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Abstract

This Master’s Thesis addresses the development of a high performance HD video
display controller supporting paged memory. A study of the AMBA protocol, the
de-facto interconnect standard, is carried out followed by an investigation of han-
dling virtual memory both in ARMv7 and Linux. The architecture coping with
high system memory latency and targeting low power and area has been presented.
Implementation features, verification process and synthesis result are described in
detail. Lastly, the appendix provides some design related video basics employed in
the course of the project.
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Chapter 1
Introduction

In todays consumer electronic market, the public has come to expect HD video dis-
plays with all of their electronic devices from phones to PDAs to gaming consoles.
These video displays, which are directly exposed to the end-user and are a center
of focus, play a significant role in the quality of a user’s experience.

The Video Display Controller (VDCs), as a final piece in the chain of numerous
components in a multimedia device, carries a considerable portion of the burden in
producing a high quality experience. SoC designers have the challenge of producing
both high-performance and low-power video display controllers.
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1.1 Overview

The Video Display Controller (VDC) generates video signals for driving an LCD or
a VGA screen. It’s the VDC’s responsibility to fetch the video data and maintain
the timing of necessary video signals including horizontal and vertical synchroniza-
tion signals, and the blanking interval signal.

The VDC must flawlessly perform its functionality in spite of high latency in the
system. Torn or cluttered video frames certainly are not pleasant. Video FIFO
queues store the pixel values inside the SRAM decoupling the system memory from
the VDC. A simplified system including the VDC is shown in figure 1.1.

Video Display Controller

System Memory

SRAM

HDMI OUT

Figure 1.1: Simplified system including VDC

1.2 Features

When designing a VDC for an embedded environment, several constraints arise
which are not present for desktop applications. The VDC presented in this docu-
ment includes the following features:

• Supporting 300 clock cycles average bus latency

• Supporting 10,000 clock cycles peak bus latency (without dropping pixels)

• Virtual memory paging, 4 KiB page size

• 1-level page table stored in the external RAM

• Pixel FIFO queue implemented with single ported SRAM

• AMBA AXI Master 64-bit DMA supporting outstanding and out-of-order
transactions

• AMBA APB Slave Register File
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• Support for two layers (picture-in-picture) with RGBα (1 plane) and YUV444
(3 planes) as input formats

• Configurable stride for all buffers

• Support for non-paged aligned buffer accesses

• Insensitive to CPU IRQ latency

• Customizable timing signal generation

Video resolution for ASIC and FPGA assumes Full HD and VGA respectively with
60 FPS frame rate and 60 Hz screen refresh rate.

This document begins with describing the importance of bus architecture in to-
day’s SoC design in Chapter 2 and follows by introducing the AMBA bus protocol
as applied interconnect standard in the VDC implementation. Chapter 3 concen-
trates on virtual memory architecture from both hardware and software perspec-
tives. ARMv7 Virtual Memory System Architecture (VMSA) and Linux Paging
are investigated as case studies to approach paged memory VDC design. Chapter 4
focuses on VDC system requirements and hardware implementation. Finally, test
environment for verification and synthesis results are presented.



Chapter 2
SoC Interconnect

Everyday emergence of variant complex applications demands faster traverse of
data on a chip. Meanwhile design productivity gap compels adoption of reusable
Intellectual Properties (IPs) to reduce design time for integration. These leads
designers toward high performance and low-power interconnect architecture for
ensuring reliable on-chip communication.
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2.1 System-on-Chip communication

System-on-Chip (SoC) interconnect alternatives are bus, switch and Network-on-
Chip. Choosing a suitable interconnect architecture demands a good understanding
of two systems level concepts:

1. Communication bandwidth rate of information transferred between mod-
ule and the surrounding environment in which it operates and usually measured in
bytes/second.

2. Communication latency time delay between a module requesting data
and receiving response to the request[1].

On-chip interconnect architecture must guarantee demanded bandwidth and la-
tency in order to satisfy application constraints. Albeit, selection and implementa-
tion of interconnect architecture ensuring application performance must not violate
overall chip area and power by itself. Therefore, designing on-chip communication
architectures has become a serious challenge seeking a careful and time-consuming
decision process[2]. Due to the VDC design environment, this chapter mainly fo-
cuses on the bus-based communication.

2.2 Bus-based communication

Busses are the most widely means of on-chip communication between components
in SoC design. The simplicity and efficiency of busses made them the preferred
interconnect architecture for today SoC designers[2].

Bus in concept is just shared wires between components and in practice some logic
is added to make orderly usage of the bus. Master unit initiates communication on
bus which slave unit responds to a request. For avoiding conflict between different
components in simultaneous usage arbitration process determines ownership of the
bus. The arbitration unit grants bus ownership to one requesting as determined by
bus standard [1].

Since the early 1990s, several on-chip bus-based communication architecture stan-
dards have been proposed to handle the communication needs of emerging SoC
designs. Some of the popular standards in industry are Advanced Microcontroller
Bus Architecture (AMBA) developed by ARM Ltd, CoreConnect developed by
IBM and OpenCores Wishbone as an open source standard.
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2.3 AMBA

Advanced Microcontroller Bus Architecture(AMBA) 2.0 was introduced in 1997
and defines an on-chip communication standard for designing high-performance
embedded microcontrollers. Three distinct buses are defined within the AMBA 2.0
specification:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB)

The AMBA specification has been derived to satisfy four key requirements[3]:

• Facilitate right-first-time development

• Technology-independent and highly reusable

• Modular system design

• Minimize the silicon infrastructure

Later AMBA 3.0 introduces the Advanced eXensible Interface (AXI) bus that ex-
tends AHB with higher performance features.

