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Abstract

The sequential calculus of von Karger and Hoare [18] is designed for reasoning about sequential
phenomena, dynamic or temporal logic, and concurrent or reactive systems. Unlike the classical
calculus of relations, it has no operation for forming the converse of a relation. Sequential algebras [15]
are algebras that satisfy certain equations in the sequential calculus. One standard example of a
sequential algebra is the set of relations included in a partial ordering. Nonstandard examples arise
by relativizing relation algebras to elements that are antisymmetric, transitive, and reflexive. The
incompleteness and non-finite-axiomatizability of the sequential calculus are examined here from a
relation-algebraic point of view. New constructions of nonrepresentable relation algebras are used to
prove that there is no finite axiomatization of the equational theory of antisymmetric dense locally
linear sequential algebras. The constructions improve on previous examples in certain interesting
respects and give yet another proof that the classical calculus of relations is not finitely axiomatizable.
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DeFINITION 1.1 (von Karger [15])
Suppose A= (A4,+,-,7,0,1,;,p,4,1’). A is a sequential algebra if
e The reduct (A, +,-, 7,0, 1) is a Boolean algebra,

o the reduct (4, ;,1’) is a monoid,
and, for all p,q,r € A,

e (p;q) - r=0iff (ppr)-¢q=0iff (rag) - p=0,

e p;(gar) < (p;g)ar,

e ap=pol.
If 2 is a sequential algebra, then 2 is given the name in the left column if it satisfies
the identity in the right column:

symmetric Ial=1
antisymmetric 1'<l=1
locally linear (p;q)<r =p;(g<ar) +pa(raq)

dense <11

Except for density, these concepts occur in [15].
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2 Nonrepresentable Sequential Algebras

DEeFINITION 1.2
Suppose A= (A4,+,-,7,0,1,;,51'). 2 is a relation algebra if

e The reduct (A, +,-, 7,0, 1) is a Boolean algebra,
e The reduct (4, ;,1’) is a monoid,

and, for all p,q,r € A,
o (p;q) - r=0iff (p;r) - ¢ =0iff (r;¢) - p=0.

For more background on relation algebras and sequential algebras, we refer the
reader to [5], [10], [15], [18]. In, particular the definitions above can be restated in
terms of equations, so both the class of all sequential algebras and the class of all
relation algebras are varieties, denoted by RA and SeA respectively. Every relation
algebra is (term-equivalent to) a sequential algebra if one defines binary operations
and < by

prg¢=pi¢  pag=pid. (L.1)
Conversely, if the unary operation ” is defined by p = I’ <p in a sequential algebra 2,
then 2 is term-equivalent to a relation algebra iff 2 satisfies the equations (1.1). In [§]
it is also shown that a sequential algebra is (term-equivalent to) a relation algebra
iff the equation p;(¢<r) = (p;q) <r holds. From an algebraic point of view, the two
varieties differ in that RA is a discriminator variety while SeA is not (see e.g., [4]).
In many other respects sequential algebras are similar to relation algebras.

Suppose A = (A, +,-,7,0,1,;,7,1’) is a relation algebra and u € A. We say that u
is

reflexive if I’ <,

transitive if u;u < wu,

symmetric if u=1,
antisymmetric ifu-u <1,

linear fl=u+ ﬁ,

locally linear 1f wit -ty < u+u,
dense if (u-1)<(u-1);(u-1)

Let
R, A={x:u>z €A}

Then RI,2 is closed under 4+ and -, contains 0, and has maximum element u. Define
relative complementation on RI,2 by z7* =% - u. Then

<Rlu9l,+, 570, u>

is again a Boolean algebra, the one obtained by relativizing to u. Suppose u is
reflexive and transitive. Then RI,2l is also closed under ; since u is transitive, and
Rl contains 1’ since u is reflexive. Define two more binary operations > and < on
RlL,A Dby ey =Z;y-uand <y = z;y - u. This gives a relativized reduct algebra

Gequ(m) = <Rlum: +a E _u:O:u: TLSR 1’> .

