ y)) ≈ x ∧ y is equivalent to the

identity y(y\x ∧ e)) ≈ x ∧ y.
(ii) The GMV identity x/((x∨ y)\x) ≈ x∨ y is equivalent to the

identity x/(y\x ∧ e)) ≈ x ∨ y.

Proof. The proof will be immediate once we prove that each of the
identities in the statement of the lemma imply the identity x\x ≈ e.
To this end, note that in every residuated lattice,

x ∨ y ≤ x/((x ∨ y)\x) ≤ x/(y\x ∧ e),
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for all elements x, y. Thus the identity x/(y\x∧ e)) ≈ x∨ y implies the
GMV identity. Moreover, both the identities in (i) imply the quasi-
identity

e ≤ y ⇒ e = y(y\e),

which states that every positive element has a right inverse. Next note
that every element x\x is both positive and idempotent in any residu-
ated lattice. Thus, in light of Lemma 5.2, each of the four identities in
the statement of the lemma imply the identity x\x ≈ e, as was to be
shown. ¤

We will concentrate on the classes of integral GMV-algebras and
integral GBL-algebras. Using the previous lemma, we can see that
these varieties are axiomatized, relative to the variety of residuated
lattices, by the identities x/(y\x) ≈ x ∨ y ≈ (x/y)\x and (x/y)y ≈
x ∧ y ≈ y(y\x), respectively.

6. Characterizing cancellative, integral, generalized

MV-algebras

In this section we consider the relationship between a given class of
residuated lattices and the corresponding class of negative cones. We
prove below that there is a lattice isomorphism between the subvarieties
of LG and the subvarieties of LG−. We also show how identities can
be translated back and forth between two corresponding subvarieties.

We begin by recalling a standard construction for embedding certain
cancellative monoids into groups (see, for example, [16]).

Lemma 6.1. Let H = 〈H, ·, e〉 be a cancellative monoid such that

aH = Ha for all a ∈ H. Then there is a group Q(H) and an embed-

ding q : H → Q(H) such that every element of Q(H) is of the form

q(a)q(b)−1 for some a, b ∈ H.

Proof. From the assumption that aH = Ha for all a ∈ H it follows
that every product ba can be written aba for some element ba, which
is unique by cancellativity. It is straightforward to check that the
following identities are satisfied:

ea = e, ae = a, aa = a, (ab)c = acbc, (ab)c = abc

We define a mapping θ from the opposite monoid Hopp to the endo-
morphism monoid, End(H), of H by stipulating that θ(a) = θa, where
θa(b) = ba, for all b ∈ H. It is straight forward to show that θ is a
homomorphism. Thus we may define a semidirect product on the set
H × Hopp, by the multiplication 〈a, b〉〈c, d〉 = 〈aθb(c), db〉 = 〈acb, db〉.
Using the identities above, one checks that this gives an associative
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product, for which the element 〈e, e〉 serves as a unit element, giving
us a monoid M .

Now we define a relation ∼ on M by stipulating that

〈a, b〉 ∼ 〈c, d〉 ⇔ adb = cb

From the identities above it follows that ∼ defined in this manner is
indeed a monoid congruence, so we may consider the algebra formed
by taking the quotient by this congruence, say G = M/∼. It is evident
that [〈e, e〉] serves yet again as a unit element, and it is straightforward
to check that 〈a, b〉〈b, a〉 ∼ 〈b, a〉〈a, b〉 ∼ 〈e, e〉, and that 〈b, a〉 is the
only element (up to equivalence) such that this relation holds. Thus
every element of G possesses a unique inverse: [〈a, b〉]−1 = [〈b, a〉], so
that G is a group, and a mapping defined by a 7→ [〈a, e〉] yields an
embedding from H into G. That every element of G is realized in the
desired manner is clear. ¤

Using this embedding result we obtain the following characterizations
for the class LG− of negative cones of `-groups,which imply in particular
that LG− is a variety. The equivalence of (i) and (iii) can be derived
from Theorem 12 of [3], due to J. von Neumann, but we present a
self-contained proof for completeness.

