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Abstract. Modern processors experience memory contention when the
speed of their computational units exceeds the rate at which data can
be accessed in memory. This phenomenon is well known as the memory
bottleneck and is a great challenge in computer engineering. In order
to mitigate the memory bottleneck in classic multi-core architectures,
a scalable parallel computing platform called Grid of Processing Cells
(GPC) has been proposed. To evaluate its effectiveness, we model the
GPC using SystemC TLM-2.0, with a focus on memory contention. As
an example, we parallelize an APNG encoder application and map it
to the GPC and compare its performance to traditional shared memory
processors. Our experimental results show improved execution times on
the GPC due to a large decrease in memory contention.

Keywords: Memory Bottleneck · Grid of Processing Cells · SystemC
TLM-2.0

1 Introduction

The increase in processor speeds over the past years has led to increased time
spent in accessing the main memory to retrieve data. As many cores try to
access the shared memory, this leads to contention and delays each core. The
cores suffer from contention and their computations are halted due to sharing of
the same main memory. This memory bottleneck applies to most modern CPUs
which are usually shared memory processors (SMP).

To deal with slow memory access speeds, various solutions are being re-
searched. The development of hierarchical caches is the main method to address
this issue [1]. Another solution is the Berkeley RISC project, in which many
complex instructions were removed because they were rarely used [2], and in-
stead replaced with more CPU registers which are much faster to access than
main memory [3][4].

In this paper, we model and evaluate SMPs and a scalable alternative called
Grid of Processing Cells (GPC) where processors paired with local memories are
arranged in a 2D array [5]. As a specific configuration, the GPC checkerboard
architecture (Fig. 1) is aimed at addressing the memory bottleneck. The cores
and memories are placed one after another, and each core has access to its
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own and three neighbour memories, thereby increasing data availability. The
checkerboard contains several variations of a main logical component which is
termed as a cell. Each cell is designed with the idea that it represents a core and
components that are local to that particular core.

In this work we model the GPC architecture in SystemC TLM-2.0 [6] and
map an application to it [7].

1.1 Problem Definition

Our main contribution in this paper is modeling and demonstrating the improve-
ment of the GPC against the classic SMP architectures in terms of execution
time and time spent in main memory access contention when running an APNG
encoder on the different architectures.
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Fig. 1: 4-by-4 checkerboard GPC [5].

1.2 Background and Related Work

Over many years the general trend is that processors become faster as designers
increase the clock rate but there is little increase in memory access speed [8].
This is known as the memory wall. To mitigate this problem, there has been a
lot of focus on improving caches [1]. However, even the most advanced caches
suffer from high miss rates if the cache size is too small or if associativity is
increased too much [9]. Caches must also implement cache coherence protocols
in the case of multi-core processors, and they consume significant space on the
chip as well as power. Caches have given rise to Non-Uniform Memory Access
(NUMA) where each core can access near memory faster than distant memory.
With NUMA the time to maintain cache coherency is usually quite high [10]
and leads to contention as the interconnect is shared for every core. There have
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been other works related to addressing the memory wall, for example the Illusion
system [11], which is similar to the GPC architecture. Both have a mapping step,
but in the GPC the memories surrounding each core can be accessed only by
neighbours and there is no NOC to facilitate communication between distant
cores. This limitation makes the GPC truly scalable because there is no NOC
complexity to grow, but puts a burden on application mapping which is restricted
to only local communication.

Modification to the architecture itself is one method of reducing the con-
tention between cores. In the checkerboard GPC contention is reduced drasti-
cally as separate buses are used between the cores. Architectures similar to the
GPC have been proposed in the past, such as the Epiphany-V [12]. While sim-
ilarities are present, such as the fact that both use a cache-less memory model,
the GPC varies in a few aspects: i) The checkerboard architecture uses a different
addressing map where each memory has a different address space, ii) The GPC
has no operating system running on all of the cores, and iii) GPC uses simple
multiplexers-based buses instead of a complex NOC.

Our main objective in this work is to reduce memory contention through
software methods, which primarily lies in the mapping operation. We also con-
firm that memory contention is indeed a major reason for the memory wall, and
provide experimental results showing that the GPC minimizes that.

