
System Platform Exploration Lab

Visualizing Transaction-Level Modeling
Simulations of Deep Neural Networks

Nataniel Farzan, Emad Arasteh

FSE-TR-23-01
August 14, 2023

System Platform Exploration Lab
Dale E. and Sarah Ann Fowler School of Engineering

Chapman University
Orange, California, USA

{farzan,arasteh}@chapman.edu
www.chapman.edu/engineering

Visualizing Transaction-Level Modeling
Simulations of Deep Neural Networks

Nataniel Farzan, Emad Arasteh

FSE-TR-23-01
August 14, 2023

System Platform Exploration Lab
Dale E. and Sarah Ann Fowler School of Engineering

Chapman University

Abstract

The growing complexity of data-intensive software demands constant
innovation in computer hardware design. Performance is a critical fac-
tor in rapidly evolving applications such as artificial intelligence (AI).
Transaction-level modeling (TLM) is a valuable technique used to repre-
sent hardware and software behavior in a simulated environment. How-
ever, extracting actionable insights from TLM simulations is not a trivial
task. We present Netmemvisual, an interactive, cross-platform visual-
ization tool for exposing memory bottlenecks in TLM simulations. We
demonstrate how Netmemvisual helps system designers rapidly analyze
complex TLM simulations to find memory contention. We describe the
project’s current features, experimental results with two state-of-the-art
deep neural networks (DNNs), and planned future work.

Contents
1 Introduction 1

1.1 Deep Neural Networks (DNNs) for Computer Vision 2
1.2 Transaction Level Modeling (TLM) 4
1.3 Transaction Level Modeling of DNNs 4

2 Background 5
2.1 Computer Systems . 5

2.1.1 Processor . 5
2.1.2 Memory . 5
2.1.3 Systems Software . 6

2.2 Electronic System-level (ESL) Design 6
2.2.1 System-Level Design Languages 7

2.3 Memory Bottlenecks . 7

3 Simulation & Visualization 8
3.1 Visualization of Hardware-level Simulations 8
3.2 Visualization of System-level Simulations 9

4 Memory Contention Visualization 9
4.1 Requirements & Features . 10
4.2 System Overview . 10
4.3 Software Architecture . 11

4.3.1 Design Challenges . 12
4.4 Graphical User Interface (GUI) 13
4.5 Contention Visualization . 15

5 Results & Visualizations 15
5.1 Model Generation . 15
5.2 Simulation Setup . 15
5.3 Experiment Setup . 16
5.4 GoogLeNet Results . 16
5.5 Single Shot MultiBox Detector (SSD) Results 18

6 Conclusion 19
6.1 Future Work . 19

A Appendix 22
A.1 Netmemvisual Test Case . 22
A.2 Trace Log File Syntax . 22
A.3 Visualization Configuration File Syntax 23

ii

List of Figures
1 Transaction level modeling (TLM) simulation, visualization work-

flow . 2
2 GoogLeNet network with all the bells and whistles [29] 3
3 SSD network structure generated with Netron [24] 3
4 TLM-2.0 LT model interconnect with a single shared memory [4] 4
5 Nonuniform memory access (NUMA) diagram 6
6 Basic model of stacking memory contention from request 0 to 3 . 7
7 Netmemvisual timing diagram structure 10
8 Netmemvisual visualization workflow 11
9 UML class diagram of Netmemvisual 11
10 Netmemvisual graphical user interface (GUI) overview 13
11 Netmemvisual GUI: Modules panel 13
12 Netmemvisual GUI: Subplots panel 14
13 Netmemvisual GUI: Parameters panel 14
14 GoogLeNet timing diagram without contention (image #1/1) . . 16
15 GoogLeNet timing diagram with contention (image #1/1) 17
16 GoogLeNet timing diagram with contention (image #100/100) . 17
17 SSD ‘fc7’ timing diagram with contention (image #1/1) 18
18 GoogLeNet timing diagram waterfall with contention (image #1/1) 22

iii

List of Tables
1 Timing diagram legend . 15

iv

Listings
1 Truncated and annotated TLM simulation trace log file (SSD) . 22
2 Example JSON configuration file for SSD ‘fc7’ 24

v

Visualizing Transaction-Level Modeling
Simulations of Deep Neural Networks

N. Farzan, E. Arasteh
System Platform Exploration Lab

Dale E. and Sarah Ann Fowler School of Engineering
Chapman University

Orange, California, USA
{farzan,arasteh}@chapman.edu

Abstract
The growing complexity of data-intensive software demands constant innovation
in computer hardware design. Performance is a critical factor in rapidly evolv-
ing applications such as artificial intelligence (AI). Transaction-level modeling
(TLM) is a valuable technique used to represent hardware and software behav-
ior in a simulated environment. However, extracting actionable insights from
TLM simulations is not a trivial task. We present Netmemvisual, an interac-
tive, cross-platform visualization tool for exposing memory bottlenecks in TLM
simulations. We demonstrate how Netmemvisual helps system designers rapidly
analyze complex TLM simulations to find memory contention. We describe the
project’s current features, experimental results with two state-of-the-art deep
neural networks (DNNs), and planned future work.

1 Introduction
Developments in computer system design are fueled by the ever-increasing com-
plexity of software applications. System-level modeling strategies address the
challenges brought about by complex computer system design. Modeling, sim-
ulation, and verification are powerful techniques system designers use to tackle
the ever-increasing complexity of designing future computer systems.

The organization of main memory in a computer system can have significant
performance implications. Memory bottlenecks are further exacerbated by data-
intensive applications that require frequent data transactions to and from the
processor(s). Thus, is important to identify performance problems early in the
design process.

Data visualization is an effective method for presenting findings to a broader
audience. Various tools exist, both at the hardware and system level, for visu-
alizing simulated behavior and performance.

1

In this report, we present Netmemvisual, a visualization tool for plotting
timing diagrams of transaction-level modeling (TLM) simulations. Our tool
allows users to analyze memory accesses of deep neural networks (DNNs) at
the system level. The purpose of Netmemvisual is to aid in the system design
process by exposing memory contention at the transaction-level to the user.