An AMBA-based microcontroller typically consists of a high-performance system
backbone bus (AMBA AXI), able to sustain the external memory bandwidth, on
which the CPU, on-chip memory and other Direct Memory Access (DMA) devices
reside. This bus provides a high-bandwidth interface between the elements that are
involved in the majority of transfers. Also located on the high performance bus is
a bridge to the lower bandwidth APB, where most of the peripheral devices in the
system are located (Figure 2.1).

High-performace
ARM processor

High-bandwidth
on-chip RAM

DMA bus
master

High-bandwidth

Memory Interface

B
R
I
D
G
E

Keypad

PIO

UART

Timer

AXI APB

Figure 2.1: Typical AMBA-AXI based system[3]

In the video display controller design, AXI is used to connect shared external
memory, ARM CPU and VDC. Control registers in the VDC are accessed by APB
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interface. Therefore, a quick review of the AXI and the APB features are carried
out in two following subsections.

Advanced eXensible Interface (AXI)

The objectives of the latest generation AMBA interface include supporting high-
bandwidth and low-latency designs without using complex bridges, being suitable
for memory controller with high initial access latency, adaptability in meeting in-
terface requirements and being backward-compatible with existing AHB and APB
interfaces[4].

AXI is a burst-based standard proposing pipelined data transfer. It describes a
channel based architecture for communicating between masters and slaves on a
bus. Five separated channel are defined: read address, read data, write ad-
dress, write data, and write response. Figure 2.2 indicates a read transaction
uses the read address and read data channel.

Master
Interface

Address
and

control

Read address channel

Read data channel

Read
data

Read
data

Read
data

Read
data

 Slave
Interface

Figure 2.2: AXI read transaction[4]

Key feature of the AXI protocol which is widely exploited in the current VDC design
is ability to issue multiple outstanding addresses means that master can issue trans-
actions addresses without waiting for earlier transaction to complete. This feature
makes maximum channel utilization by enabling parallel processing of transactions.

Another interesting feature of AXI buses is the ability to complete transactions
out of order. It simply means those requests to faster memory regions are per-
formed earlier than requests to slower memory regions.

Above mentioned features makes AXI standard a perfect choice for the VDC im-
plementation which has latency critical and bandwidth sensitive requirements.
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Advanced Peripheral Bus (APB)

The APB bus protocol is optimized for minimal power consumptions and reduced
interface complexity. The AMBA APB should be used to interface to any peripher-
als which are low-bandwidth and do not require the high performance of a pipelined
bus interface. The APB allows only non-pipelined data transfers, and has only a
single master. The state diagram, shown in Figure 2.3, represents transfer activity
of APB bus. IDLE is default state for the peripheral bus which moves to SETUP
state by receiving transfer request and asserting the appropriate slave select signal
to participate in the transfer. The bus only remains one clock cycle in SETUP
state and always move to ENABLE state on the next rising edge of the clock. In
ENABLE state the enable signal, PENABLE signal is asserted to indicate that
the transfer is ready to be performed. The ENABLE state also only lasts for a
single clock cycle and either will return to IDLE state or SETUP state based on
existence of any further transfer request.

IDLE
PSELx = 0

PENABLE = 0

SETUP
PSELx = 1

PENABLE = 0

ENABLE
PSELx = 1

PENABLE = 1

No transfer

No transfer Transfer

Transfer

Figure 2.3: APB bus state diagram[3]



Chapter 3
Virtual Memory Management

Today SoCs are made of highly integrated software and hardware components. In
order to achieve optimal system partitioning, it’s essential to gain an understand-
ing of system and software alongside by hardware and circuit. Virtual memory
management by having its root in software is a ‘fact’ in today embedded appli-
cations. Therefore, VDC design won’t realize without good insights of handling
virtual memory in both CPU and operating system.
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3.1 Virtual Memory

Virtual memory is a memory management technique that realizes existence of mul-
tiple processes at any instant in time. Each process has its own address space
in memory and dedicating a full address space to every process is too expensive.
Virtual memory suggests to divide physical memory into blocks and allocate them
to different processes. Therefore, process has the illusion of exploiting a full con-
tiguous address space but in reality some of its active parts are scattered around
memory and the inactive parts are saved in a disk file. System supporting virtual
memory inherently enjoys numerous advantages including expendability, relocation
and protection of memory[5].

First, we have to distinguish two types of addresses used in systems adopting vir-
tual memory:

virtual address refers to address used by operating system to access kernel and
user memory.

physical address used by memory controller to address cells inside physical memory.

The processor produces virtual addresses that by a combination of operating sys-
tem and Memory Management Unit (MMU) are translated to physical addresses,
which access main memory.

CPU MMU RAM
VA PA

PT1

PT2

PTn

Pysical Memory

Process 1

Process 2

Process n

Figure 3.1: Virtual to physical address translation
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Paging

Almost all implementations of virtual memory use paging scheme. Paging permits
the physical address space assigned to each process to be noncontiguous. The ba-
sic method for implementing paging involves breaking physical address space into
fixed-size blocks called frames and breaking virtual address space into blocks of
the same size called pages. When a process is to be executed, its pages are loaded
into any available memory frames from the backup storage[6].