Theorem 6.2. For a residuated lattice L, the following statements are

equivalent.

(i) L is the negative cone of an `-group.
(ii) L is a cancellative integral GMV-algebra.

(iii) L is a cancellative integral GBL-algebra.

Proof. (i)⇒(ii) follows easily by direct calculation in negative cones of
`-groups: for all L ∈ LG and all a, b ∈ L−, ab/L−b = abb−1∧e = a∧e =
a, and a/L−(b\L

−

a) = a(b−1a ∧ e)−1 ∧ e = (aa−1b ∨ a) ∧ e = a ∨ b.
(ii)⇒(iii) is proved by Lemma 5.2.
(iii)⇒(i): We now make use of the preceding lemma to prove that

any cancellative integral GBL-algebra is a member of LG−.
Let L be a cancellative integral GBL-algebra. If we now consider any

elements a, b ∈ L, we note that a(a\ba) = ba ∧ a = ba, since b ≤ e and
multiplication is compatible with the lattice order. Thus there exists an
element ba, namely a\ba, such that ba = aba. It follows that La ⊆ aL
for all elements a ∈ L, and dually aL ⊆ La. Therefore the underlying
monoid of L satisfies the conditions of the preceding lemma, and can
be embedded into a group G in the prescribed manner. Note that the
group element ab−1 corresponds to the class [〈a, b〉] constructed in the
proof of the previous lemma. Note further that gL = Lg for all g ∈ G.



CANCELLATIVE RESIDUATED LATTICES 17

We consider the following standard order on G: for all a, b ∈ G,
a ≤G b iff ab−1 ∈ L. It is well known (see for example [16], p. 13)
that ≤G is a compatible partial order on G whose negative elements
are precisely the elements of L.

We proceed to show that ≤G is an extension of the original order ≤
of L. More explicitly, we prove that for all a, b ∈ L,

a ≤ b ⇔ a ≤G b ⇔ ab−1 = a/b ⇔ b−1a = b\a. (∗)

Let x ≤G y. Thus xy−1 ∈ L, and x = xy−1y ≤ y because xy−1 ≤ e.
Assuming x ≤ y, xy−1y = x = x ∧ y = (x/y)y by the generalized
basic logic identity, whence cancelling y gives xy−1 = x/y. Now if
xy−1 = x/y, then x = xy−1y = (x/y)y = x ∧ y, hence x ≤ y. Similarly
x ≤ y is equivalent to y−1x = y\x. Finally if xy−1 = x/y, we have that
xy−1 ∈ L and thus x ≤G y.

The preceding conclusion allows us to drop the subscript on ≤G. We
complete the proof of the theorem by showing that ≤ is a lattice order.
Since any `-group satisfies the identity x ∨ y ≈ (xy−1 ∨ e)y, it suffices
to establish the existence of all joins of the form g ∨ e = ab−1 ∨ e, with
a, b ∈ L.

To this end, assume that a and b are elements of L. We claim that
ab−1 ∨ e = (a ∨ b)b−1. It is readily seen that e ≤ (a ∨ b)b−1 and
ab−1 ≤ (a ∨ b)b−1 by multiplying these inequalities on the right by b.

If we consider any other element of G, say cd−1 (where c, d ∈ L),
such that both e ≤ cd−1 and ab−1 ≤ cd−1 hold, we have a ≤ cd−1b =
cd−1bdd−1. Now we note that bd and d are elements of L such that
bd ≤ d. Thus (∗) shows that d−1bd = d\bd = bd. Therefore a ≤ cbdd

−1,
so that ad ≤ cbd. Similarly, working with e ≤ cd−1, we establish
bd ≤ cbd, and hence ad ∨ bd ≤ cbd. Since L is a residuated lattice,
products distribute over joins, so we have a ∨ b ≤ cbdd

−1 = cd−1b and
finally (a ∨ b)b−1 ≤ cd−1, as desired.