The flowchart depicted in Figure 1 shows our proposed TLM simulation and
visualization workflow. A SystemC model of a DNN is simulated using a Sys-
temC simulator, which produces a trace log file containing transaction timings.
Netmemvisual (blue box) analyzes the trace log file and produces a timing dia-
gram of the simulated transactions for efficient design space exploration (DSE).
Moreover, Netmemvisual provides a user-friendly graphical user interface (GUI)
tailored to designing visualizations of DNNs.

Simulation Trace Log File

DNN Memory Visualizer
'Netmemvisual'

Timing Diagrams

DNN SystemC
TLM-2.0 model

SystemC
Simulator

Figure 1: Transaction level modeling (TLM) simulation, visualization workflow

Section 1 briefly introduces deep neural networks (DNNs), the importance
of transaction-level modeling (TLM), and TLM modeling of DNNs for efficient
hardware/software co-design. In Section 2, we provide background knowledge
on computer systems, electronic system-level (ESL) design, and the memory
bottleneck problem. Related works and industry tools for simulation and visu-
alization are discussed in Section 3. In Section 4, we describe Netmemvisual’s
design and feature set. Experimental results and analysis are presented in Sec-
tion 5. We describe planned future work in Section 6.

1.1 Deep Neural Networks (DNNs) for Computer Vision
Large neural networks with many hidden layers are known as deep neural net-
works (DNNs). Increasing the depth of a network is a common strategy for
improving accuracy. However, as the complexity of a network increases, compu-
tational resource requirements also increase [29]. Optimizing DNN performance

2

is essential when developing an efficient state-of-the-art DNN [29]. Additionally,
targeting resource-constrained systems such as embedded computing devices
further amplifies these design challenges [29].

Convolutional neural networks (CNNs) are a class of neural networks often
used in the computer vision field. Common applications of CNNs include image
classification and object detection [12]. Image classification is the identification
of the main subject in an image based on a set of predefined classes, while object
detection involves identifying one or more objects in an image and drawing a
bounding box around the object(s) [12].

GoogLeNet and Single Shot MultiBox Detector (SSD) are two state-of-the-
art deep CNNs used for advanced computer vision applications. GoogLeNet
has proven to be a competitive network for accurate image classification [29].
When counting all the individual layers in the network, including those that
constitute the 9 ‘inception’ sections, GoogLeNet contains 142 distinct layers
[4]. The most common layer types in the network include convolution, pooling,
and concatenation layers. These inceptions serve to increase the depth of the
network with a network in network (NIN) architecture [29] that does not increase
computational complexity [12]. Figure 2 shows the structure of GoogLeNet.

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

Figure 2: GoogLeNet network with all the bells and whistles [29]

Single Shot MultiBox Detector (SSD) is used for real-time object detection
where it has been shown to outperform similar networks in both speed and
accuracy [14]. The SSD network consists of 101 distinct layers, including con-
volution, flatten, and permute layers [5]. Figure 3 shows the structure of SSD.

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

1
×
3
×
3
0
0
×
3
0
0

d
a
ta

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

P
o
o
lin
g

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

P
o
o
lin
g

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

P
o
o
lin
g

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

P
o
o
lin
g

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

P
o
o
lin
g

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

C
o
n
vo
lu
tio
n

R
e
LU

N
o
rm

a
lize

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

C
o
n
vo
lu
tio
n

P
e
rm

u
te

Fla
tte

n

P
rio

rB
o
x

C
o
n
ca
t

C
o
n
ca
t

C
o
n
ca
t

R
e
sh
a
p
e

S
o
ftm

a
x

Fla
tte

n

D
e
te
ctio

n
O
u
tp
u
t

Figure 3: SSD network structure generated with Netron [24]

3

1.2 Transaction Level Modeling (TLM)
Transaction level modeling (TLM) aims to address the issue of hardware/soft-
ware co-design. TLM allows for modeling, simulation, and verification early in
the design process. System designers are able to quickly and cheaply simulate
computer hardware and analyze application behavior. Compared to common
application-level performance profiling tools, TLM simulation dips to a lower
level of abstraction, which ultimately translates to much more accurate system
description and analysis.

Different transaction-level models can be used to represent various abstrac-
tion levels, where there is an inverse relationship between simulation speed and
accuracy [5]. TLM-1 allows for the modeling of basic communication between
components via channels, whereas TLM-2.0 supports more accurate models with
memory mapping techniques [5].

Virtual prototyping refers to the modeling and testing of hardware before
it is actually produced [8]. This approach to product design is particularly
useful in industries where physical prototypes are expensive to produce, such
as computer hardware. TLM enables system-level virtual prototyping where
system designers can experiment with various hardware and software designs in
a simulated environment [1].

Work has also been done to automatically generate transaction-level models
from abstract design descriptions [22] [4]. This makes it possible to rapidly
prototype system designs in an accurate and user-friendly manner.

1.3 Transaction Level Modeling of DNNs
As briefly mentioned in Section 1.2, several TLM simulation coding styles ex-
ist, each at their own abstraction level. A loosely-timed (LT) model translates
to a relatively fast simulation that reveals basic process ordering in a system.
Approximately-timed (AT) models process timing information more accurately,
but usually with significantly slower simulation. Another approach, loosely-
timed contention-aware (LT-CA) modeling, redefines the established speed-
accuracy trade-off with both the fast simulation speed of LT and the accurate
memory contention of AT [4].

Figure 4: TLM-2.0 LT model interconnect with a single shared memory [4]

4

One possible TLM design of a neural network models each DNN layer as a
processor, which corresponds to a SystemC module. An example of this strategy
is shown in Figure 4. Each module has a TLM-2.0 initiator socket that connects
to a target socket on a global interconnect. The interconnect connects to shared
memory, which stores the input and output data required for processing each
layer [4].

2 Background
This section provides a brief background on computer system components,
system-level modeling, and the design challenges presented by memory bot-
tlenecks.

2.1 Computer Systems
There are several essential hardware components and operating principles that
are shared by virtually all computers. In order to study their behavior and
design, we must first understand how these components have evolved to interact
with one another.

2.1.1 Processor

A computer’s processor is responsible for executing program instructions. Over
the past couple decades, computers have evolved from housing just a single
processing unit to multiple processors (‘cores’) in a single integrated circuit
(IC). This enables parallel processing and better multithreading performance
[21]. Designing complex multi-core and many-core processors, and software
that takes full advantage of their capabilities, brings many challenges.