Physical base address of each page is stored in a data structure called page table.
When the CPU generates a virtual address, the address divided into two parts a
page number(p) and a page offset(d). The page number is used as an index into
a page table. Then, the page offset is simply concatenated to physical page base
address that is sent to the memory unit. With this scheme, two memory accesses
are needed to access a word in memory (one for the page base address, one for
the word). To reduce address translation time, MMU uses a fast lookup dedicated
cache namely translation look-aside buffer (TLB). A TLB entry contains a
tag part which holds portion of virtual address and the data holds a physical page
frame number, protection field, valid bit, and usually a use bit and dirty bit. If de-
sired page number is not in the TLB (TLB miss), a memory reference to the page
table must be made. Figure 3.2 illustrates virtual to physical address translation
using TLB.

p

f

page
number

frame
number

TLB hit

physical
address

virtual 
address

CPU p d

df

physical
memory

page
table

TLB

Figure 3.2: Paging hardware with TLB[6]
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The page size is defined by the hardware. Given a 32-bit virtual address, 4 KiB
pages, and 4 bytes per page table entry (PTE), the size of the page table would
be (232/212)* 22= 222 or 4 MiB. Obviously, it’s not desirable to allocate the page
table contiguously in main memory. One solution is to page the page table itself
that implied two-level page table scheme. Since we paged the page table, virtual
address is further divided into another part called second-level table. Figure
3.3 shows two-level page table address translation where p1 is an index into the
second-level table, p2 is an index to the page table and d is an offset inside the
page.

p p d1 2

1p

p2

dfirst-level page table

second-level page table

page

Figure 3.3: Two-level page table[6]

Using previous example, virtual address was divided into a page number (20
bits) and a page offset (12 bits). Now by assuming 12 and 8 bits long for second-
level and first-level table (page table) field, they can include up to 4096 and 256
entries. It means second-level table can address 4096*256*4096=232, as expected
in 32-bit address architecture.

3.2 ARMv7 VMSA

ARMv7 VMSA is referred to Virtual Memory System Architecture of ARM CortexTM

processor family. In a VMSA, MMU provides facilities for an operating system to
dynamically allocate memory and other memory-mapped system resources to the
processes. The MMU handles virtual to physical address translation by holding as-
sociated memory properties in memory-mapped tables known as translation tables.

Translation tables

Since ARM CPUs are used in wide embedded applications with variable memory
requirements, the MMU supports memory accesses based on sections or pages. Su-
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persections and sections consists 16 MiB and 1 MiB blocks of memory. Large and
small pages consists 64 KiB and 4 KiB blocks of memory. Supporting Supersec-
tions, Sections and Large pages permits mapping of a large region of memory by
just using a single TLB entry.

Translation tables held in memory have two levels :

• First-level tables holds first-level descriptors that contain either the base
address for Sections and Suppersections or pointer to second level table for
Large pages and Small pages

• Second-level tables (page tables) holds second-level descriptors that contain
the base address of a Small page or a Large page

Figure 3.4 shows how first-level and second-level table assist to translate a virtual
address in a case of Small page. Worth mentioning, descriptors in addition to base
addresses contains translation properties. These control fields identify descriptor
type, memory region attribute, access permission etc. Explaining each level de-
scriptor is a tedious process which would not expressed here.

L1 Index L2 Index Page Index

Small Page Base Address

First Level Tranlation Table 

Second Level Tranlation Table 

External Memory 

Small Page 

Virtual Address 

0

255

4095

0

L1 Translation Table Base Address

Figure 3.4: ARM Cortex address translation
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Translation Table support registers

When the VMSA is implemented, three translation table support registers are used:
TTBR0 and TTBR1 holds the base address of translation table 0 and 1, respec-

Table 3.1: VMSA translation table support register

Register name Description

Translation Table Base 0 c2, Translation Table Base Register 0 (TTBR0)
Translation Table Base 1 c2, Translation Table Base Register 1 (TTBR1)
Translation Table Base Control c2, Translation Table Base Control Register (TTBCR)

tively. When TLB miss happens, the Translation Table Base Control Register,
TTBCR, determines which of Translation Table Base Registers defines the base
address for the translation table walk.

Access to translation table support registers are only possible in privileged mode.
For accessing e.x.TTBR0, one should read and write the CP15 registers with
<opc1> set to 0, <CRn> set to c2, <CRm> set to c0, and <opc2> set to 0.

MRC p15,0,<Rt>,c2,c0,0 ; Read CP15 Translation Table Base Register 0

MCR p15,0,<Rt>,c2,c0,0 ; Write CP15 Translation Table Base Register 0

Virtual to physical address translation flow for a Small page is shown in figure
3.5.
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table index 

Second-level

Control fields

SBZTranslation base

Page table base address

Page index

Access

First-level

Access

table index 

Page table base address

Control fields

Translation base
table index 
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2 1109
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Figure 3.5: Small page address translation flow[7]



3.3 Paging in Linux 21

3.3 Paging in Linux

Linux always tries to keep a neat distinction between hardware-dependent and
hardware-independent source codes. Therefore, the Linux Memory Management
scheme adopts a common paging model to fit different architectures. Paging model
in Linux consisted of there paging level :

• Page Global Directory (PGD)

• Page Middle Directory (PMD)

• Page Table Entry (PTE)

Page Global Directory includes the addresses of several Page Middle Directories,
which in turn includes the addresses of several Page Tables. Finally, each Page
Table entry points to a actual physical page frame in main memory. Address trans-
lation in Linux virtual memory containing 3 paging level is depicted in Figure 3.6.

pgd_offset()

pmd_offset()

pte_offset()

pgd_t

pmd_t

pte_t

Only 1 pgd_t

Page Frame

 Frame

PMD Page Frames

Other unrelated

pmd_t Page

Other unrelated

PTE Page Frames

Other unrelated

Data Frames

Page Frame

with User Data

 Frame

 pte_t Page

mm_struct->pgd

Offset within

Process PGD

Offset within

PMD Page Frame

Offset within

PTE Page Frame

Offset within

Data Frame

Virtual Address

Figure 3.6: Linux page table layout[8]
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All related information to the process address space is included in an object called
the memory descriptor of type mm struct [9]. (mm struct–>pgd) points to base
address of Page Global Directory which is a physical page frame. This frame con-
tains an array of type pgd t pointing to a page frame containing an array of Page
Middle Directory entries of type pmd t which in turn points to page frame contain-
ing Page Table entries of type pte t, which finally points to page frames containing
the actual user data[8].