We have thus succeeded in embedding a residuated lattice satisfying
the identities above into a lattice-ordered group in such a way that it
serves as the negative cone of the `-group. ¤

Corollary 6.3. The variety y LG− is defined, relative to RL, by the

identities xy/y ≈ x ≈ y\yx and (x/y)y ≈ x ∧ y ≈ y(y\x). Alterna-

tively, the last two identities can be replaced by x/(y\x) ≈ x ∨ y ≈
(x/y)\x.

7. The subvarieties of LG and LG−

We now extend the map − : LG → LG− to subclasses of LG, and
in particular to the lattice of subvarieties L(LG). We show that the
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image of a variety is always a variety, that every subvariety of LG− is
obtained in this way and that the map is an order isomorphism, hence
a lattice isomorphism (see Figure 4).

In the second part of this section we show how equational bases can
be translated back and forth between corresponding varieties of LG
and LG−. We conclude the section by indicating how these results
are related to R. McKenzie’s general characterization of categorical
equivalence [22].

Recall that for a class K of residuated lattices, H(K), S(K), P(K)
and K− denote, respectively, the class of homomorphic images, subal-
gebras, products and negative cones of members of K.

Theorem 7.1. The map K 7→ K−, defined on classes of `-groups,
commutes with the operators H, S and P, and restricts to a lattice

isomorphism between the subvariety lattices of LG and LG−.

Proof. Consider any subclass K of LG. To see that S(K−) = (SK)−,
let G− be a member of K− and let H′ be a subalgebra of G−. By the
definition of K−, there exists G ∈ K whose negative cone is G−. We
show that H′ is the negative cone of a subalgebra H of G.

Consider the set H = {ab−1 : a, b ∈ H ′}. We establish that H is
the subgroup of G generated by H ′ by proving that H is closed under
products in G. Let ab−1 and cd−1 be in H. Invoking the proof of
Theorem 6.2 (iii) ⇒(i), we have

ab−1cd−1 = ab−1cbb−1d−1 = a(b\cb)(db)−1 = acb(db)
−1,

which is again an element of H since H′ is a subalgebra of G−. What
we know so far is that H is a partially ordered group with respect to
the order of G. To show that H is a subalgebra (`-subgroup) of G,
it will suffice to show that for a, b ∈ H ′ the join ab−1 ∨ e (in G) is an
element of H. Let a, b ∈ H ′, and recall from the proof of Theorem 6.2
that ab−1∨G e = (a∨G− b)b−1. Since H′ is a subalgebra of G−, we have
a ∨G− b = a ∨H′ b. It follows that ab−1 ∨G e ∈ H, as was to be shown.

Since G is an algebra in K, with subalgebra H, this establishes that
S(K−) ⊆ (SK)−. The reverse inclusion is immediate.

The fact that P(K−) = (PK)− follows from the observation that for
a collection of residuated lattices {Gi}i∈I in K,

∏

i∈I

G−
i = (

∏

i∈I

Gi)
−.

Finally we must show that H(K−) = (HK)−. So let G− ∈ K− and
consider a surjective residuated lattice homomorphism φ : G− → H′.
As suggested by the notation, G− is the negative cone of an `-group
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G ∈ K, and since LG− is a variety, we may assume that H′ is the
negative cone of an `-group H. We extend φ to φ : G→ H by defining
φ(ab−1) = φ(a)φ(b)−1. We need to show that this map is a well-defined
`-group homomorphism onto H.

To show that φ is well-defined, consider two different representations
for the same element of G: ab−1 = cd−1. This is the case if and
only if adb = cb, implying that φ(a)φ(d)φ(b) = φ(c)φ(b) since φ is a
homomorphism. This in turn implies that φ(a)φ(b)−1 = φ(c)φ(d)−1.

The map φ is clearly onto, since φ is onto and every element x ∈ H
can be written as ab−1 for some a and b in H ′.