2.1.2 Memory

Program instructions and associated data are stored in memory, which is acces-
sible to the processor. The processor can access memory through a read or write
operation. Different technologies exist on a memory hierarchy, where there is a
trade-off between access time and storage size. Instructions and data may be
stored in cache memory or in main memory [21].

Multi-core systems commonly feature a shared memory multiprocessor (SMP)
design, where all cores share the same main memory. When designing com-
plex multi-core systems, there are two common approaches for sharing a single
address space. SMP architectures can be implemented with either a uniform
memory access (UMA) or nonuniform memory access (NUMA) strategy. The
former approach means that all processors share the same access time to all
main memory space. The latter takes a more nuanced approach in which access
times for a section of memory can vary greatly depending on which processor
initiates the request. Systems with multiple processors and memory channels
often utilize a NUMA approach in which a processor requesting access to its

5

local memory is faster than accessing memory local to another processor [21].
These shared memory architectures bring challenges in designing performant
software that utilizes memory in an optimal fashion.

Figure 5 depicts a NUMA memory organization strategy in which ‘Processor
0’ can access its local main memory (purple path) and main memory local to
another processor (orange path). There is higher latency with the non-local
memory access because ‘Processor 0’ has to access ‘Main Memory 1’ through
the memory controller on ‘Processor 1’.

Main Memory 1

Processor 0 Processor 1

Main Memory 0

Figure 5: Nonuniform memory access (NUMA) diagram

2.1.3 Systems Software

Among the various abstraction levels in computer hardware and software, sys-
tems software lies above the hardware and below the applications software [21].
The implementation of systems software has an effect on overall system per-
formance. Software can be examined at various abstraction levels, from data
structures and algorithms implemented in source code to the machine code
generated by the compiler infrastructure [21]. There are many approaches for
improving software performance, including data level parallelism, instruction
level parallelism, memory hierarchy optimization, and thread level parallelism
[21].

2.2 Electronic System-level (ESL) Design
In the early days of computer design, hardware and software components were
designed independently [9]. However, over the past several decades, the com-
plexity of computer hardware has increased exponentially. According to Gordon
Moore’s 1965 predictions, later known as Moore’s Law, the number of transis-
tors on a chip has doubled roughly every 18 months [19]. The field of system
design emerged to meet this drastic increase in design complexity.

System designers use techniques such as modeling, simulation, and verifica-
tion [9]. These approaches represent a higher level of abstraction, where system
models can be iterated upon using the specify-explore-refine methodology [9].

6

2.2.1 System-Level Design Languages

A System-Level Design Language (SLDL) is used to formally specify hardware
and software structure and behavior in a system.

SpecC is a superset of ANSI-C which separates computation and communi-
cation logic for a turnkey system-level description solution. A SpecC program
consists of a set of behaviors, channels, and interfaces. Given that the SpecC
language is an extension of ANSI-C, existing C programs do not require a full
rewrite to take advantage of system-level design principles [10].

SystemC is the IEEE standard SLDL, making it a good choice for standards-
compliant system design, modeling, and verification [1]. The language is im-
plemented as a C++ class library, meaning existing code can be augmented to
benefit from system-level design principles. The reference implementation of the
SystemC class library [3] includes a simulation kernel for running transaction-
level modeling (TLM) simulations.

2.3 Memory Bottlenecks
A memory bottleneck occurs when a more than one processor (‘core’) attempts
to access memory (read or write) at the same time. The result is inefficiency in
a program in which one or more processors sit(s) idle while another finishes its
task(s). This ultimately leads to wasted time and power. Therefore, one of the
goals of performant software is minimizing memory bottlenecks.

MAIN

MEMORY

CORE 0 CORE 1

CORE 2 CORE 3

0123

NO CONTENTIONHIGH CONTENTION

Figure 6: Basic model of stacking memory contention from request 0 to 3

Memory contention describes the amount of time a core must wait before
accessing memory. A rudimentary model of stacking memory contention is
depicted in Figure 6. In this example, four cores send simultaneous requests to
access shared memory. For the sake of simplicity, we will assume that core 0 sent
request 0, core 1 sent request 1, and so on. The result is memory contention
stacking between each request. Request 0 experiences no contention and is
able to access memory immediately, while request 3 experiences high contention
as it waits for all of the previous requests to finish. This bottleneck may be
further exacerbated depending on the significance of each memory access to the
current software application. If the process that core 0 is working on relies
on the completion of core 3’s task to proceed, part of the system may sit idle
for a significant amount of time. Of course, actual simulated behavior is more

7

complex and nuanced, but the underlying principles from this simple example
still apply.

Various hardware and software strategies can be used to alleviate memory
bottlenecks. In the case of software prefetching, the system attempts to pre-
dict areas of memory that will be needed by a future computation [21]. This
can reduce the number of concurrent memory access requests, thereby reducing
memory bottlenecks. Another approach, known as memory affinity, involves a
NUMA arrangement where data is organized with the intent to maximize local
memory accesses. [21]. Despite these mitigation strategies, the elimination of
memory bottlenecks still presents a grand challenges in computer system design.
Furthermore, the early detection of memory performance problems is valuable
in the system design life cycle.

3 Simulation & Visualization
Visualization is a powerful tool used in a wide variety of disciplines. In the
context of scientific research, visualization provides two unique benefits: pre-
sentation and exploration [31]. Presentation allows complex information to be
shared in a digestible manner. For example, a graph might condense hundreds
or thousands of rows in a spreadsheet into one simple figure that clearly displays
a trend in the data.

Exploration enables researchers to examine their findings from different per-
spectives to gain new insights. Good visualizations communicate complex in-
formation in an efficient manner [31]. They provide a layer of abstraction above
the raw data to aid in the interpretation of the information.

3.1 Visualization of Hardware-level Simulations
In this section, we provide a brief overview of visualization tools that exist for
hardware-level simulation.

Computers have grown exponentially in complexity over the past several
decades [19]. Various tools for designing computer hardware have been devel-
oped to meet this demand. As a result, there exists a hierarchy of abstraction
levels in the hardware design space [13]. This systematic approach exposes only
the most relevant design details at each phase in the process.

Individual transistors are considered at the transistor level, while groups of
transistors that form logic gates are used at the gate level [13]. These tech-
niques alone are can be used to construct very simple digital circuits. For com-
plex microprocessors, however, higher level design tools are necessary. At the
register-transfer level, system designers consider where data is stored and trans-
ported between areas known as registers [13]. At the behavioral level, hardware
description languages (HDLs) such as Verilog and VHDL are used to define the
circuit’s high-level operating behavior [13].