THEOREM 1.3 (von Karger [15])
If 2 is a relation algebra and u is a reflexive and transitive element of 2, then Geq, (2)
is a sequential algebra.
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In [15] it is shown that the relativization of a relation algebra with respect to an
element that is locally linear or antisymmetric (as well as transitive and reflexive)
results in a sequential algebra that is locally linear or antisymmetric, respectively.
The same is true for density.

ExXAMPLE 1.4

Let 2 be the finite relation algebra whose atoms are 1’ a, a, b, 7), ¢, and ¢, and
whose relative multiplication is determined by the following table. (The “+” signs

are omitted to save space, e.g., a;b =a+band a;a =1 + b+b+ c+¢.)

;| D a b c a b ¢
| a b c a b ¢
ala be ab ac U'bbcé  adbb aaceé
bl b  ab ac be adbb  Vadcé  bbeé
c | c ac be ab aacé bbet 1’ adbb
G| a Ubbed aabb  adcé bé ab aé
b|b adbh Vadcé bbeé ab aé bé

¢ ¢ adcé  bbeé 1aabh bé ab

Let u=1 4 a+ b+ c. Then u is transitive and reflexive, so Seq, (2) is a sequential
algebra. Its atoms are 1’, a, b, and ¢, and its non-Boolean binary operations are
determined by the following tables.

U a b c
v a b ¢
ala b4+c a+b a+e
b a+b a+c b+ec
¢ a+c b+ec a+bd

4| D a b c
T 0 0 0
ala U+b+ec a+b a-+c
bl b a+b I'+a+ec b+c¢
c|ec a+te b+c I"+a+b
> |1 a b c
I a b c
al|l0 I+b+ec a+b a-+c
b0 a+b I"'+a+ec b+c
c |0 a+tc b+c¢ I'+a+b

Note that u is antisymmetric, dense, and linear, and that Geq, (2) is therefore anti-
symmetric, dense, and locally linear.

Problem 1. Does every sequential algebra arise in this way, i.e., is every sequential
algebra & isomorphic to Seq,, () for some relation algebra 2l and some transitive and
reflexive element u?

Problem 2. Is every locally linear sequential algebra & isomorphic to Seq,, (2) for
some relation algebra 2 and some locally linear, transitive and reflexive element u?
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If u is a preorder on X, then u is a transitive and reflexive element in the relation
algebra Re(X) of all binary relations on X and Seq, (e (X)) is the sequential algebra
of all subrelations of u. We say that a sequential algebra is representable if it is
isomorphic to a subalgebra of an algebra of the form Seq, (Re(X)), where u is a
preorder on some set X. If a sequential algebra happens to be a relation algebra,
then this notion of representability agrees with the standard one for relation algebras.

Von Karger uses a different notion of representability, defined in terms of locally
linear observation spaces. In [17], it is shown that these spaces can be extended to
Brandt groupoids. Complex algebras of Brandt groupoids are representable relation
algebras [7]. Hence representability defined via locally linear observation spaces im-
plies representability in the sense used here. Our notion is more general since we do
not assume local linearity. Under that assumption, however, the notions coincide.

For every sequential algebra 2 define the unary operation ¢ by e¢(z) =« + 1;2 +
z;l4+ze14+1vz+zal+1qz forevery 2 € A. Then ¢ is self-conjugate: z-c(y) = 0 iff
¢(z) -y = 0. Every homomorphism & of a sequential algebra of 2l determines an ideal
I={x€A:h(z)=0}. If i €I then ¢(i) € I. On the other hand, if ¢(z) =z € A
then the function (z-z:z € A) is a homomorphism of 2 onto a sequential algebra
whose universe is RL,2A = {y : z > y € A} and whose operations are obtained from
those of 2 by relativizing to z.

Andréka and Németi pointed out in a letter to the first author that the following
theorem can be proved, as is done here, by imitating the proof (due to Németi) of
Theorem [3, 5.5.10], that cylindric-relativized set algebras form a variety.

THEOREM 1.5
The class of representable sequential algebras is a variety.

