
Implementation and Hardware Approach to
MIDI-Synthesizer using DSP TMS320C6713

Emad M. Arasté
Department of Electrical and Information Technology

Lund University
Lund, Sweden

Email: sx08em2@student.lth.se

Iman Mohajeri
Department of Electrical and Information Technology

Lund University
Lund, Sweden

Email: px08im6@student.lth.se

Abstract—Music synthesis is a method for generating sound
for different musical instruments through various digital or
analog techniques. The aim of this work is to provide a DSP
solution as well as hardware approach to MIDI-Synthesizer. We
employed Frequency Modulation and Wavetable methods which
both are well known techniques for creating different notes of
musical instruments like piano, strings and brass. We made
usage of MATLAB to investigate frequency spectrum of notes for
different instruments and then we tried to apply FM technique
and Wavetable method to implement 8 instruments which 6 of
them have 4-polyphony property. The code is written in C and
developed by Code Composer studio and is implemented in real
time using the Texas Instruments DSP board DSK6713.

I. INTRODUCTION

From the production of Yamaha DX7 as the first digital
synthesizer and introducing MIDI (Musical Instrument Dig-
ital Interface) protocol in mid of 80s, still huge efforts are
being made to produce low-power and highly efficient MIDI-
Synthesizers.

FM (Frequency Modulation) method and Wavetable synthe-
sis are commonly used techniques in synthesizers at present.
The FM synthesis method has a privilege in generating various
range of sounds but lack of sound performance; and wavetable
synthesis method has a better quality in sound, however it
makes some limitations in memory usage of chip [1].

MIDI file consists of commands that say when a note
should be played on a certain channel and when it should be
stopped. A synthesizer decodes these commands that mostly
are MIDI events. Each MIDI event has 5 distinct parts: delta
time, event type, MIDI channel, note number and velocity [2].

TMS320C6713 DSK board can be used as a proper plat-
form to implement MIDI-Synthesizer. Advanced very-long-
instruction-word (VLIW) architecture of C6713 provides a
good basis for multichannel applications.

II. DIGITAL SYNTHESIS TECHNIQUES

Implemented synthesizer enjoys less complexity in compu-
tation and acceptable quality in sound thanks to combination
of FM and wavetable techniques. In the following subsections,
we will describe 2 mentioned techniques and in the last we
will express the essence of envelope for music synthesis.

A. Frequency Modulation

Synthesis by frequency modulation was initiated by John
Chowning in the late 60s. The idea for FM synthesis is based
on the same idea used for FM radio transmission. The FM-
modulated signal with carrier frequency of Fc and modulation
frequency of Fm is [3] :

S(t) = A(t)cos(2πFct+ I(t)cos(2πFmt+ φm) + φc) (1)

Where φm and φc are initial phases and are assumed π/2 in
this papar. Carrier frequency defines main frequency of signal
and modulation frequency determines sideband frequencies.
Sideband picks are always placed symmetrically around the
main frequency in Fc+nFm and Fc-nFm where n is an integer.
In order to determine the sidebands which are present in
frequency spectrum of signal, we have to control ratio between
the carrier frequency (Fc) and the modulation frequency (Fm).
Therefore, we will use C:M ratio instead of expressing these
frequencies in Hz. I is a modulation index, which specifies how
much energy should be distributed to sidebands and defines
amplitudes of sideband frequencies

B. Wavetable

Wavetable synthesis employs stored samples in memory to
produce the sound. It is achieved by importing the quantized
values of real sound to memory and forming a lookup ta-
ble [4] [5]. One simple algorithm to exploit an L-sample table
without rescanning the table could be as follow:

sample value = lookup table[index] (2)

output = AMP× amplitude (3)

where sample value is the magnitude of the sound wave
sample at instant index and AMP corresponds to normalized
amplitude of signal and index is always less than L. Rapid
increase in memory capacity along with less cost in manufac-
turing granted broad usage of wavetable technique in roughly
every current produced synthesizer.

C. Envelope

Since the notes do not start and stop instantaneously,
knowing just the information in MIDI file will not be sufficient
for generating a realistic sound. It takes a finite time for a



string to start vibrating, and time for it to degrade to a stable
state [6]. Therefore, we need a pattern to change the volume of
produced sound during note play time. This pattern is called
envelope. Each instrument has its own volume characteristic;
consequently, it needs special envelope. The most common
used envelope is ADSR-envelope, which is abbreviation of
Attack (A), Decay (D), Sustain (S) and Release (R). (Fig. 1)

Fig. 1. ADSR-envelope

Attack time is the time at which sound reaches to its
maximum volume after it is activated. Usually, this time is
very short for piano. Decay time is from when the sound
starts dropping from its full volume to an almost constant
value. Sustain is a period of time which the volume of sound
is nearly constant. It starts after decay and ends before note
is finished. Release shows how fast sound should fade away.
Usually, this time is very short except in some instruments
like piano in case the pedal is pressed.