A common form of visualization used in the hardware design field is the
waveform viewer [13]. Waveform visualizers plot analog or digital signals over

8

time, allowing for extremely low level analysis of a system. GTKWave is an
open-source tool for viewing HDL simulations in various formats [2]. There is
also a wide range of commercial simulation waveform visualizer tools such as
Verdi from Synopsys [28], the Questa Visualizer from Siemens [25], and Virisium
Debug from Cadance [7].

3.2 Visualization of System-level Simulations
This section briefly describes some of the existing system-level simulation and
visualization tools that are related to our work.

The proliferation of several computer system architectures has brought about
the development of architecture simulators such as gem5 [15]. The gem5 simu-
lator can simulate various computer architectures as well as other common com-
ponents such as memory [15]. Using the gem5 simulation engine, applications
and operating systems interact with simulated hardware to provide statistics at
the cycle level [15].

There has been development towards improving interoperability between
the gem5 simulator and SystemC transaction-level models [18]. This allows
gem5 simulations to utilize external TLM modules such as DRAMSys to provide
enhanced design space exploration opportunities [26].

The SycView project provides timing diagram visualization and performance
statistics for loosely-timed SystemC simulations [6]. Key simulation events are
recorded in a trace file which is then loaded into a graphical visualization tool
to display a timing diagram of all the events and platform statistics [6].

Impulse VP includes a SystemC TLM-2.0 debugger and transaction flow
visualizer that supports various views and plot types [30]. It reads SystemC
transaction traces from a CSV-like database file for analysis and visualization
[30].

Visualization tools exist for virtual prototyping [27], examining memory
behavior [26], and signal analysis [16]. However, to the best of our knowl-
edge, we are not aware of any software built specifically for visualization at the
transaction-level that is focused on memory contention in deep neural networks.

4 Memory Contention Visualization
Given the growing complexity of deep neural networks, and their prevalence
on resource-constrained systems, evaluating performance is a necessary step in
the design process. Memory contention visualization is useful for identifying
performance bottlenecks in a system. Our tool, Netmemvisual, enables memory
contention visualization at the system level.

Figure 7 displays the general structure of timing diagrams generated by Net-
memvisual. Each module (purple) represents a layer in the deep neural network.
Modules are arranged into horizontal collections called tracks (blue). Ideally,
these module operations occur in sequence, as they will be plotted one after
another in respect to the horizontal axis (simulated time). A subplot (green)

9

groups one or more related tracks together along the vertical axis. A collection
of one or more subplots can be plotted as a timing diagram (grey). Divid-
ing groups of tracks into many subplots may be necessary for long simulations,
where each subplot represents a small portion of the total simulated time.

Timing Diagram

Subplot

Track Module

Figure 7: Netmemvisual timing diagram structure

4.1 Requirements & Features
The goal of Netmemvisual is to aid in the analysis of DNN performance by ex-
posing memory bottlenecks. Our tool allows system designers to easily identify
performance bottlenecks early in the design process. We intend to aid in the
system platform exploration workflow in which different design approaches can
be quickly evaluated and iterated upon.

Netmemvisual supports a command-line interface (CLI) and a graphical user
interface (GUI). The CLI can be used for quick timing diagram generation and
automated batch processing. The GUI presents a more user-friendly interface
intended for exploring visualization techniques and configurations. The GUI al-
lows the user generate a timing diagram based on the currently specified param-
eters and optionally export a JSON configuration file for future use. Previously
saved configuration files can be imported for further editing.

4.2 System Overview
First, the user supplies a simulation trace log file. The log file is parsed to
display a list of modules to the user. The user arranges these modules into
tracks and subplots using the graphical user interface. The configuration file
is parsed to determine the layout of the timing diagrams as well as various
simulation parameters. Finally, a timing diagram of the simulation is generated

10

using the user-specified configuration and it is displayed to the user. Figure 8
shows a block diagram of this workflow.

Graphical User
Interface

Configuration
File Parser

Visualization
Configuration File

Simulation Trace
Log File

Timing
Diagram

Timing Diagram
Generator

Trace File
Parser

Figure 8: Netmemvisual visualization workflow

4.3 Software Architecture
This section describes the software architecture of Netmemvisual. We provide
a class diagram and a brief description about the purpose of each class.

Class diagrams are useful for determining the high-level structure and func-
tions of classes in a software project. The Unified Modeling Language (UML) is
the ISO standard for visual modeling applications [20]. Figure 9 shows a UML
class diagram of Netmemvisual.

Module

+ name: str
+ num_reads: int
+ num_writes: int

+ plot(string, int, AxesSubplot, dict)

OperationList

+ reads: list[Operation]
+ computes: list[Computation]
+ writes: list[Operation]

Operation

+ start: int
+ contention: int
+ length: int

Computation

+ length: int

TracePlot

+ log: Log
+ config: Config
+ verbose: bool
+ operations: OrderedDict{string: Module}

+ init_modules()
+ parse_log()
+ append_operation(str, str, Operation)
+ draw()

+ operations

NetmemvisualGUI

+ root: tkinter.Tk
+ frame: tkinter.ttk.Frame

+ create_subplot()
+ create_module_param()
+ clear_module_selection()
+ clear_widget(tkinter.Widget)
+ load_log_file()
+ load_config_file()
+ export_config()
+ unwrap_config()
+ display_graph()

Track

+ frame: tkinter.Frame
+ title: tkinter.StringVar
+ modules: list[str]
+ container: Container

+ get_data(): dict{str: list[str]}
+ remove()

+ subplots

+ module_params

ModuleParameter

+ frame: tkinter.Frame
+ name: str
+ num_reads: tkinter.IntVar
+ num_writes: tkinter.IntVar
+ container: Container

+ set_params(int, int)
+ get_data(): dict{str: list[int]}
+ remove()

Subplot

+ num: int
+ frame: tkinter.Frame
+ title: tkinter.StringVar
+ module_list: tkinter.Listbox
+ container: Container

+ add_track()
+ get_data(): dict
+ remove()

+tracks

Container

+ components: list[object]

+ add(object)
+ remove(object)