Proor. It is obvious that the class of representable sequential algebras is closed under
the formation of subalgebras, and not difficult to show that it is also closed under
direct products. It therefore suffices to show that every homomorphic image of a
representable sequential algebra is representable.

Assume that 2 C Geq, (Re (X)), where u is a preorder on some set X, and that
I is an ideal of 2 determined by a homomorphism. We wish to embed 20/ into a
representable sequential algebra. Let F be an ultrafilter on I such that {j : i <
J € I} € E for every i € I. (E exists since the sets in question have the finite
intersection property.) Let ~g be the equivalence relation defined for s,s' € 1X
by s~gs' <= {i € I :s; = s}} € E and define the equivalence class s/~g by
s/~g ={s' €1X :s~ps'}. For every x € A let

p(x) = {(s/~g,s'/~E) s, s € IXA{iel: (si,s})ex}e E}

It is easy to check that p is a homomorphism of 2 into Geq,,) (9% (IX/NE)).
Next we construct a homomorphism h, for every x € A~ I. Let # € A ~ I. Then
z & i for every i € I, so there are s(z),s'(z) € X such that

(s(x);,s'(z);) €x-i for every i€ I. (1.2)
Let r(z) = {(s(x)/~E,s'(z)/~g)}, z = U{c"(r(x)) : n € w}, and set hy(y) =

p(y) Nz for every y € A. Then ¢(z) = z C p(u), so hy is a homomorphism of 2
into Geq, (9‘{2 (IX/NE)). By (1.2) we have {i € T : (s(x);,s'(z);) ez} =1€ E, so
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r(z) C hy(z), hence hy(z) # 0. Next we show that if j € I then hy(j) = #. Suppose
J € I. Since hy(7) = U{p(7)Nc™*(r(z)) : n € w}, it suffices to prove p(j)Nc™(r(z)) = 0
for every n € w. We get ¢™(j) € I from j € I, so {i € I : ¢"(j) < i} € E by the choice
of E. However, from (1.2) we get

el c"(j)<iyCliel: (sx),s'(x))¢c"(§)}

so (s(z)/~g,s'(x)/~E) & p(c"(3)), i.e., 7(z) N p(c™(j)) = O. Since p is a homomor-
phism and ¢ is self-conjugate, this gives ¢"(r(z)) N p(j) = 0, as desired. For every
z € A~ 1 let A, be the image of A under the homomorphism h,. Each 2, is a rep-
resentable sequential algebra, so the product B = ], 4.7 s is also representable.
Since the ideal of h; contains I, there is a homomorphism g, : %/I — 2, such that
95(y/I) = hy(y) for every y € A. In particular, g;(z/I) = hy(z) # 0. Define a
function f from (/T into B by f(y/I) = (g9z(y/I) : @ € A ~ I) for every y € A. Then

f is a homomorphism and f is one-to-one since g, (/1) # ) whenever z € A~ 1. 1

As one referee observed, every nonrepresentable relation algebra is term-equivalent
to a nonrepresentable sequential algebra. Hence the existence of nonrepresentable
sequential algebras is not surprising. Furthermore, since the variety of representable
relation algebras is not finitely axiomatizable, it follows that the same is true for the
variety of representable sequential algebras. However, this argument does not apply to
the subvariety of antisymmetric sequential algebras. Indeed, if a relation algebra 2 is
term-equivalent to an antisymmetric sequential algebra then 20 must be Boolean, since
I'=141=1;1=1, and all Boolean relation algebras are representable. To obtain
nonrepresentable antisymmetric sequential algebras we relativize nonrepresentable
relation algebras to antisymmetric elements.

THEOREM 1.6
The equation

z-(z-p;q);(y-r;8) <pilg;r - (prz-q;y) s -p(z;r-z<s)];s (1.3)

holds in every representable sequential algebra but fails in 1774 of the 3677 finite
indecomposable antisymmetric sequential algebras that have exactly 4 atoms. For
example, equation (1.3) fails in the 16-element sequential algebra 2 (defined in ex-
ample 1.4) when p=a,q=a,r=a,s=b,z=c,y="b,and z = ¢.