2 Modeling of the Checkerboard GPC

The checkerboard model [5] consists of cores with local memory which can be
accessed also by their neighbours. The memory size is small and the cores them-
selves only perform computation on small amounts of data at a time. The small
memories are referred to as on-chip memories and are expected to be as fast as
caches in a multi-core computer made of static random-access memory (SRAM).
The off-chip memories are larger but slower, similar to dynamic random-access
memory (DRAM).

Core Module - The core module is the computation component of a cell (Fig-
ure 2) and represents a complete processor core with in-order or out-of-order
execution but without (or only 1st-level) cache. It contains a single socket con-
nected to the core multiplexer. It is a SystemC module containing general arith-
metic functions. The primary communication is the SystemC blocking transport
interface (b transport) [13] and event synchronization to prevent possible race
conditions when interacting with other cores. Each core contains a main thread
which performs the actual computation.

Memory Module - Each core has its own on-chip memory to store its data.
This memory is assumed to be fast as SRAM, but small (up to 128 megabytes).
The memory can only be accessed by the four neighbouring cores similar to a
local scratchpad memory with explicitly managed address space. The off-chip
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memories on the edges of the checkerboard are larger (512 megabytes) but have
slower access (DRAM).

Core Demultiplexer Module - In order to communicate with the neighbours,
an addressing scheme for the checkerboard is required. The global address space
refers to the four off-chip memories on the outside and the local address space
refers to the small memories near the cores. The core demultiplexer routes ad-
dresses to the individual memories. It contains one socket to communicate with
the core and four sockets to connect to the adjacent memory multiplexers. The
core demultiplexer forwards b transport calls from the core after performing ad-
dress translation.

Memory Multiplexer Module - The memory multiplexer is connected to
a memory and to adjacent core demultiplexers. Its purpose is to forward b
transport calls from neighboring cores to its memory. The memory multiplexer
permits only one access at a time and performs arbitration. This allows to observe
memory contention. Algorithm 1 provides the algorithm of how the time spent
waiting for memory access is computed [14].

Algorithm 1: Maintaining busy state in b transport inside the core
multiplexer (bus access arbitration with FCFS policy)

initialization: busy until = 0;
busy = busy until - current timestamp;
if busy < 0 then

busy until = current timestamp;
busy = 0;

end
delay = multiplexer delay + busy;
d1 = delay;
socket->b transport(transaction, delay);
d2 = delay;
memory delay = d2 - d1;
busy until += memory delay ;

2.1 Modeling Interconnect Contention

To observe the contention in the traffic of memory transactions, we utilize timing
delays in the SystemC TLM-2.0 blocking transport interface inside our intercon-
nect. To ensure that only one transaction at a time uses each memory, the mem-
ory multiplexer stores its busy status in a state variable and delays competing
transactions accordingly.
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Fig. 2: Checkerboard GPC Cell.

As listed in Algorithm 1, we store a
timestamp marking the end of memory
occupation in a variable busy until

which we initialize to zero. When a
transaction arrives, we calculate the
remaining time left until the mem-
ory becomes available again. If busy

is negative, the transaction arrived at
an idle time and busy until is reset.

Before forwarding the transaction
to the memory (b transport), we up-
date the delay with the sum of the
multiplexer latency and the busy delay. The transaction then processes in the
memory. We observe the memory delay by taking the time before and after the
transaction and update the busy until state variable accordingly.

In summary, our interconnect modeling accurately performs arbitration with
first-come-first-serve policy and tracks the busy state of memory transactions.
Aware of contention, our model enables accurate observation of any congestion
in memory traffic.

3 Parallelized APNG Encoder Application

To test the performance of the checkerboard GPC, we need a suitable applica-
tion which can be run in parallel. We choose an Animated Portable Network
Graphics (APNG) encoder [15] which basically is a PNG encoder that concate-
nates generated PNG images with additional information such as the frame rate.
PNG encoders have two main components which perform the actual image com-
pression, the filters and the DEFLATE algorithm [16]. Filters are of five types
(None, Sub, Up, Avg, Paeth) and are used to reduce pixel values. The reduced
pixel values require less number of bits to transmit, providing some compres-
sion. The filtered values are sent in to the DEFLATE algorithm, which uses
a combination of Lempel–Ziv–Storer–Szymanski (LZSS) and Huffman encoding
to perform lossless compression. DEFLATE works better on values which are
highly correlated to each other, which filtering provides [17].