NamedTuple

NetmemvisualUI

+ ui

+ modules

ModulesPanel

+ frame: tkinter.Frame
+ list: tkinter.Listbox
+ scrollbar: tkinter.Scrollbar

SubplotsPanel

+ frame: tkinter.Frame
+ notebook: tkinter.ttk.Notebook

+ subplots

ParametersPanel

+ frame: tkinter.Frame
+ display: tkinter.LabelFrame
+ data: tkinter.LabelFrame
+ modules: tkinter.LabelFrame

+ parameters

Log

+ content: str

+ get_module_names(): list[str]
+ get_operations(bool): list[tuple]
+ get_computations(): list[tuple]

Config

+ content: OrderedDict

+ parse(str): OrderedDict
+ init_cfg(): OrderedDict
+ get_subplot_names(): list[str]
+ update_section(str, dict)
+ remove_subplot(str)
+ override(dict)
+ export(str)

+ log

+ config

Figure 9: UML class diagram of Netmemvisual

The purpose of each class in the UML class diagram is briefly summarized
below.

• TracePlot: Backend for tracing log files and plotting timing diagrams

• Log: Represents a simulation trace log file

• Config: Represents a timing diagram visualization configuration

• Module: Stores timing data and parameters for each module found in the
log file

11

• OperationsList: Stores a list of memory accesses (reads and writes) and
processor computations for a given module

• Operation: Stores starting times and lengths of memory accesses as well
as the amount of contention experienced (if enabled)

• Computation: Stores the length of processor computations

• NetmemvisualGUI: Responsible for presenting a graphical interface to the
user

• NetmemvisualUI: Organizes the various user interface panels

• ModulesPanel: Organizes the user interface widgets in the modules panel

• SubplotsPanel: Organizes the user interface widgets in the subplots panel

• Parameters: Organizes the user interface widgets in the parameters panel

• Container: A wrapper class to interact with the tkinter application pro-
gramming interface (API)

• Subplot: Stores a collection of Track objects

• Track: Groups sequential modules together

• ModuleParameter: Specifies the number of memory reads and writes per
image for a module

Both the command-line interface (CLI) and graphical user interface (GUI)
versions of the tool share the same backend (TracePlot) for timing diagram gen-
eration. The Netmemvisual GUI relies on the tkinter module, which provides
a Python interface to the cross-platform Tcl/Tk GUI toolkit [23]. We use the
matplotlib visualization library to display timing diagrams [17]. The library
supports a wide variety of configuration options, which allows us to experiment
with various visualization styles and techniques.

4.3.1 Design Challenges

This section describes some of the software design challenges we encountered
while developing Netmemvisual.

Interacting with the tkinter application programming interface (API) brought
about difficulties in properly managing application state. Specifically, we had
trouble ensuring that when graphical widgets were destroyed, their underlying
application data was also disposed of. This caused discrepancies between what
was displayed to the user and the internal visualization configuration that was
stored in the application and later exported. We implemented the ‘Compos-
ite’ design pattern, which was created to address issues where both individual
objects and compositions of objects must be treated the same externally [11].

12

4.4 Graphical User Interface (GUI)
The graphical user interface (GUI) provides a user-friendly and approachable
interface for interacting with Netmemvisual. The GUI consists of three distinct
panels for configuring visualizations: (1) Modules, (2) Subplots, (3) Parameters.

Figure 10: Netmemvisual graphical user interface (GUI) overview

Once a simulation trace log file has been loaded into the GUI, the ‘Modules’
panel populates with a list of all modules found in the log file. One or more
modules can be selected at a time to be used in the next panel.

Figure 11: Netmemvisual GUI: Modules panel

The ‘Subplots’ panel is used to configure the arrangement of the selected
modules in the diagram. Once the desired module(s) are selected in the ‘Mod-
ules’ panel, they can be added to a new track in the ‘Subplots’ panel. Each
subplot is displayed in its own tab for easy navigation.

The ‘Parameters’ panel contains three subpanels: (1) Display, (2) Simula-
tion, (3) Module Reads & Writes Per Image. The first section specifies the
image number to display and the maximum number of subplot rows that will

13

Figure 12: Netmemvisual GUI: Subplots panel

be used before a new column is created. The second section allows the user to
configure simulation parameters such as contention-aware modeling and mem-
ory latency parameters. The third section is used to specify the number of reads
(inputs) and writes (outputs) per image for a given module. Modules that are
not configured here will have a default of 1 read and 1 write per image.

Figure 13: Netmemvisual GUI: Parameters panel

A visualization based on the current configuration can be previewed through-
out the diagram building process. The configuration can be exported as a JSON
file for future use. An existing configuration file can also be loaded into the GUI
for further editing.

14

4.5 Contention Visualization
We run TLM simulations in the loosely-timed (LT) style, which can be use-
ful for determining relative module timing and ordering. However, without
memory contention information, the visualization does not convey the net-
work’s simulated performance. In order to gain a more detailed understand-
ing of a DNN’s performance bottlenecks, we must simulate detailed TLM-2.0
approximately-timed or cycle-accurate RTL. Alternatively, we can use the TLM-
2.0 loosely-timed contention-aware (LT-CA) modeling style for simulation speed
similar to loosely-timed (LT) models, and the memory contention accuracy of
approximately-timed (AT) models [4]. These simulations model hardware/soft-
ware interactions much more accurately and can be used to identify memory
bottlenecks.

Table 1 defines the colors used to represent various TLM operations in the
following timing diagrams. Memory contention is only plotted if the simulation
supports it. Simulated time in milliseconds (ms) is plotted along horizontal axis,
while module tracks are plotted on the vertical axis.

Operation Type Color
Memory read light green
Processor computation dark green
Memory write blue
Memory contention red

Table 1: Timing diagram legend

5 Results & Visualizations
In this section, we present experimental results for Netmemvisual. We provide
platform setup information and visualizations of two state-of-the-art deep neural
networks. We also provide some analysis of the generated timing diagrams.

5.1 Model Generation
We utilize Netspec [4], a tool for automatically generating SystemC code for
DNNs built with the Caffe deep learning framework. Netspec allows us to
quickly generate TLM simulations with a variety of different parameters for
testing with Netmemvisual. However, Netmemvisual is designed to accept trace
log files with a relatively generic syntax, which is not exclusive to SystemC
models generated by Netspec.