PRrROOF. To check that (1.3) holds in all representable sequential algebras is a simple
matter of assuming that an ordered pair (v, w) is an element of the left hand side
of (1.3), which implies the existence of three other elements, and then showing that
(v, w) is always an element of the right hand side.

The number of nonisomorphic indecomposable sequential algebras were found by
computer, and the result shows that there are many small nonrepresentable antisym-
metric sequential algebras. However, it can be shown that all sequential algebras with
at most 8 elements are representable.

To see that (1.3) fails in 2, we note that under the given assignment, the left hand
side evaluates to c, while the right hand side gives a;[(b+c¢)-(a+b)-(a+¢)];b = 0.1

Next we construct a sequence of relation algebras that have nonrepresentable anti-
symmetric sequential algebras as relative subalgebras and are also locally linear and
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dense. Any nonprincipal ultraproduct of these algebras will however be representable.
This result implies that the equational theory of the variety of antisymmetric dense
locally linear representable sequential algebras is not finitely axiomatizable.

ExXAMPLE 1.7

For each n > 3 let 2, be the relation algebra that has 2n 4+ 1 atoms 1’; a1, a;, ...

Gy, Gy, and whose relative multiplication is such that

’. — — R
1,(12'—&5—02',1,
a;;a0;, =@ - (a1 + ...+ an),

a;;a; = a1+ ...+ a, wherenever 1 <i# j<n.

These conditions determine relative multiplication completely. For example, we can

deduce that

d;8; = a; - (a1 + ...+ apn)
ai;6; = a1+ ...+ a, ifi#j,
a;;a; = a;;a; = a; + g,

ai;El]' :Eli;aj =0 lfl;é_]

The element u,, = I’+a1+...+a, is a reflexive transitive antisymmetric linear dense
element of A,. Therefore Seq, (A,) is a sequential algebra that is antisymmetric,
dense, locally linear, and has n + 1 atoms.

For example, considering the case n = 3, we find that the table for relative multi-

plication in &eq,,(Az) is

;| U ay as as

K K ay as as

a; | a1 as + as a1 +as+asz ay+az+as
az | az a1 +az+as a; +as a1+ az + as
ag |as a1 +azx+az a1 +az+tas ap + as

Every diversity atom in 2, has a “color”, a number from 1 to n, and an “orientation”,
either “up” or “down”. The orientation of a; is “up” and its color is z. The orientation
of @; is “down” and its color is ¢. 1’ has no color and no orientation. Suppose a,b, ¢
are diversity atoms. Then the only circumstances under which we do not have a;b > ¢

are

e the orientations of a, b, ¢ violate uz;us = us (e.g., @ up, b up, ¢ down)

e a, b, c all have the same color

o the identity law is violated (e.g., a = 1’ but b # ¢).

For example, a;;a; ? ap because us;us = us, a;;a; # a; because three atoms of the
same color are involved, and a;;1’ 7 a; when i # j by the identity law.

THEOREM 1.8

For 3 < n, 2, is a nonrepresentable relation algebra.
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ProoF. Assume, to the contrary, that 2, is representable. Since 2, is also simple,
there is a set X and an isomorphism p that maps 2, onto a subalgebra of Re(X).
From the properties of u it follows that p(uy,) is a dense linear ordering without
endpoints. Consequently X is infinite. We will use a special case of Ramsey’s Theorem
to derive a contradiction, thus showing that 2, cannot be representable. To apply
Ramsey’s Theorem, we show that the 2-element subsets of X can be partitioned into
n disjoint sets 13,...,T,. Foreach i = 1,...,n let

T = {{]3: xl} : {<£’ rl> ) (II’ £>} - p(ai + al)}

If 1 < i< j < n then the relations p(a; + G;) and p(a; + @;) are disjoint, so T;
and Tj are also disjoint. The relation p(a; + @;) is symmetric, so for any 2-element
subset {z,z'} of X, the symmetric binary relation {(z,z’), (¢, )} is either included
in p(a; + ;) or else is disjoint from p(a; + ;). Thus the sets T; form a partition of the
2-element subsets of X. Since X is infinite, Ramsey’s Theorem implies that for some
i € {1,...,n} there is an infinite subset Y of X that is “homogeneous for T;”, i.e., all
2-element subsets of Y are in 7;. We only need to know that Y has three elements to
get a contradiction. Choose y, v,y € Y. Then {y,y'}, {v/,y"}, and {y,y"} are in T},
so {{y, '), (v, ¥") . (v, ¥") } C plai+a;), hence (y,y") € p((a; +ai);(a; +a:) (a;i+a;)),
but this is contradictory since