To show that φ is a group homomorphism, let ab−1 and cd−1 be ele-
ments of G. Recall that ab−1cd−1 = ab−1cbb−1d−1 = acb(db)

−1 so that
φ(ab−1cd−1) = φ(acb(db)

−1) = φ(acb)φ(db)−1 = φ(a)φ(c)φ(b)φ(b)−1φ(d)−1,
since φ is a homomorphism. But this gives

φ(a)φ(b)−1φ(c)φ(b)φ(b)−1φ(d)−1 = φ(ab−1)φ(cd−1).

Finally, we show that φ preserves joins. As before, it suffices to
consider joins of the form ab−1∨e. Recalling that ab−1∨e = (a∨b)b−1,
we have

φ(ab−1 ∨ e) = φ((a ∨ b)b−1) = φ(a ∨ b)φ(b)−1 = (φ(a) ∨ φ(b))φ(b)−1,

since φ preserves joins. But this last product is φ(a)φ(b)−1 ∨ e =
φ(ab−1) ∨ e. Thus φ is a lattice homomorphism as well.

This shows that H ∈ HK, hence H′ = H− ∈ (HK)−, as desired.
Again the reverse inclusion is straightforward.

The preceding considerations immediately imply that if V is a variety
of `-groups, then V− is a subvariety of LG−. Moreover, the map V 7→
V− is clearly order preserving. To show it is onto, let W ∈ L(LG−) and
consider the class K = {L ∈ LG : L− ∈ W}. Then K− = W and K is a
variety since L ∈ HSPK implies L− ∈ (HSPK)− = HSP(K−) = W ,
so L ∈ K.

Finally, we show that the map is one-to-one and reflects the order
as well. Indeed, an `-group is determined up to isomorphism by its
negative cone (the preceding map φ is an isomorphism when φ is an
isomorphism), so if V 6≤ V ′ and G ∈ V−V ′, then G− ∈ V−−V ′−. It fol-
lows that V 7→ V− is a lattice isomorphism between the two subvariety
lattices. ¤

Corollary 7.2. The variety V(Z−) consists of all negative cones of

abelian `-groups.

It was proved above that there is a one-to-one correspondence be-
tween subvarieties of LG and LG−. Since the proof made use of the
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Figure 4. Inclusions between some subvarieties of RL

HSP characterization of varieties, it gave no insight into how one might
find an equational basis for V− given a basis for V , and vice versa. We
proceed to do that in the remainder of this section.

From subvarieties of LG− to subvarieties of LG. In this direction,
the translation is derived essentially from the definition of the negative
cone. For a residuated lattice term t, we define a translated term t−

by

x− = x ∧ e e− = e
(s/t)− = s−/t− ∧ e (s\t)− = s−\t− ∧ e
(st)− = s−t− (s ∨ t)− = s− ∨ t− (s ∧ t)− = s− ∧ t−
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Lemma 7.3. Let L ∈ RL and consider any RL term t. For any

a1, . . . , an ∈ L,

t−
L
(a1, . . . , an) = tL

−

(a1 ∧ e, . . . , an ∧ e).

Proof. By definition this is true for variables and the constant term e.
Assume the statement holds for terms s and t. Then

(s/t)−L(a1, . . . , an) = (s−L(a1, . . . , an)/Lt−L(a1, . . . , an)) ∧ e
= (sL

−

(a1 ∧ e, . . . , an ∧ e)/
LtL

−

(a1 ∧ e, . . . , an ∧ e)) ∧ e
= (s/t)L

−

(a1 ∧ e, . . . , an ∧ e)

and similar inductive steps for \, ·, ∨, ∧ complete the proof. ¤

Lemma 7.4. For any L ∈ RL, L− |= s ≈ t iff L |= s− ≈ t−.

Proof. Suppose L− |= s ≈ t, and let a1, . . . , an ∈ L. By the preceding

lemma, s−
L
(a1, . . . , an) = sL

−

(a1 ∧ e, . . . , an ∧ e) = tL
−

(a1 ∧ e, . . . , an ∧

e) = t−
L
(a1, . . . , an), hence L |= s− ≈ t−. The reverse implication is

similar and uses the observation that for ai ∈ L−, ai = ai ∧ e. ¤

Theorem 7.5. Let V be a subvariety of LG−, defined by a set E of

identities and let W = Mod(E−) ∩ LG, where E− = {s− ≈ t− : (s ≈
t) ∈ E}. Then W− = V.