Our SystemC TLM-2.0 APNG encoder consists of eight modules, namely the
Color Splitter, Subtract Filter, Up Filter, Average Filter, Paeth Filter, Compara-
tor, Compressor and APNG Encoder. The Color Splitter separates input data
into individual color streams coming from the Stimulus of the encoder. The fil-
ters perform different mathematical computations which correlate pixel data,
improving the compression provided by DEFLATE. The Comparator chooses
the best filtered output to send to the Compressor. The Compressor uses DE-
FLATE to output a compressed row which is sent to the APNG Encoder module
and the Monitor which writes the compressed data to a file. The APNG Encoder
module generates additional information needed to create an APNG file which
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is written in the Monitor module. Our model performs the encoding row wise,
with parallel filters.

3.1 Backannotation of Delays

In order to evaluate performance, we need to reflect timing in the model. We
estimate the computation delay of the major APNG functions by measuring
their execution time on a reference platform. Since we are mainly interested in
the relative timing of major blocks in the application, we simply run the APNG
encoder on a computer (2.4 GHz CPU i5-1135G7) and measure the delays with
the gprof Linux profiler. The observed delays are listed in Table I. We note
that the filtering operations are most time-consuming in the encoder. Thus, we
parallelize the filters in our model. We back-annotate the measured computation
delays into the APNG SystemC model and scale them proportionally to the
image size.

Table 1: APNG computation delays

Module Name Total time Time per frame Time per pixel
Color Splitter 4s 0.133s 11ns
Subtract Filter 30s 1.000s 82ns

Up Filter 33s 1.100s 88ns
Average Filter 50s 1.667s 137ns
Paeth Filter 102s 3.400s 274ns
Comparator 8s 0.267s 21ns
Compressor 14s 0.467s 38ns

APNG Encoder 1s 0.033s 3ns

Every memory access by the
cores results in a communica-
tion delay. In reality, not every
memory access takes the same
amount of time as some accesses
will be to the cache and others
to the main memory. However,
we have not modeled caches in
our SMP and single core mod-
els. Therefore, for fairness purposes we consider every memory access and mul-
tiplexer switch to be 10ns uniformly, regardless of on-chip or off-chip memory.
This is still an effective measure of performance because the SMP models must
perform main memory accesses frequently so that they can communicate the
filtered rows to the other cores which use it, and caches are not of much use
here.

Another important metric is the contention time, which is how much time
each core spends waiting for access to the main memory, as described with
Algorithm 1.

4 Mapping APNG on the Checkerboard

To evaluate the effectiveness of the checkerboard architecture we map the APNG
encoder application on it. Since not all of the memories are available to each core,
it is sometimes necessary to forward data through cores. Forwarding increases the
communication time for each cell. To reduce the lost time incurred by forwarding,
it is better to use data by an adjacent core.

4.1 Checkerboard Mappings

Two checkerboard mappings have been implemented, a simpler initial mapping
where individual filtering on the three colors is performed on the same core, and
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an improved mapping which splits the colors between cores to filter. In the initial
mapping nine cores are involved in encoding with three cores forwarding data.
The improved mapping has every core utilized in APNG encoding.

Initial Checkerboard Mapping The main idea behind the initial mapping is
to avoid the use of excessive forwarding (Fig. 3 (a)). For instance, the Subtract
filter receives the red, green, and blue values from the Color Splitter. Next, it
performs the computation and sends both the filtered values and the unfiltered
values to the Up filter. The Up filter performs its own computation and sends the
filtered Sub, Up and unfiltered values to the Paeth filter. The Paeth filter then
computes the Paeth filtered output, and sends it to the Comparator while also
forwarding both outputs from the Up filter and Sub filter. The same process is
performed in the Average filter route. At the Comparator the least sum filtered
row is chosen and sent to the Compressor. The compressed output is forwarded
through neighboring cells to the right and written to the output file using the
monitor. It is also sent to the APNG Encoder module for APNG encoding and
forwards it to the second monitor thread.
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Fig. 3: (a) An initial checkerboard mapping which attempts to minimize commu-
nication between modules. (b) An improved checkerboard mapping which splits
the computational load more evenly.