(@i +ai);(ai +a;) - (a; + a;)
= (ai;a; + ai3d; + @505 + di58;) - (ai + a;)
=@ (a1 +...4an)+ai+a+a(d14...+dn)) - (a + &)
0

THEOREM 1.9
For 3 < n, &eq, (2U,) is a nonrepresentable antisymmetric dense locally linear se-
quential algebra.

Proor. We imitate the proof that 2, is a nonrepresentable relation algebra. Assume
Geq,, (2Uy) has a representation p. Since p(u,) is transitive, dense, and antisymmetric,
the field of p(u,) must be infinite. By Ramsey’s Theorem, that field has an infinite
subset that is homogeneous for some color i, hence p(a;;a;-a;) # 0. But a;;a;-a; =0,
so p(a;;a; - a;) = 0, a contradiction. [ |

Every finite nonrepresentable relation algebra 2 can be used to construct an equa-
tion that is satisfied by all representable relation algebras but fails in 2. Such an
equation can be obtained by translating into equational form the universal first-order
sentence asserting that there is no subalgebra isomorphic to 2. In special cases
simpler equations can be found. For example, the following equation holds in all rep-
resentable relation and sequential algebras but fails in both 23 and Seq,, (A3) when
u=w=y=a; and v=2 =2z = as.

ubv-w;z-ydz < (ubfusy vz - (wyw-v<de);(wey-x;z)]) 4z (1.4)

Equation (1.4) is closely related to equation (1.3) and originates with Lyndon [9].

We now turn to the task of showing that the ultraproduct of the algebras 2, for
3 < n is representable. For any relation algebra % and any n > 3, let B, % be the set
of n-by-n matrices of atoms of 2 that satisfy the following conditions:
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(Bo) my; < 1 for all i < n,
(B1) mhy; = my; for all i,j < n,
(B2) myj < myp;my; for all ¢, 4,k < n.

The elements of B, 2 are called (n—1)-dimensional simplices (The geometric dimen-
sion of a simplex is n — 1, one less than its size as a matrix.) For ¢ < n, two simplices
m and m’ in B,% agree up to i (in symbols m =¢;) m') if the only differences be-
tween them are confined to their ith rows and éth columns, more precisely, my; = mj,
whenever k,l < n and &k, # i. A subset M of B, is called an n-dimensional
relational basis for 2 if

(Ro) for every atom a of 2 there is a simplex m € M such that mg; = a, and

(Ri)if me M, k#14,j <n and a,b are atoms of 2 for which m;; < a;b then there is
a simplex m’ € M such that m{, = q, m;w» =band m =) m'.

RA,, is defined to be the class of all relation algebras that are subalgebras of some
complete and atomic relation algebra which has an n-dimensional relational basis. It
is proved in [11] that RA = RAs O RA; D RAg D .- is a decreasing sequence of
varieties, and the intersection of all of them is the variety of representable relation
algebras. (It is proved in [13] that the sequence is strictly decreasing.) The next result
shows that, although the algebras 2, of example 1.7 are nonrepresentable, they do
become “more representable” for larger n.

THEOREM 1.10
For 3 < n, Bp41%, is an (n 4+ 1)-dimensional relational basis for 2,, hence 2, €
RA, 41

Proor. Condition (Ryg) is easy to satisfy when M = B, 419, given an atom a, define
mbym; =aifi=0<j3<n,my;=aif j=0<1:<n, and m;; =1’ otherwise.