Proof. Consider M ∈ W−, which means there exists an L ∈ W such
that M is isomorphic to L−. Then L |= E−, and by the previous lemma
this is equivalent to L− |= E , which in turn is equivalent to L− ∈ V .
Hence M ∈ V .

Conversely, let M ∈ V . Then there exists an `-group L such that M

is isomorphic to L−. (L is constructed as in Theorem 6.2.) Using the
previous lemma again, we get that L |= E−, hence M ∈ W−. ¤

As an example, consider the variety N− that is defined by the iden-
tity x2y2 ≤ yx relative to LG−. The corresponding identity for the
variety N of normal valued `-groups is (x∧ e)2(y∧ e)2 ≤ (y∧ e)(x∧ e).

From subvarieties of LG to subvarieties of LG−. Note that since
· and −1 distribute over ∨ and ∧, any LG identity is equivalent to a
conjunction of two identities of the form e ≤ p(g1, . . . , gn), where p is a
lattice term and g1, . . . , gn are group terms. Since `-groups are distribu-
tive, this can be further reduced to a finite conjunction of inequalities
of the form e ≤ g1 ∨ · · · ∨ gn.

For a term t(x1, . . . , xm) and a variable z distinct from x1, . . . , xm,
let

t̄(z, x1, . . . , xm) = t(z−1x1, . . . , z
−1xm).



22 P. BAHLS, J. COLE, N. GALATOS, P. JIPSEN, C. TSINAKIS

Lemma 7.6. Let L be an `-group, and t an `-group term. Then

L |= e ≤ t(x1, . . . , xm) iff

L |= x1 ∨ · · · ∨ xm ∨ z ≤ e⇒ e ≤ t̄(z, x1, . . . , xm).

Proof. In the forward direction this is obvious. To prove the reverse
implication, assume the right hand side holds and let a1, . . . , am ∈
L. Define c = a−11 ∧ · · · ∧ a−1m ∧ e and bi = cai for i = 1, . . . ,m.
Then c ≤ e and c ≤ a−1i , hence bi ≤ e. Now by assumption, e ≤
t(c−1b1, . . . , c

−1bm) = t(a1, . . . , am). ¤

Lemma 7.7. Let L ∈ LG. For any group term g, there exist an RL
term ĝ such that (g ∧ e)L|L− = ĝL−.

Proof. Essentially we have to rewrite group terms so that all the vari-
ables with inverses appear at the beginning of the term. This is done
using conjugation: xy−1 = y−1(yxy−1) = y−1(yx/y). Note that L− is
closed under conjugation by arbitrary elements, since x ≤ e implies
yxy−1 ≤ e. If we also have y ≤ e, then yx ∈ L− and yx ≤ y, hence
yx/L−y = yx/Ly.

To describe the translation of an arbitrary group term, we may as-
sume that it is of the form p1q

−1
1 p2q

−1
2 · · · pnq

−1
n where the pi and qi

are products of variables (without inverses). By using conjugation, we
write this term in the form

q−11 q−12 · · · q−1n (qn(· · · (q2(q1p1/q1)p2/q2) · · · )pn/qn).

So we can take ĝ = s\t where

s = qn · · · q2q1 and t = qn(· · · (q2(q1p1/q1)p2/q2) · · · )pn/qn.

¤

Corollary 7.8. Let g1, . . . , gn be group terms with variables among

x1, . . . , xm. For any `-group L,

L− |= ĝ1 ∨ . . . ∨ ĝn ≈ e iff L |= x1 ∨ . . . ∨ xm ≤ e⇒ e ≤ g1 ∨ . . . ∨ gn.

For the next result, recall the discussion about identities in `-groups,
and the definition of t̄ at the beginning of this subsection.