Improved Checkerboard Mapping While the initial mapping works, it could
be further improved by splitting the filtering work of each core to three cores
with each core filtering a different color component (Fig. 3 (b)). This is because
some filters, such as the Paeth filter, take too much time to compute. Since there
are sixteen cores available, it is possible to map every core to one module. This
mapping is expected to be faster.

5 Experimental Results

We now compare five different SystemCmodels. The models are 1) Initial checker-
board (Fig. 3 (a)), 2) Improved checkerboard (Fig. 3 (b)), 3) Single core (Fig. 4
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(a)), 4) 8 core SMP (Fig. 4 (b)), and 5) 16 core SMP (Fig. 4 (c)). These models
are evaluated on the basis of their execution times and amount of contention.

5.1 Models for Comparison

For comparison, we implement a single core and also two SMP models in Sys-
temC. These models use a single memory with a memory multiplexer connecting
the cores to the memory. The single core model performs all computations in the
same core (Fig. 4 (a)). The shared memory models work similar to the checker-
board architecture, using the same communication functions to transfer pixel
data between cores, but have a greater amount of contention.

The SMP with 8 cores performs the filtering operation on the different color
channels in the same core (Fig. 4 (b)). Doubling the number of cores provides
a 16 core model in which the cores perform less work but communication is
increased per unit time leading to higher contention (Fig. 4 (c)).
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Fig. 4: Models for comparison, (a) single core architecture, (b) 8 core SMP where
threads run in parallel, (c) 16 core SMP with shared memory.

5.2 Measurement of Delays

To measure delays, we create global variables of type sc time called Computation
Time, Read Time, Write Time and Contention Time. These variables provide
an accurate value of how the time in each SystemC model is spent, and are
present in every model. The Computation Time (Comp Time) is the summa-
tion of time spent by every core on the times listed in Table I.

Read Time and Write Time keep track of the total time spent by the model
accessing the memory. Added together they reflect the Memory Access Time or
the MA Time.
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Lastly, the Contention Time (Cont Time) is the total time spent by every
core waiting to access the memory. This time can easily exceed the execution
time of the model if there are a lot of cores attempting to access the memory
at the same time, as each core will be waiting to access the memory and all of
these times add up to the Contention Time.

5.3 Simulated Time Results

With the three types of delays back-annotated, we obtain measurements on the
five SystemC models. Table II shows the variation in model timings as the clock
rate is gradually increased, thereby decreasing computation time per module and
increasing the frequency of memory access requests. The five SystemC models
are compared at different assumed processor clock rates. The clock rates have
been chosen to start at 0.25 GHz and are doubled up to 8 GHz in our simulation.

Table 2: Table for simulated timing results

Model Name Exec Time (Speedup) Comp Time MA Time Cont Time

Clock rate of 0.25 GHz

Single Core 714.617s (1x)

707.231s

4.619s 6.791s
SMP with 8 Cores 326.703s (1x) 18.518s 27.130s
SMP with 16 Cores 131.946s (1x) 18.525s 29.992s
Initial Checkerboard 334.866s (1x) 27.291s 1.388s

Improved Checkerboard 122.943s (1x) 28.296s 1.130s

Clock rate of 0.5 GHz

Single Core 361.818s (1.98x)

353.615s

4.619s 6.791s
SMP with 8 Cores 166.704s (1.96x) 18.518s 61.124s
SMP with 16 Cores 81.454s (1.62x) 18.525s 64.398s
Initial Checkerboard 174.859s (1.92x) 27.291s 0.699s

Improved Checkerboard 70.008s (1.76x) 28.296s 2.676s

Clock rate of 1 GHz

Single Core 185.419s (1.96x)

176.808s

4.619s 6.791s
SMP with 8 Cores 86.703s (1.92x) 18.518s 78.675s
SMP with 16 Cores 59.332s (1.38x) 18.525s 93.821s
Initial Checkerboard 94.855s (1.84x) 27.291s 0.354s

Improved Checkerboard 43.336s (1.63x) 28.296s 2.564s

Clock rate of 2 GHz

Single Core 97.219s (1.91x)

88.404s

4.619s 6.791s
SMP with 8 Cores 48.423s (1.81x) 18.518s 88.403s
SMP with 16 Cores 45.426s (1.31x) 18.525s 101.670s
Initial Checkerboard 54.853s (1.73x) 27.291s 0.182s