III. SIMULATION

Having a good quality sound calls exact inspection of
generated waveform of each musical instrument. This section
comprises the investigation of frequency spectrum of three
musical instruments including bell, brass and piano with
the aid of MATLAB and acquisition of drum sound using
GarageBand.

First, recorded single note sound of each mentioned in-
strument imported to MATLAB were sampled with sampling
frequency of 8KHz and 16-bit sampling precision. Drawing
the time domain waveform of a base note for each instrument
made the inspection of envelope practical.

Bell sound is realized by assuming musical note frequency
as the carrier and C:M ratio equal to 0.5. We defined the mod-
ulation index (Ienv) and amplitude (Aenv) based on equation
(4) and (5).

Aenv = A0 × e−t/τ (4)

Ienv = A0 × e−t/τ (5)

where τ is time constant.
Brass sound is made by frequency ratio of 1 and modulation

index of 5. As illustrated in Fig. 2 brass envelope has a linear
property which makes it quite easy to implement.

Among different instruments, piano is the hardest to imple-
ment, since there is a complicated physical process behind it.

Fig. 2. Brass Envelope

By extracting the frequency spectrum of the recorded sound of
a base note and assigning different values for FM parameters,
we deduced the following equation to produce the piano
sound:

Aenv = A0 × t (6)

Aenv = A0[e(ti−t) +Ai] (7)

where equation (6) and equation (7) correspond to attack
and sustain parts respectively. Also ti and Ai are constant
values. Fig. 3 depicts the comparison between frequency
spectrum of both the real and the simulated piano C5 note.

Fig. 3. Frequency spectrum of real (top) and simulated (bottom) C5 piano
note



On the other hand, we needed an envelope to apply on the
wave form. From the waveform we discovered that the piano
sound amplitude degrades as an exponential function, so we
tried to calculate the corresponding exponential function in
accordance to the real waveform. The simulated envelope and
piano C5 note waveform is shown in Fig. 4. The attack and
sustain parts are clear in the figure. For the attack section a
linear equation is used whereas the sustain part is achieved by
an exponential equation:

Aenv = A0 × (e−t+ti +Ai) (8)

Ienv = 3.5 (9)

Fig. 4. Implemented piano envelope (top) and waveform of C5 piano note
(bottom)

The last instrument which is partially effective in music
quality is drum. A good drum makes music so rich and
effective; therefore we tried to implement the drum with
wavetable synthesis method. Seven drum notes generated by
GarageBand and sampled with MATLAB, are included in the
form of header files in the implementation part. These samples
could also be loaded to DSP in setup phase from external
memory.

IV. VERIFICATION

Designed MIDI-Synthesizer is verified on a C6713 DSP
chip which is considered as one the powerful Texas Instrument
processors. The CPU is based on a advanced very-long-
instruction-word (VLIW) architecture which makes it a good
target to implement our synthesizer due to its multifunction
property. This processor consists of eight independent func-
tional units including six arithmetic logic units (ALUs), two
multipliers and operates at 225 MHz clock rate. DSK board
provides a 32-bit AIC23 stereo codec with four 3.5 mm audio

jacks (two inputs and two outputs), 16 Mbytes of synchronous
DRAM and 512 Kbytes of non-volatile Flash memory which
all make it a perfect choice for implementation of audio
applications [7].

To realize the design of synthesizer, Code Composer Studio
as a useful integrated development environment (IDE) in-
cluded real-time analysis capabilities, debugger, C/C++ Com-
piler, Assembler and Linker provides easy to use software to
build and debug our programs.

Developed code comprises a MIDI decoder to decode MIDI
events received by host computer and 8 channels to play that
among 6 channels are polyphonic. All these channels except
one which is used for drum have employed FM synthesis
to generate sound. To test the synthesizer MIDI-file of the
famous song ‘I will survive’ imported to DSK board. The
output sound with sampling frequency of 8KHz was rather
acceptable. With the current code the CPU usage is %65 at
peak which is very promising thanks to FastRTS library to
implement cosine function efficiently.