3.4 ARMv7 Linux

ARMv7 has two level page table structure, where the first-level has 4096 entries
and the second-level has 256 entries. Each entry is one 32-bit word. But as men-
tioned, Linux has 3 level page table structure which must be tweaked slightly to
accommodate the two-level scheme.[7]

First, size of PMD needs to be changed to one. It means Middle Directory ta-
ble would only have 1 entry and results in bypassing PMD. Since “all references to
an extra level of indirection are optimized away at compile time not at run time,
there is no performance overhead for using generic three-level design on platforms
which support only two levels in hardware”[10].

Second, sizes of PGD and PTE require to be defined following Linux memory
management codes’ restrictions. Linux keeps two sets of PTEs- the hardware and
the Linux version. During translation table walks, MMU just reads hardware PTEs
and operating system uses Linux PTEs to check flags such as present and dirty bits
to handle page tables in optimum way. Linux also expects one PTE table per page.

Eventually, for adopting an ARM page table, number of entries in Linux first page
level must be set to 2048 with the size of 8 bytes for each entry (whereas ARM first
level page table has 4096 entries of 4 bytes each) and 512 entries in the second level
page table (whereas ARM second level page table has 256 entries). It means every
entry in the first level table contains two second level pointers and the second level
table contains two hardware PTE tables arranged contiguously. Second level table
in addition to two hardware PTE contains two Linux PTE tables[11]. This leads
to the following page table layout in ARM Linux :
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H/W PT0

H/W PT1

Linux PT0

Linux PT1

PT0 Base Address

PT1 Base Address

PT2 Base Address

PT3 Base Address

H/W PT2

H/W PT2

Linux PT3
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4

8

12 1024

2048

3072

0

1024

2048

3072

0

PGD PTE

Figure 3.7: ARM Linux page table layout



Chapter 4
System Architecture and Hardware
Implementation

While PC users partially tolerate dropped frames and stuttering, for users of quality
consumer products such as smartphones and tablets inconsistent video frame rates
are definitely unpleasant. Moreover, minimizing area and power are never ending
challenges for todays SoC designers to ensure a high quality consumer product at
a reasonable price.
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4.1 Requirements and Features

Precise investigation of the system constraints results in a neat specification which
by itself fastens the implementation process. This section describes design require-
ments in detail that alleviates the course of the VDC development.

UMA vs video RAM

Classic PC architecture proposes separate video RAM known as a frame buffer for
graphic and video applications. But having additional sub-system memory is very
costly in handheld devices. Moreover, it demands complex memory management
scheme due to two different kinds of memory in the system and also results in mem-
ory that is not easy to use because it’s dedicated to another purpose. Therefore,
it’s preferred to use Unified Memory Architecture (UMA) in multi-function devices
like smartphones with highly variable workload. Figure 4.1 depicts a typical mo-
bile platform containing CPU, GPU, Video Engine (VE) and VDC sharing single
memory. Current approach enjoys lower cost and greater flexibility.[12]

VE GPU VDC CPU

Interconnect

MEMCTRL

RAM

Figure 4.1: Unified Memory Architecture (UMA)

As discussed in previous chapter, virtual memory technique is a fact in all today
system architectures. CPU manages memory using paging scheme and makes it
impossible to guarantee a contiguous physical memory allocation from user space.
By adopting UMA, all the modules connected to system shared memory including
VDC must maintain their own address translation unit in order to access virtual
memory.
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Video frame allocation in Virtual Memory

Single video frame on the screen is blend of multiple layers. Layers can be in various
formats e.g. YUV444, YUV422, YUV420, RGB or RGBα. Color components in
each layer may be packed in a single array resulting an interleaved version or each
stored in a separate array resulting several planes. A typical situation contains two
layers: YUV format as a video layer and RGBα format as a user interface layer.
(See Appendix regarding details about YUV and RGB color space)

Applying virtual memory, a frame is allocated in a noncontiguous memory space.
Therefore, a frame and in turn its layers are paged and scattered around the physi-
cal memory. The Page List keeps base addresses of physical pages of a video frame
inside an external memory. Depending on a layer format, each color component
inside a frame can have its own Buffer Page List (BPL) or shares a single BPL. But
layers always have a different BPLs and are not allowed to share one together.

For a use case of two separate layers containing YUV444 stored in 3 different planes
and RGBα stored in a single plane, 3 BPLs keep physical base addresses of Y, U
and V color components and only one single BPL keeps RGBα ones. The BPL is
described as a 1-level translation table containing 32-bit base addresses of 4 KiB
buffer physical pages. The BPL by itself stores in a continuous physical memory
inside an external memory and can not be paged again. The BPL entries are stored
in a 64-bit aligned format by appending 32-bit zeros to their most significant sides.

The Buffer Size and the Buffer Page List Size (BPLS) are determined by Formula
4.1 and Formula 4.2 respectively:

Buffer size = (Unit Size×Buffer Stride×Buffer Height)+Original Page Offset
(4.1)

BPLS =

{

(Buffer Size)/4096 Buffer Size ≡ 0 (4096)
(Buffer Size)/4096 + 1 Buffer Size 6≡ 0 (4096)

(4.2)

Where Buffer Height- is a 16-bit value indicating number of pixels in vertical di-
rection for the entire buffer; Buffer Stride (BS)- is also 16-bit value containing the
difference in bytes between vertically adjacent pixels; Original Page Offset is a 64-
bit aligned 12-bit value allowing non-paged aligned buffer accesses by defining an
offset value to a base address of the first page inside a buffer and Unit Size is a
number of bytes per pixel inside a buffer.