Improved Checkerboard 30.001s (1.43x) 28.296s 2.712s

Clock rate of 4 GHz

Single Core 53.119s (1.83x)

44.202s

4.619s 6.791s
SMP with 8 Cores 38.048s (1.26x) 18.518s 90.867s
SMP with 16 Cores 39.677s (1.13x) 18.525s 116.412s
Initial Checkerboard 34.852 (1.57x) 27.291s 0.096s

Improved Checkerboard 23.332 (1.31x) 28.296s 2.785s

Clock rate of 8 GHz

Single Core 31.069s (1.71x)

22.101s

4.619s 6.791s
SMP with 8 Cores 38.047s (1.00x) 18.518s 91.792s
SMP with 16 Cores 38.308s (1.03x) 18.528s 119.683s
Initial Checkerboard 24.852s (1.41x) 27.291s 0.053s

Improved Checkerboard 19.999s (1.17x) 28.296s 2.619s

An important assumption made intentionally is that no cache memory ex-
ists in any model. The reasoning for this is that we want to observe memory
contention directly, undisturbed by caching behaviour. In other words, for a fair
comparison we model all memories as fast and thus do not need caches.
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Table II shows the comparison of the three types of delays and the overall
execution time. Time spent in computation linearly reduces, but has limited
effect on the total execution time as the contention time goes up in every model,
to varying degrees. The increase in contention time is the reason why execution
times start to show less improvement.

Plotting the values from Table II provides insight on the change in execution
time as the clock rate is doubled (Fig. 5). For the single core model, it is seen
that the decrease in computation speed leads to great increase in speedup, until
a certain point where diminishing returns are observed. The shared memory
processors start off with low execution time, but they start to stagnate at around
4 GHz.

The Memory Access Time or MA Time varies for each of these models even
though the amount of pixels they process is the same. This is because simpler
models, like the single core model, need to access the memory only two times
(from the stimulus and to the monitor) when processing a row of pixel data.
Other models, like the checkerboard, need to pass on the data between adjacent
cores, which involves a lot more reading and writing from and to memories. The
SMP models need to access the main memory frequently, as almost every core
needs to access new data to continue data processing.

5.4 Observations and Comparison
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Fig. 5: APNG Encoder execution time scaling. Note
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The initial checkerboard
mapping starts with an
execution time similar to
the 8 core SMP model,
but quickly accelerates
as the clock rate is in-
creased. The improved
checkerboard is as fast
as the 16 core SMP
at low clock rates, but
is twice as fast when
the clock rate reaches
8 GHz. At low clock
rates, the limiting factor
is the number of cores,
and not the memory ac-
cess contention, whereas
at higher clock rates this
trend is reversed.

Fig. 6 shows the in-
crease in contention as the clock rate increases. This increases the rate at which
memory is accessed by the cores so that they can process more data, which
leads to a rise in contention time. For the single core model minimal contention
exists because the cores are accessing the memory along with the stimulus and
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monitor. The initial checkerboard mapping has a linear decrease in contention,

Fig. 6: Contention time scaling with increase in clock rate for the five SystemC
models.

but the improved checkerboard suffers from a slight increase. The reasoning for
the reduction in contention for the initial mapping is that when the clock rate
increases the shorter memory accesses appear to come first, and this leads to a
decrease in contention as shortest job first (SJF) reduces wait time. This does
not seem to be the case for the SMP models however, as they have a noticeable
increase in contention as the clock rate increases and the execution time starts
to stagnate. Therefore the checkerboard architecture is a good alternative to
shared memory processors as clock rate increases, its contention is much less.

6 Conclusion

The increase in processor speeds over the years has resulted in much faster com-
puters but this trend has been hampered due to slower memory speed increases.
The newly proposed checkerboard architecture is one possible way to mitigate
the effects of slower memory access speeds, as shown by our experimental results.

In future work, we aim to provide more accurate comparisons by also includ-
ing caches for our SMP models. Further, we would like to continue our modeling
by lowering the level of abstraction of our cores to instruction set simulators [18]
and mapping more applications to the GPC.
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In the longer term, we plan to address the programmability of the GPC archi-
tecture so that applications can be mapped to it automatically by an advanced
compiler.
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