V. HARDWARE APPROACH

From production perspective, designing a hardware on
ASICs has the benefits of low cost in high volume and ease of
use as a module in a system on a chip. According to different
applications, variety of strategies may be used in designing
ASICs leading to either minimum area or maximum speed.
Here we have developed a typical approach from hardware
aspect to MIDI-synthesizers.

Fig. 5 shows the top block diagram of the synthesizer which
may be implemented on the hardware. The FM generators
produce the frequency modulated signals by using the values
on the input ports simultaneously. Every channel in the MIDI
file is implemented by one FM block. The outputs of all
FM blocks accumulate to produce an audio sample. If other
methods were used for synthesis, they may be added to parallel
blocks. Decoder section extracts the track data from the input
MIDI file and provides the input variables for all parallel
blocks in every sample. It also keeps track of the time instants
in which the musical notes should be played.

Fig. 5. Top-level block diagram of suggested MIDI-Synthesizer



Fig. 6 indicates the folded version of the previous system.
Here, the FM blocks are implemented in a time multiplexed
hardware. Instead of having parallel FM blocks, the same
hardware is used for all blocks. As the required rate for
generation of samples is equal to the audio sample period,
processing time is not a critical issue here. As shown, the
FM block works with a considerably higher frequency in
comparison with audio sampling frequency.

Fig. 6. Time-multiplexed block diagram of suggested synthesizer

As explained through equation (1) the main function to
produce the FM signal is the cosine function. Fig. 7 depicts
the minimum required blocks to implement FM block. One
may use three or more cosine blocks to increase control level
on FM output. The cosine blocks work at system frequency
and may be realized with different architectures.

Fig. 7. Internal functions of FM block

Here we have shown the use of CORDIC algorithm to
realize a cosine function [8]. An iterative CORDIC architec-
ture based on bit parallel design is illustrated in Fig. 8. The
duration of calculation depends on the levels of calculations
i.e. precision. For n-level CORDIC process we need at least
n clock cycles. We also need a ROM to store the required
‘arctan’ values as a look-up table. On top of this architecture,
a state machine controls the operation and selects the degree
of shift and ROM addresses in each iteration. Using a bit
serial design in which the input values are being entered in a
serial manner may save some more area [9]. For the presented
configuration in Fig. 8 , if we can achieve system frequency of
Fs and considering two cosine functions for each FM block,
the processing rate for each FM clock is approximately Fs/n
and for m blocks it is equal to Fs/ (m × n) . As an example
with system frequency of 100Mhz, 10 FM blocks and 40 level
cosine functions, we roughly can reach 250KHz sample rate

for audio. According to application we can forfeit sampling
rate and get a smaller design.

Fig. 8. Bit parallel iterative architecture of CORDIC structure [9]

VI. CONCLUSION

In this paper, design and implementation of MIDI-
Synthesizer are explained from hardware and software per-
spective. Based on simulated sound of piano, brass and bell
in MATLAB, algorithm for decoding MIDI-file and synthesis
of eight 4-polyphony channels has been proposed. MIDI-
Synthesizer is realized using DSK6713 hand optimized C
language which makes the architecture to be capable of im-
plementing more polyphony channels. Discussion on hardware
implementation provides a reference model for ASIC design
with usage in small and portable digital synthesis systems.

ACKNOWLEDGMENT

The authors would like to thank Martin Stridh and Frida
Sandberg for their valuable helps and Bengt Mandersson for
his precious suggestions.

REFERENCES

[1] M. Chunjing, G. Yong and L. Yongmei, Research and Design of Digital
Synthesizer Based on MATLAB, IEEE/ASME Int. Conf. Mechtronic,
Embedded Systems, Applications. , pp. 333-336, 2008

[2] J. Rothstein, MIDI - A Comprehensive Introduction, A-R Editions, 1992.
[3] C. Roads, The computer music tutorial, MIT Press, 2004
[4] D. McCarron and M. Feibus, PC Audio Technology and Chip Sets,

Mercury Research, 1994
[5] C. Dodge and T. Jerse, Computer Music, Schirmer Books: New York,

NY, 1985
[6] M. Russ, Sound Synthesis and Sampling, Elsevier, 2004
[7] TMS320C6x Users Guide, Digital Signal Processing Solution, 1999
[8] R. G. Harber, J. Li, X. Hu, S. C. Bass, Bit-Serial Cordic circuits for use

in a VLSI silicon compiler, IEEE Int. Symp. Circuits and Systems, vol
1, pp.154-157, 1989

[9] R. Andraka, A survey of CORDIC algorithms for FPGA based comput-
ers, citeseer, 2001