The Buffer Page List Address (BPLA) is a 32-bit physical address indicates ad-
dress of the first entry inside the BPL. And as previously mentioned, depending
on the layer format each layer may have several BPLs and consequently several
BPLAs. Since the BPLs of each layer are stored in a continuous memory space,
BPLAs are computed depending on each Buffer Size and during run time.
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To conclude, every BPL is defined by three parameters: BPLA, BPLS and BS.
Figure 4.2 shows simple placement of YUV layer using 1-level page table scheme in
the external memory for the mentioned use case.

YUV layer

1920 * 1080

Three buffers

3-plane ( Y+U+V)

Buffer Page List (Y)

Buffer Page List (U)

Buffer Page List (V)

Y B
PLA

U BPLA

V BPLA

64-bit

 Y
 B

PL
S

 U
 B

PL
S

 V
 B

PL
S

Figure 4.2: YUV layer page lists

Latency-critical and Bandwidth-sensitive VDC

As mentioned in Chapter 2, latency and bandwidth are two fundamental require-
ments of every master connected to an interconnect. These requirements vary
enormously by master type. For example, CPU performance is highly dependent
on effective latency of memory since normally CPU can not process further until
memory access is completed. In contrast, GPU and VE requires very high memory
bandwidth because they typically “performs the same or very similar operations on
huge numbers of individual data elements”[12].

The VDC must output pixels at a constant rate. Underflowing frame FIFO queues
would break up the image on the screen which is very unpleasant. Thus functional-
ity of the VDC is critically dependent on the bus latency meanwhile its bandwidth
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requirement is moderate in comparison with GPU or even VE.

Bus latency emerges in two forms: individual peak latency and long-term aver-
age latency. Peak latency mitigates by introducing FIFO buffers inside SRAM.
Average latency impact fades by supporting outstanding transactions and increas-
ing burst length. Formula 4.3 indicates the relation between bus bandwidth and
required VDC bandwidth where BWBUS indicates nominal bus bandwidth and
Outstanding Credit is number of outstanding transactions that VDC is allowed to
issue.

BWV DC =
BWBUS

Mlatavg

× (BurstLength) × (OutstandingCredit) (4.3)

For a use case of 1080p60 supporting two layers containing YUV444 and RGBα
and assuming 8-bit resolution on input, we would need 7 bytes for showing each
pixel resulting a required bandwidth for the VDC:

BWV DC = 1920 × 1080× 60 × 7 ≃ 871 MB/s. (4.4)

Having 64-bit data bus fed by 300 MHz clock frequency makes nominal bus band-
width of 2400 MB/s. Using 4.3 and supporting 300 clock cycle average latency in
maximum possible burst length (16 beats) case led to the essence of assigning 7
outstanding burst credit for the VDC (Formula 4.5).

871M =
2400M

300
× 16 × (OutstandingCredit) ⇒ OutstandingCredit ≃ 7 (4.5)

Worth mentioning, the average bus latency hit the required bandwidth and made
the VDC a bandwidth-sensitive master. But as far as the minimum required band-
width is met, improving it has no performance impact.

As previously discussed in the case of facing bus peak latency of 10,000 clock cy-
cles, the FIFO buffers inside the SRAM will continue to feed the screen. Size of
the FIFO buffers are calculated using Formula 4.6:

FIFO Size = TBusOff × BWV DC (4.6)

TBusOff is a period in time that bus are not able to deliver the VDC any data that
obtained by 4.7:

TBusOff =
Peak Bus Latency

Bus Frequency
(4.7)

Refereing to the previous use case of 1080p60 supporting two layers, the FIFO sizes
for each separate buffer of RGBα, Y,U and V would be :

TBusOff = 10000

300M
= 33µS (4.8)

FIFORGBα = 33µ ∗ 125M ∗ 4 ≃ 16KiB (4.9)

FIFOY = FIFOU = FIFOV = 33µ ∗ 125M ∗ 1 ≃ 4KiB (4.10)
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Dual-ported RAM vs double single-ported RAM

Use of dual-ported RAM is quite common case in Video RAM (VRAM) for desktop
applications. It allows the CPU to draw the frame at the same time at the VDC
reading it to the screen. Basic dual port RAM cell contains 8 transistors while
single port RAM has 6 transistors. In low power environment like handheld devices
that every single transistor counts using dual-ported RAM is quite expensive.

To minimize power and area alongside by maintaining required bandwidth, address
space for referring pixel FIFO queues are mapped to two single port memories using
least significant address bit (LSB) of FIFO pointers. This makes a zigzag memory
access pattern allowing almost simultaneous write from the system memory and
read by the VDC.

Double-buffering (Double-Job)

Flicker and tearing are undesired artifacts that appear in a case of using a single
frame buffer. Double-buffering technique avoids incomplete update of a frame buffer
by taking advantage of two buffers namely back buffer and front buffer. While the
host program is writing in the back buffer, the VDC is showing the front buffer on
the screen. Interrupt request by the VDC informs the host CPU to fill the back
buffer and update the VDC register files.

The term of ‘buffer’ is widely used to refer elements inside a layer in this thesis
context. Therefore, the term ‘job’ is alternatively employed to describe an entire
frame consisting of its layers and in turn its buffers. Figure 4.3 illustrates the hier-
archy to handle a sequence of video frames for the mentioned use case of two layers.

Y  Pages U Pages

Job(n)

YUV Layer

Y BPL U BPL V BPL

V Pages

Job(n-1) Job(n+1)

RGBa BPL

RGBa Layer

RGBa Pages

Figure 4.3: The VDC hierarchy to handle a frame sequence
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Interrupt handling is implemented by poll file operation inside the VDC character
device driver and a read/write register inside the hardware. In the case of having
two layers, sending an interrupt is postponed until all the buffers for the front job
complete issue of their pixel addresses. Figure 4.4 shows Interrupt Request Register
Mode for handling double jobs.