5.2 Simulation Setup
We use SystemC 2.3.4-Accellera for model simulation and OpenCV 3.4.1 for
high performance computer vision functions.

15

5.3 Experiment Setup
We explore visualization techniques by running several simulations of two dif-
ferent networks with varying parameters. We visualize different sections of the
network with a focus on areas with high parallelism. Results are validated by
confirming the generated timing diagrams reflect the intended transactions in
the trace log files.

5.4 GoogLeNet Results
The structure of the GoogLeNet network is quite complex, meaning there are
quite a few areas of interest for performance analysis. The parts of the network
we choose to study are those with high degrees of parallelism, as these sections
are likely to encounter high levels of memory contention as a result. There are
nine portions of the network, known as ‘inceptions’, in which several modules
work in parallel. This can be seen in Figure 2 where the network is three
to four modules wide. These inceptions happen sequentially (‘inception_3a’,
‘inception_3b’, ‘inception_4a’, ‘inception_4b’, etc.), with some processing that
happens in between each inception that is not included in our diagrams.

3.40 3.45 3.50 3.55 3.60 3.65 3.70
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3a

3.9 4.0 4.1 4.2 4.3 4.4
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3b

4.74 4.76 4.78 4.80 4.82 4.84 4.86
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4a

4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4b

5.150 5.175 5.200 5.225 5.250 5.275 5.300 5.325
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4c

5.40 5.45 5.50 5.55 5.60
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4d

5.70 5.75 5.80 5.85 5.90
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4e

6.07 6.08 6.09 6.10 6.11 6.12 6.13
Simulated time (ms)

pool

5x5

3x3

1x1

inception_5a

6.16 6.18 6.20 6.22 6.24
Simulated time (ms)

pool

5x5

3x3

1x1

inception_5b
Read
Compute
Write

Figure 14: GoogLeNet timing diagram without contention (image #1/1)

A timing diagram of a GoogLeNet TLM-2.0 LT simulation that does not
model memory contention is shown in Figure 14. Without contention data,
our visualization does not show where the network experiences performance
bottlenecks. However, contention-aware TLM visualizations reveal the extensive
memory contention experienced in the highly parallel inceptions of this network.

A contention-aware TLM simulation of GoogLeNet (TLM-2.0 LT-CA), de-
picted in Figure 15, shows a much more accurate representation of its perfor-
mance. This diagram reveals that every track experiences a significant amount
of memory contention. A clear trend across all nine of the plotted inceptions is

16

5.2 5.4 5.6 5.8 6.0 6.2
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3a

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3b

8.5 8.6 8.7 8.8 8.9
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4a

9.1 9.2 9.3 9.4 9.5 9.6
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4b

9.7 9.8 9.9 10.0 10.1 10.2
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4c

10.4 10.5 10.6 10.7 10.8 10.9
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4d

11.1 11.2 11.3 11.4 11.5 11.6 11.7
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4e

11.975 12.000 12.025 12.050 12.075 12.100 12.125 12.150 12.175
Simulated time (ms)

pool

5x5

3x3

1x1

inception_5a

12.25 12.30 12.35 12.40 12.45
Simulated time (ms)

pool

5x5

3x3

1x1

inception_5b
Read
Compute
Write
Contention

Figure 15: GoogLeNet timing diagram with contention (image #1/1)

stacking memory contention at the start of the subplot. Due to the underlying
SystemC implementation of the network, track ‘1x1’ always starts its memory
read first, followed by ‘3x3’, ‘5x5’, and ‘pool’.

1110 1115 1120 1125 1130 1135
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3a

1142 1144 1146 1148 1150
Simulated time (ms)

pool

5x5

3x3

1x1

inception_3b

1157 1158 1159 1160 1161 1162 1163
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4a

1167 1168 1169 1170 1171
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4b

1174.5 1175.0 1175.5 1176.0 1176.5 1177.0 1177.5 1178.0 1178.5
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4c

1181.0 1181.5 1182.0 1182.5 1183.0 1183.5
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4d

1185.25 1185.50 1185.75 1186.00 1186.25 1186.50 1186.75 1187.00 1187.25
Simulated time (ms)

pool

5x5

3x3

1x1

inception_4e

1188.5 1188.6 1188.7 1188.8 1188.9 1189.0 1189.1 1189.2
Simulated time (ms)

pool

5x5

3x3

1x1

inception_5a

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Simulated time (ms) +1.189e3

pool

5x5

3x3

1x1

inception_5b
Read
Compute
Write
Contention

Figure 16: GoogLeNet timing diagram with contention (image #100/100)

Figures 14 and 15 are visualizations of GoogLeNet processing one image.
Simulations of many images help us understand the long-term behavior charac-
teristics of a DNN. Figure 16 is a timing diagram of the last image processed in
a sequence of 100 images. By this point in the simulation, the model is experi-
encing extremely high levels of memory contention. Due to the high amounts of
memory contention, it is difficult to see many of the read, compute, and write

17

operations in the diagram. A unique feature of this diagram is the presence
of several empty gaps between operations. More investigation is necessary to
determine the cause of these gaps.

The critical path of a network is important to consider when evaluating
performance. In our timing diagrams of GoogLeNet, the critical path of every
inception is the longest horizontal bar on each subplot. This is significant be-
cause it is this track that the rest of the system must wait on before finishing
the inception. If a track becomes the critical path because of severe memory
contention, that might signal to system designers where performance should be
optimized.

5.5 Single Shot MultiBox Detector (SSD) Results
Using Netspec, we generate SystemC model files for SSD and simulate object
detection. We present our visualization result for an interesting part of the
network in which several modules execute in parallel.

86.2 86.4 86.6 86.8 87.0 87.2 87.4
Simulated time (ms)

mbox_priorbox

mbox_conf

mbox_loc

conv6

fc7

Read
Compute
Write
Contention

Figure 17: SSD ‘fc7’ timing diagram with contention (image #1/1)

The section of the network shown in Figure 17 is titled ‘fc7’. Our visualiza-
tion reveals that SSD experiences significant memory contention in this part of
the network. A notable feature of this timing diagram is the cascade of mem-
ory read start times as we look down the diagram. The first track, ‘conv6’
starts a memory read immediately. The second track, ‘mbox_loc’ must wait
until ‘conv6’ finishes accessing memory before it can start its read. This trend
continues with each subsequent track in ‘fc7’, meaning that ‘mbox_priorbox’
experiences the most memory contention before its first memory read. This
memory contention pattern seems to reflect the basic memory contention stack-
ing principle described in Figure 6.