Theorem 7.9. Let V be a subvariety of LG, defined by a set E of

identities, which we may assume are of the form e ≤ g1 ∨ . . . ∨ gn. Let

Ē = {e ≈ ̂̄g1 ∨ . . . ∨ ̂̄gn : e ≤ g1 ∨ . . . ∨ gn is in E}.

Then Ē is an equational basis for V− relative to LG−.



CANCELLATIVE RESIDUATED LATTICES 23

Proof. By construction, any member of V− satisfies all the identities
in Ē . On the other hand, if M ∈ LG− is a model of the identities in
Ē , then M is the negative cone of some L ∈ LG. From the reverse
directions of Corollary 7.8 and Lemma 7.6 we infer that L satisfies the
equations in E , hence M ∈ V−. ¤

For example consider the variety R of representable `-groups which
(by definition) is generated by the class of totally ordered groups (see
[1] for more details). An equational basis for this variety is given by
e ≤ x−1yx ∨ y−1 (relative to LG). Applying the translation above, we
obtain e ≈ zx\(zy/z)x ∨ y\z as as equational basis for R−.

Corollary 7.10. The map V 7→ V− from L(LG) to L(LG−) sends

finitely based subvarieties of LG to finitely based subvarieties of LG−.

Categorical equivalence and the functor L 7→ L−. The connec-
tion between LG and LG− is actually a special case of a categorical
equivalence. In the algebraic setting such equivalences were charac-
terized by R. McKenzie in [22] by combinations of the following two
constructions.

Let A be an algebra, and let T be the set of all terms in the language
of A. Given a unary term σ we define a new algebra called the σ-

image of A by A(σ) = 〈σ(A), {tσ : t ∈ T}〉, where t
A(σ)
σ (x1, . . . , xn) =

σA(tA(x1, . . . , xn)).
The second construction is the matrix power of A. Let Tk be the set

of k-ary terms. For a positive integer n we define

A[n] = 〈An, {mt : t ∈ (Tkn)n for some k > 0}〉,

where mt : (An)k → An is given by mt(x̄1, . . . , x̄k)i = tAi (x11, . . . , xkn).
For a class K of algebras we let K(σ) and K[n] be the classes of σ-

images and n-th matrix powers respectively. A term σ is idempotent in
K if K |= σ(σ(x)) = σ(x), and it is invertible in K if there exist unary
terms t1, . . . , tn and an n-ary term t (for some n > 0) such that

K |= x ≈ t(σ(t1(x)), . . . , σ(tn(x))).

A central result in [22] is the following.

Theorem 7.11. Two varieties V and W are categorically equivalent if

and only if there is an n > 0 and an invertible idempotent term σ for

V [n] such that W is term-equivalent to V [n](σ).

In the setting of `-groups and their negative cones, we can see an
instance of this result. The term σ(x) = x ∧ e is certainly idempotent,
and it is invertible (with n = 2) since x ≈ (x∧e)(x−1∧e)−1 holds in all
`-groups. Of course L(σ) is not of the same type as L−, but with the
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help of Lemma 7.7 it is easy to see that they are term equivalent. In
the other direction, every member of LG− can be mapped to a τ -image
of a matrix square that is term-equivalent to an `-group. In general,
the term τ is given by τ(x̄) = 〈σt1t(x̄), . . . , σtnt(x̄)〉, which reduces to
τ(〈x, y〉) = 〈x/y, y/x〉 for negative cones.

8. Open Problems

Problem 8.1. Is CanRL join-irreducible or completely join-irreducible
in L(RL)?

Problem 8.2. Is every lattice a subreduct of a commutative cancella-
tive residuated lattice (see Theorem 4.3)?

Problem 8.3. Are there commutative, cancellative, distributive resid-
uated lattices that are not in CanRLC? In the noncommutative case
the 2-generated free `-group is an example.

Problem 8.4. Characterize the class of monoids that are monoid
reducts of CanRL.

Problem 8.5. Do CanRL and CanRLC have decidable equational
theories?

Problem 8.6. Is there a Weinberg-type description of free algebras in
CanRLC? See e.g. Powell and Tsinakis [25].
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