END_JOBNO_JOBVALID_JOB0VALID_JOB1

0123

Figure 4.4: IRQ MODE Register

END JOB sets by the VDC to signal the host CPU about an interrupt and in-
terrupt service routine clears the bit once handles the interrupt request. NO JOB
defines the requested interrupt belongs to a front job or a back job. Since it takes
some time from handling service routine until the back job filled, VALID JOB bit
assures availability of the entire frame to the VDC. In case of unavailability of the
new frame, the VDC decides to show the previous frame one more time until back
job updates its content.

4.2 Implementation

VDC consists of three main parts: Direct Memory Access (DMA) unit, Display
Formatter (DFMT) unit and Host interface. A simplified step-by-step functional
flow assists a plain understanding of the system process and usage of each unit:

1. Host CPU programs the VDC control registers including display resolution,
display position and buffer definitions.

2. DMA translates virtual addresses to physical ones and fetch video frame data
from system shared memory and stores them in video FIFO queues inside
SRAM.

3. DMA always assures adequate pixels in FIFO queues to avoiding underflow
condition due to high peak latency.

4. DFMT retrieves pixel values from SRAM and forms the output signal to be
displayed on screen.

5. Host interface signals the CPU once the front buffer is shown and asks for
loading the back buffer.

6. If host CPU has written the new frame, VDC updates its control registers;
otherwise it keeps the registers values and decides to show the previous frame
one more time.
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7. Goes to step 2.

Figure 4.5 shows top-level block diagram of the VDC supporting 2 layers-YUV444
(3-planes) and RGBα (1-plane).
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Figure 4.5: VDC block diagram

The Host interface provides an APB connection between the host CPU and the
VDC internal register files. It supports a 32-bits data bus to access control and
status registers. Host interface is able to generate an IRQ request in order to report
an event to the CPU.

The Buffer Reader translates pixel virtual addresses to physical addresses using
BPL. It accesses external memory via an arbiter connecting VDC to 64-bits AMBA
AXI bus. Buffer Reader handles external memory (SDRAM) and internal memory
(SRAM) accesses using 3 address generation modules. Worth mentioning, Buffer
Readers operate independently from each other and contain their own address trans-
lation unit.

Display Formatter partially operates in a pixel clock domain and generates stan-
dard High-Definition Multimedia Interface (HDMI) input format. It’s the DFMT’s
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responsibly to drive synchronization signals including vertical, horizontal and blank-
ing signals (See Appendix regarding details about HDMI standard).

Rest of this chapter covers implementation details of Buffer Reader and Display
Formatter followed by the VDC software approach to handle a sequence of frames.

Buffer Reader

The Buffer Reader provides an efficient way of translating virtual addresses without
CPU intervention, accessing external memory and controlling pixel FIFO queues.
Figure 4.6 illusterates block diagrams inside the Buffer Reader.

AXI BUS 
Master

Address Translation

Address Generation
&

FIFO
Control

Register
Bank

AXI ARBITER

IRQ

SRAM ARBITER

PREQ

PIXEL

Figure 4.6: Buffer Reader block diagram

Register Bank holds vital information for translation and address calculation. It
includes Buffer definitions (BPLA, BPLS, BS), OFFSET register and size of the
window that is going to be display (XSIZE,YSIZE). The AXI Bus Master module
maintains access to the external memory in privileged non-secure mode. In order to
prioritize shared memory, the Buffer Reader doesn’t employ master-induced wait
states on the bus. The FIFO control module maintains read and write operation
from/to SRAM by receiving combinational grant signal from the SRAM arbiter.

To enable the VDC to display variant window sizes starting at any 64-bit aligned
addresses, first the host CPU loads the Buffer Reader with 32-bit OFFSET regis-
ter. OFFSET defines the virtual address of the the first pixel that is going to be
displayed inside the buffer using Formula 4.11:

OFFSET = (Offset Y × Stride+Offset X)×Unit Size+Original Page Offset
(4.11)
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Where Offset X and Offset Y- are the upper left coordinates of the window inside
the buffer that is going to be displayed on the screen. In case of showing an entire
buffer, offset values in both directions are equal to zero.

By loading buffer parameters from the host interface, the Buffer Reader begins
to generate 32-bit pixel virtual addresses starting at OFFSET. Each virtual ad-
dress is logically divided into a page number and a page offset. For translating a
virtual address, a physical base address of the page which requested pixel resides in
is required. Using page number to index BPL and then issuing 1 beat burst length
to access location BPLA + ( 8 × page number) retrieves the physical page base
address of the desired pixel. This physical page base address concatenates with the
page offset making pixel physical address.

The buffer read continues by issuing outstanding incremental bursts and stops
either by the next page address translation or FIFO queue gets full. It again pro-
ceeds after a page translation or a dequeue request from the DFMT. Ultimately
the Buffer Reader informs the controller unit once all the pixel addresses inside the
window are issued and sent to the external memory.

The Buffer Reader issues maximum possible burst length (16 beats) to maximize
the bus utilization except in 3 following conditions:

• End of a row : to support any window size

• End of a page : to avoid splitting over 4 KiB page boundary

• FIFO overflow : to prevent FIFO overflow if there is less than 16 beats space

The FIFO control unit is able to differentiate between pixel values and page base
addresses. Since the VDC supports outstanding transactions and various window
sizes, address generation unit saves number of issued bursts inside the page in order
to signal FIFO control to ignore the next coming data from the external memory.

Size of the FIFO queue is parameterized by a peak latency in the system. The
FIFO control performs write operation in 2 and read operation in 3 clock cycles.
Additional registers placed on SRAM ports to avoid any timing problem. While
write operation is always granted, read operation can stall for one clock cycle.
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CLK

ARADDR Y1 U1 V1 R1 u1 u2 u3 v1 v2 y1 r1 ... Y2 U2

ARID 0 1 2 3 1 1 1 2 2 0 3 ... 0 1

ARLEN 0 0 0 0 F F F F F F F ... 0 0

ARVALID
...