18

6 Conclusion
The ever-growing complexity of hardware and software drives the need for ad-
vanced system-level modeling and analysis. Accurate deep neural networks
(DNNs) require significant computational resources and memory bandwidth.
Resource-constrained platforms, such as embedded systems, present many chal-
lenges when designing complex computer systems.

Various transaction-level modeling (TLM) styles have been developed to
model and simulate hardware at different abstraction levels. TLM enables sys-
tem platform exploration and the identification of memory bottlenecks early in
the design process.

Netmemvisual is a visualization tool for plotting timing diagrams of loosely-
timed TLM simulations. It supports a command-line interface (CLI) for quick
visualizations and a graphical user interface (GUI) to help users configure tim-
ing diagrams. Netmemvisual is useful for quickly evaluating performance bot-
tlenecks such as excessive memory contention. This information can be used
during the computer system design and optimization process.

We study two state-of-the-art neural networks for memory contention visu-
alization: (1) GoogLeNet and (2) Single Shot MultiBox Detector. Experimental
results show significant amounts of memory contention in these two deep con-
volutional neural networks.

6.1 Future Work
In the future, we plan to run more experiments with different DNNs for con-
tention visualization and performance analysis. In addition, we would like to
expand Netmemvisual’s functionality using automation and statistical analysis
with the goal of creating a TLM simulation performance profiler.

References
[1] Ieee standard for standard systemc language reference manual. IEEE Std

1666-2011 (Revision of IEEE Std 1666-2005), pages 1–638, 2012.

[2] GTKWave. https://github.com/gtkwave/gtkwave, 2023.

[3] Accellera Systems Initiative. Systemc reference implementation. https:
//github.com/accellera-official/systemc, 2023.

[4] Emad M. Arasteh and Rainer Dömer. Fast loosely-timed deep neural net-
work models with accurate memory contention. ACM Trans. Embed. Com-
put. Syst., July 2023.

[5] Emad Malekzadeh Arasteh. Transaction-Level Modeling of Deep Neural
Networks for Efficient Parallelism and Memory Accuracy. Ph.D. Disserta-
tion, UC Irvine, Irvine, CA, USA, 2022.

19

[6] Denis Becker, Matthieu Moy, and Jérôme Cornet. SycView: Visualize and
Profile SystemC Simulations. In 3rd Workshop on Design Automation for
Understanding Hardware Designs, DUHDe 2016, Dresden, Germany, Mar
2016.

[7] Cadence Design Systems, Inc. Verisium debug. https://www.cadence.com/
en_US/home/tools/system-design-and-verification/ai-driven-verification/
verisium-debug.html, 2023.

[8] S.H. Choi and A.M.M. Chan. A virtual prototyping system for rapid prod-
uct development. Computer-Aided Design, 36(5):401–412, 2004.

[9] Daniel Gajski, Andreas Gerstlauer, Samar Abdi, and Gunar Schirner. Em-
bedded System Design: Modeling, Synthesis and Verification. Springer US,
09 2009.

[10] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and
Shuqing Zhao. SpecC: Specification Language and Design Methodology.
Kluwer, 2000.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Pearson Education, 1994.

[12] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy,
Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan
Chen. Recent advances in convolutional neural networks. Pattern Recog-
nition, 77:354–377, 2018.

[13] E.O. Hwang. Digital Logic and Microprocessor Design with VHDL. Elec-
trical engineering handbook series. Thomson/Nelson, 2006.

[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot Multi-
Box detector. In Computer Vision – ECCV 2016, pages 21–37. Springer
International Publishing, 2016.

[15] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian,
Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad
Beckmann, Srikant Bharadwaj, et al. The gem5 simulator: Version 20.0+,
2020.

[16] MathWorks. Signal analyzer. https://www.mathworks.com/help/signal/ref/
signalanalyzer-app.html, 2023.

[17] Matplotlib. Matplotlib: Visualization with python. https://matplotlib.org/,
2023.

20

[18] Christian Menard, Jeronimo Castrillon, Matthias Jung, and Norbert Wehn.
System simulation with gem5 and systemc: The keystone for full interoper-
ability. In 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pages 62–69, 2017.

[19] Gordon E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.
IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.

[20] Object Management Group. Unified modeling language specification. https:
//www.omg.org/spec/UML, 2023.

[21] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign, Fifth Edition: The Hardware/Software Interface. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 5th edition, 2013.

[22] Junyu Peng, Andreas Gerstlauer, Daniel D. Gajski, Rainer Dömer, and
Dongwan Shin. Automatic generation of transaction level models for rapid
design space exploration. In Proceedings of the 4th International Confer-
ence on Hardware/Software Codesign and System Synthesis (CODES+ISSS
’06), pages 64–69, 2006.

[23] Python Software Foundation. tkinter — python interface to tcl/tk. https:
//docs.python.org/3/library/tkinter.html, 2023.

[24] Lutz Roeder. Netron. https://netron.app/, 2023.

[25] Siemens. Questa visualizer debug environment. https://eda.sw.siemens.
com/en-US/ic/debug-coverage/visualizer-debug/, 2023.

[26] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, and Norbert
Wehn. Dramsys4.0: A fast and cycle-accurate systemc/tlm-based dram
simulator. In Embedded Computer Systems: Architectures, Modeling, and
Simulation: 20th International Conference, SAMOS 2020, Samos, Greece,
July 5–9, 2020, Proceedings 20, pages 110–126. Springer, 2020.

[27] Synopsys. Platform architect. https://www.synopsys.com/verification/
virtual-prototyping/platform-architect.html, 2023.

[28] Synopsys. Verdi automated debug system. https://www.synopsys.com/
verification/debug/verdi.html, 2023.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[30] toem GmbH. impulse vp. https://www.toem.de/index.php/products/
impulse-vp, 2023.

[31] J.J. van Wijk. The value of visualization. In VIS 05. IEEE Visualization,
2005., pages 79–86, 2005.