To verify condition (Ry), let m € Bp41%,, fix k # 4,j < n and choose atoms a, b
such that m;; < a;b. We need to define my, for [ # 1, j, k (the remaining entries for
m' follow from (By), (B1) and m =) m’). If a = I” we take mj, = my;, and if b = 1’
we take mj, = my;. The interesting case a # 1’ # b is handled as follows:

For p,q < n with p,q # k, define p < g iff mpy, < up (=1 + a1+ -+ ay), and
define p = ¢ iff p < ¢ and ¢ < p (iff mp, < 1’). Since u, is a reflexive, transitive,
linear element of 2,,, < is a linear preorder and hence & is an equivalence relation.
To satisfy (Bz) we first assign the same color to m;k, m’qk iff p &~ ¢. (This is possible
since there are at most n — 2 assignments to be made, and n — 2 colors available, not
counting the colors of a, b.)

We still have to assign orientations. If a, b are both up (down), let mj, be up
(down), respectively. If a, b are both up, then i < j since m;; < a;b < up;up = uy.
Let mj, be up whenever ! < i, and down otherwise. This inserts k as the <-successor
of i in the linear preorder <. The case if a, b are both down is handled dually. In
all cases m’ is a simplex since < (defined on {0, 1,...,n}) is a linear preorder and for

! !

!
any p,q,r < n the atoms my,,, my,, my,. are never all the same color. [ |

THEOREM 1.11
If E is a nonprincipal ultrafilter on the index set T = {3,4,5,...}, then

e the ultraproduct of the relation algebras 2, by E is a representable relation alge-
bra, and
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o the ultraproduct of the sequential algebras Geq, (2,) by £ is a antisymmetric
dense locally linear representable sequential algebra.

Proor. Let ~g be the equivalence relation on the direct product algebra B =
[I.cr &n defined for arbitrary a,b € B by a ~g biff {i € I : a; = b;} € E. Then
~p is a congruence relation on the algebra 98, and the quotient algebra € = B/~p is
the ultraproduct of the relation algebras 2,,. Let B be the product of the sequential
algebras Geq,, () for n € I, and let &~ be the restriction of ~g to B C B. Then

=~ is the E-ultrafilter congruence on B. Define
Uy = (Up :n €l /~p={a€B:a~g (u, :n eI}

It is straightforward to check that the ultraproduct ¢ = ‘,NB/%E is isomorphic to
Geq,,_(€) via the map a/~g — a/~g.

Consider an arbitrary £ > 3. If n > k — 1 then RA,41 C RAg, and 2, € RA,+1
for every n > 3,50 {n: 2, € RA,} D{k— 1,k k+ 1,k+2,...}. Eis nonprincipal,
hence {n : U, € RA,} € E. Every RA; is an elementary class by [11], so € € RAj.
This shows that € € (3., RAx. But (3¢, RAp is the variety of representable
relation algebras, so € is representable. € is also simple because simplicity has a
first-order characterization for relation algebras and each 2, is simple. It follows
that € is isomorphic to a subalgebra of an algebra Pe(X) for some set X. Now
¢isa antisymmetric dense locally linear representable sequential algebra since it is
isomorphic to a relativization of € by the reflexive transitive antisymmetric dense
linear element u,,. [ |

COROLLARY 1.12
The variety of antisymmetric dense locally linear representable sequential algebras is
not finitely axiomatizable.

Proor. This follows from the existence of antisymmetric dense locally linear rep-
resentable ultraproducts of the nonrepresentable antisymmetric dense locally linear
sequential algebras &eq, (2,). The previous theorem says there are many. [ |

Of course, theorem 1.11 also shows that the variety of representable relation alge-
bras is not finitely axiomatizable. This has already been proved and generalized in
several ways, by Monk [14], Andréka [1], [2], Jénsson [6], and Maddux [12]. The con-
struction in example 1.7 is simpler than previous ones in certain respects, including
the sizes of the algebras and the proofs of their properties. The corollary was first
proved by Andréka and von Karger [16] for the concept of representability via lin-
ear categories (i.e., antisymmetric locally linear observation spaces), using sequential
algebras 2, with 3n! 4+ n 4+ 1 atoms instead of n + 1.
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