ARREADY
...

RREADY

RVALID
...

RID 1 2 0 3 1 1 1 2 2 0 3 3 1 1 1 ...

RDATA U1 V1 Y1 R1
u11 u12 u13 v11 v12 y11 r11 r12 u14 u15 u16 ...

Figure 4.7: VDC AXI timing diagram

Figure 4.7 shows timing diagram of the VDC by connecting 4 Buffer Readers
via an arbiter to the AXI bus.

Capital letters define bursts accessing BPL and small ones define bursts inside
a page. Observing timing diagram presents decent features of AXI including in-
dependency of address and data channel, outstanding and out of out order burst
transcations and mixture of Y, U, V and RGBα values on the RDATA. Worth
mentioning, issuing bursts inside a page do not start until first physical address of
a page retrieved from the BPL.
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Display Formatter

The DFMT maintains connection of the VDC to the world outside namely a
VGA/LCD display. It feeds the HDMI transmitter by generating VSYNC, HSYNC
and blanking signals running on the pixel clock frequency. The DFMT uses 16-
bit registers including display position (X0,Y0) on the screen and window size
(XSIZE,YSZIE) to request pixels from the Buffer Readers. (Figure 4.8)

(X0, Y0) (X0 + XSIZE, Y0)

(X0, Y0 + YSIZE) (X0 + XISZE, Y0 + YSIZE)

 Window

 Screen

Figure 4.8: Borders of a displaying window on a screen

By adopting UMA, the Buffer Readers are not allowed to employ master-induced
wait states on the system bus. Therefore, write requests to the FIFO queues must
be always granted. In the other hand, VDC’s latency-critical characteristic com-
pels the DFMT’s read requests to be also granted instantly. Thus, double single
port SRAMs are used to image a memory that allows simultaneous read and write
accesses on the FIFO queues. However, SRAM arbiter always prioritizes write re-
quests and stalls read ones in the case of simultaneous access to the same SRAM.

To prevent dropping any single pixel on screen, first only one additional register
is placed after SRAM RDATA register to diminish effect of stalling read requests.
Depending on the pixel clock frequency and color depth, this one register was ex-
pected to sustain for particular number of clock cycles. But after observance of
AXI arbiter behavior using ID bits for arbitration, fading of decent zigzag property
for read and write on LSB mapped SRAMs leaked out. To overcome the problem,
one extra register is added for each Buffer Reader resulting 12 registers in total
counting those SRAM RDATA registers.

In order to avoid metastability and proper request scheme from the DFMT to
the Buffer Reader, an interface logic is placed to connect these two clock domains.
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Figure 4.9 shows an interface circuit between the DFMT and every Buffer Reader.
Due to absence of clock synchronization module inside the VDC to register pixel
values coming from Buffer Reader, current design only supports multiple 2 of pixel
frequency.

System Clock

Buffer Reader Pixel Request

Pixel Frequency

DFMT Pixel Request

System Frequency

Figure 4.9: Interface circuit between DFMT and Buffer Reader pixel request

The DFMT waits until the FIFO queues contain sufficient number of pixels to dis-
play in order to avoid underflowing condition in a case of having initial high peak
latency in the first frame. Additionally, the DFMT is able to generate a test frame
when there is no activity on the AXI bus.

User Interface and Software approach

A C-based user interface maintains initialization, access and running the VDC from
the host CPU. Using 2 kByte register file inside the VDC enables CPU to create two
concurrent jobs to handle double buffering. A Linux device driver is developed in
order to communicate with the VDC from CPU side. Software architecture blocks
are shown in Figure 4.10.

Functions & Macros

Linux Device Driver

Linux Kernel

Host CPU

Video Display Controller

Host I/F

Figure 4.10: Software architecture blocks

Employing a modular design with the generic functions in both software and hard-
ware sides facilities addition of extra layers, support of different display resolutions
and scaling the design for cost and performance.
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4.3 Verification

The VDC development process demands concurrent implementation of both hard-
ware and software. Therefore, incorporating co-design and co-verification strategies
from the early system design phase was inevitable. Having this in mind, precise
register selections were made in order to enable user-friendly connection of the soft-
ware and hardware parts. Due to importance of the bus behavior and its latency on
the VDC design, a simulated behavior of average and peak bus latency were used to
interface the VDC to the system shared memory. In order to feed the appropriate
file formats to the design and verifying the results Matlab scripts are developed.
The test sequence of Tractor for RGBα layer and Riverbed for YUV layer captured
at 30 frame per seconds [13] with two resolutions of 640 × 480 pixels and 1920 ×

1080 were used.
First, a paging scheme pages a frame with its two layers to 4 KiB pages and creates
a page table for every Y,U,V and RGBα buffer. Page tables are written in a specific
dynamic location in the shared system memory. Then, software program through
device driver loads the VDC registers for each buffer with proper values and gives
the control of the hardware to the VDC itself. In order to verify the design, VDC’s
output is written in a binary file and compares with the initial sequence of frames
using Matlab.

Using in-house developed environment to simulate CPU and AXI/APB bus be-
havior enables to commence verification process from the first cycle of the design.
Moreover, developing an AXI timing adapter module permits to test the peak la-
tency constraint on the VDC.

VDC functionality was verified by applying 333 MHz and 166 MHz system and
pixel (without blanking) clock frequencies targeting 300 MHz and 150 MHz clock
frequencies with 11% performance margin, placing 28 KiB SRAM (16 KiB for
RGBα and 12 KiB for YUV) and feeding two layers with VGA resolution. Assign-
ing 8 outstanding burst credit for the VDC and sweeping mean time value between
assertion of AVALID/AREADY and the first RVALID resulted 248 clock cycle av-
erage bus latency. Slight difference between nominal expected average latency (292
clock cycle) and the obtained value is originated from having smaller burst length
in few cases like end of a row or end of a page which the VDC doesn’t issue 16
beats full burst.