21

A Appendix

A.1 Netmemvisual Test Case
Figure 18 depicts a waterfall timing diagram of the entire GoogLeNet network.
It serves as a stress test for Netmemvisual, as we plot the entire network struc-
ture, rather than specific sections of interest. The configuration file for this
diagram was created manually using a text editor.

0 2 4 6 8 10 12
Simulated time (ms)

monitorprobloss3/classifierpool5inception_5b/outputinception_5b/3x3inception_5b/5x5inception_5b/poolinception_5b/1x1inception_5a/outputinception_5a/3x3inception_5a/5x5inception_5a/poolinception_5a/1x1pool4/3x3_s2inception_4e/outputinception_4e/3x3inception_4e/5x5inception_4e/poolinception_4e/1x1inception_4d/outputinception_4d/3x3inception_4d/5x5inception_4d/poolinception_4d/1x1inception_4c/outputinception_4c/3x3inception_4c/5x5inception_4c/poolinception_4c/1x1inception_4b/outputinception_4b/3x3inception_4b/5x5inception_4b/poolinception_4b/1x1inception_4a/outputinception_4a/3x3inception_4a/5x5inception_4a/poolinception_4a/1x1pool3/3x3_s2inception_3b/outputinception_3b/3x3inception_3b/5x5inception_3b/poolinception_3b/1x1inception_3a/outputinception_3a/3x3inception_3a/5x5inception_3a/poolinception_3a/1x1pool2/3x3_s2conv2/norm2conv2/3x3conv2/3x3_reducepool1/norm1pool1/3x3_s2conv1datastim

GoogLeNet Waterfall
Read
Compute
Write
Contention

Figure 18: GoogLeNet timing diagram waterfall with contention (image #1/1)

A.2 Trace Log File Syntax
This section provides a technical description of the trace log file syntax that
Netmemvisual expects.

1 # ...
2 # read operation
3 RD 86126749384:000223 conv6_1 @ 213173120 1478656 bytes
4 sending delay 0
5 # ...
6 # processor computation time
7 conv6_1 comp delay 94633984
8 # ...
9 # write operation
10 WR 86410836168:000226 conv6_1 @ 214651776 369664 bytes
11 sending delay 473724416
12 # ...

Listing 1: Truncated and annotated TLM simulation trace log file (SSD)

A small section of a TLM simulation trace log file, shown in Listing 1, will be
referenced when discussing log file syntax. Netmemvisual analyzes the supplied

22

trace log file, looking for the following three operation types: (1) Memory read,
(2) Processor computation, (3) Memory write.

Netmemvisual accepts trace log files with the syntax defined below.

1. Keyword Definitions

• [OP_TYPE]: Type of memory access operation; acceptable values: RD
for read or WR for write

• [TIMESTAMP_PS]: Start time of the operation in picoseconds (ps);
amount of time that has passed since the TLM simulation started

• [MODULE]: Name of the module involved in the memory access or
computation operation

• [SIZE]: Operation size in bytes; used in conjunction with the config-
uration file to determine the length of this memory operation

• [DURATION_PS]: Length of a compute operation or memory contention
event in picoseconds (ps)

• [...]: Extra simulation data that is not relevant to Netmemvisual
(such as memory addresses)

2. Memory Access Syntax

• [OP_TYPE] [TIMESTAMP_PS]:[...] [MODULE] @ [...] [SIZE] bytes
sending delay [DURATION_PS]

3. Processor Computation Syntax

• [MODULE] comp delay [DURATION_PS]

A.3 Visualization Configuration File Syntax
This section provides a technical description of the JSON visualization configura-
tion file that Netmemvisual requires. The purpose of the config file is to specify
various visualization settings including the graphical layout of modules and sub-
plots in the diagram, simulation-specific parameters, and module configuration.

As shown in Listing 2, there are four sections in a config file that our tool
expects: (1) display, (2) data, (3) subplots, (4) modules. Sections 1-3 are re-
quired, while 4 is optional as it depends on specific module parameters. The
display section configures the image number to display and the grid layout of
subplots in the diagram. The data section describes the TLM configuration,
including contention-aware modeling and memory timing data. The subplots
section describes the layout of the modules into tracks and subplots on the dis-
played diagram. The modules section configures individual module parameters
relevant to the visualization, specifically the number of memory reads and writes
per image.

23

1 {
2 "display": {
3 "image_num": 0,
4 "max_rows": 1
5 },
6 "data": {
7 "contention": true,
8 "delay_ps": 50,
9 "word_latency_ps": 625
10 },
11 "subplots": {
12 "fc7": {
13 "conv6": [
14 "conv6_1",
15 "conv6_1_relu",
16 "conv6_2",
17 "conv6_2_relu"
18],
19 "mbox_loc": [
20 "fc7_mbox_loc",
21 "fc7_mbox_loc_perm",
22 "fc7_mbox_loc_flat"
23],
24 "mbox_conf": [
25 "fc7_mbox_conf",
26 "fc7_mbox_conf_perm",
27 "fc7_mbox_conf_flat"
28],
29 "mbox_priorbox": [
30 "fc7_mbox_priorbox"
31]
32 }
33 },
34 "modules": {
35 "fc7_mbox_priorbox": [
36 2,
37 1
38]
39 }
40 }

Listing 2: Example JSON configuration file for SSD ‘fc7’

The purpose of each visualization configuration option is summarized below.

1. display

• image_num: Image number to display in the visualization. (integer
>= 0)

• max_rows: Maximum number of rows to populate with subplots before
creating a new column. A number that is multiple of the total number
of subplots works well here. (integer > 0)

2. data

24

• contention: Enable or disable contention plotting, depending on the
TLM simulation log file used. (boolean)

• delay_ps: Memory access delay in picoseconds (integer)

• word_latency_ps: Memory word latency in picoseconds (integer)

3. subplots

• This field accepts a list of one or more subplot dictionaries in the
following format:
"subplot0": {

"track0": ["module0","module1","module2"],
"track1": ["module3", module4"]

}

• A subplot dictionary consists of one or more track dictionaries to be
plotted together. Each track dictionary contains an array of one or
more module names that will be plotted on the same horizontal axis
in the diagram.

4. modules

• This field accepts a list of one or more module parameter dictionaries
in the following format:
"module0": [1, 0],
"module1": [2, 1]

• The first value in the array is the number of memory reads per image,
while the second is the number of writes per image. Any modules
that are not configured in this section will default to 1 read and 1
write per image.

25