Peak latency constraint was verified by connecting the AXI interface of the VDC
to the timing adapter. AXI timing adapter simply generates ON and OFF pulse
signals and only grants the VDC to access the shared memory during ON cycles.
Following above mentioned conditions, expected peak latency of 8192 clock cycles
is fully accomplished.
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4.4 Synthesis

As mentioned in section 4.1, the VDC performance does not improve as far as its
required minimum bandwidth met. But due to integration policies, the VDC has
been targeted for a system clock frequency.

Synthesis has been done for IBM’s 65 nm low power CMOS process using Syn-
opsys Design Compiler and constraining design with 300 MHz with performance
margin of 11% and 1.5 ns input/output delay.

Area

Table 4.1 shows estimated areas for different blocks in µm2 and their distributions
inside the VDC. Synthesis tool reports a total area of 109318 µm2. As an estima-
tion of a gate count using average size of 1.4 µm2 for each gate, number of gate
counts results in 78 kGates.

Table 4.1: Modules area distribution
Module Name Area(µm2) Percentage(%)

RGBα Buffer Reader 16535 15.1
Y Buffer Reader 16466 15.1
U Buffer Reader 16434 15.0
V Buffer Reader 16567 15.1
Controller 7865 7.2
Formatter 7394 6.7
AXI Arbiter 827 0.7
SRAM Arbiter 5633 5.1
Host Interface 20994 19.2

As table 4.1 implies host module which contains buffers register bank takes a major
part of the area in comparison with the others components. The total area of the
VDC including 28 KiB SRAM for the FIFO buffers (0.2 mm2) is 0.31 mm2.

Critical path

Critical path lies in AXI address generator module that makes the 32-bit pixel vir-
tual address. Having been faced with the timing violation in the first try, decent
feature of AXI outstanding burst mode aids to postpone the address generation for
one extra clock cycle without any impact on the system performance. Therefore,
timing met without using any multiple threshold voltage cells for synthesis.

Critical path does not act as the bottleneck for the entire design. Mainly shared



4.4 Synthesis 39

system memory latency limits the VDC performance by tardily pixel feeding that
makes the image breaks on the screen.

Power estimation

Synthesis tool reports the leakage power of 3.4 µW in a room temperate (25 ◦C).
Since the VDC is targeted for the embedded applications, careful decisions regard-
ing power consumption were made to keep the power dissipation as low as possible.
Main feature of the current VDC design that makes it viable for low-power appli-
cations is usage of single ported SRAM instead of common approach in the most
VDC designs to use dual-port SRAM for implementing the pixel FIFO.



Conclusion

The proposed Video Display Controller is a synthesizable core intended to drive a
VGA/LCD screen in an embedded environment. The controller is capable of con-
necting to the shared system memory using an AMBA AXI interface with support
for the virtual memory accesses. In order to hide the high peak latency of the
system bus, double dedicated single port SRAMs are used as a pixel FIFO buffer.
But whatever size of the FIFO buffer is, a long-term average latency requirement
compels a support for outstanding and out-of-order transactions.

Picture-in-picture feature accepting two input formats namely YUV444 and RGBα
with a programmable display resolution has been implemented. To enhance memory
management, configurable stride and non-page aligned access for all frame buffers
is considered and implemented. To support variant resolutions, timing parameters
including horizantal/vertical front porch, back porch and SYNC intervals are all
customizable.

An AMBA APB interface connects the video display controller to the host CPU for
programming registers, reporting events and controlling the entire display process.
To avoid artifacts such as flicker and tearing, double buffering technique is applied.
A C-based user interface and debug environment with a Linux device driver is
developed to realize all mentioned features.
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A.1 Y’CbCr color space

Video displayers are driven by red, green and blue voltage signals (RGB) whereas
storage and transmission of image inside chips are performed using Y’CbCr for-
mat. Y’CbCr is a color space composed of one luminance (luma) channel and two
chrominance (chroma) channels. Luminance carries brightness and chrominance
carries color information. Considering the fact that human eye is more sensitive to
luminance changes rather than chrominance, chroma subsampling is often exploited
in order to reduce resolution for chroma channel. This dramatically reduces the
required bandwidth for each frame.

Variant subsampling ratio may be utilized to reduce the chroma resolution. YUV420
is a common subsampling ratio in which both horizontal and vertical directions are
halved. Hence, every four pixels on screen shares same Cb and Cr values. Beside,
YUV420 color components may store in 3 separates plane resulting YUV420 with
3-planes or luminance channel stores in one plane and chrominance channels inter-
leaved and stored in another plane resulting YUV420 with 2-planes.

The conversion between Y’CbCr and RGB color space are realized by 3*3 ma-
trix multiplications. Equation A.1 and A.2 show Y’CbCr conversion to RGB and
reverse operation respectively[14].
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A.2 HDMI standard

High-Definition Multimedia Interface (HDMI) is a standard interface for connect-
ing display controller to VGA/LCD display. HDMI provides all-digital audio/video
interface on a single cable replacing consumer analog standard, VGA. HDMI is able
to transmit uncompressed high-definition video plus digital audio. Today HDMI
video interface is incorporated on everything from set-top boxes and DVD players
to phones and even cameras. HDMI uses Transition Minimized Differential Signal-
ing (TMDS) for transmitting video,audio and auxiliary data. TMDS link includes
three TMDS Data channels and a single TMDS Clock channel[15].
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Tx1-
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TxC-

 PLL

Figure A.1: HDMI

Since HDMI link operates in three modes (Video Data Period, Data Island pe-
riod, and Control period), the values of CTL0, CTL1, CLT2 and CLT3 indicate
the type of upcoming data period[15].
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