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Abstract. This note presents details of a result of Okada and
Terui[2] which shows that the equational theory of residuated lat-
tices is decidable and gives an effective algorithm based on a Gentzen
system for propositional intuitionistic linear logic.

The variety of residuated lattices is denoted by RL. An algebra
(L,∨,∧, ∗, \, /, 1) is a member of this variety if (L,∨,∧) is a lattice,
(L, ∗, 1) is a monoid, and x ∗ y ≤ z iff y ≤ x\z iff x ≤ z/y for all
x, y, z ∈ L (these equivalences can be expressed by equations). We
use s, t, u for terms in the language of RL, and γ, δ, ρ, σ for (finite)
sequences of terms. Concatenation of sequences γ and δ is denoted by
γδ, and terms are considered as sequences of length 1. (In this note,
multiplication in RL is written explicitly as s ∗ t.) A pair (σ, t) is
called a sequent and is written σ ` t. The symbol ` is read as yields,
and the semantic interpretation of s1s2 . . . sn ` t is that the inclusion
s1∗s2∗ · · · ∗sn ≤ t holds in RL. The empty sequence ε is interpreted
as the multiplicative unit 1. Using this notation, we list below some
quasi-inclusions s1 ≤ t1 & · · ·& sn ≤ tn ⇒ s ≤ t in the style of Gentzen
rules:

s1 ` t1 . . . sn ` tn
s ` t

name of rule.

With the given semantic interpretation it is straight forward to check
that all these quasi-inclusions hold in RL. The details in the proof of
the completeness lemma (Lemma 3 below) justify the specific form of
these rules.

t ` t
Id

γδ ` u

γ1δ ` u
1-left

ε ` 1
1-right

γstδ ` u

γs∗tδ ` u
∗left γ ` s δ ` t

γδ ` s∗t
∗right

σ ` s γtδ ` u

γσs\tδ ` u
\left sγ ` t

γ ` s\t
\right
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σ ` s γtδ ` u

γσt/sδ ` u
/left

γs ` t

γ ` t/s
/right

γsδ ` u γtδ ` u

γs∨tδ ` u
∨ left

γ ` s

γ ` s ∨ t
∨ right1

γ ` t

γ ` s ∨ t
∨ right2

γsδ ` u

γs∧tδ ` u
∧ left1

γtδ ` u

γs∧tδ ` u
∧ left2

γ ` s γ ` t

γ ` s ∧ t
∧ right

A proof-tree is a tree in which each node is a sequent, and if σ1 `
t1,. . . , σn ` tn are all the child nodes of node σ ` t, then n ∈ {0, 1, 2}
and the rule σ1`t1 ... σn`tn

σ`t
matches one of the above rules. Hence each

node has at most 2 child nodes, and a sequent can appear at a leaf iff it
matches one of the rules Id or 1-right. A sequent is said to be provable1

if there exists a proof-tree with this sequent as the root. A subtree of a
proof-tree is again a proof-tree, hence all the nodes in a proof-tree are
provable.

Note that for each of the rules, there are only a finite number of
ways a given sequent can match the denominator of a rule, and this
determines exactly what sequents must appear in the numerator of
the rule. In each case the sequents in the numerator are structurally
simpler than the sequent in the denominator, so the depth of a proof-
tree is bounded by the size (defined in a suitable way) of the sequent
at the root. Hence it is decidable whether a given sequent is provable.

As an exercise it is instructive to show that sequents such as

x∗(y ∨ z) ` x∗y ∨ x∗z and x\(y ∧ z) ` x\y ∧ x\z

are provable, whereas x ∧ (y ∨ z) ` (x ∧ y) ∨ (x ∧ z) is not. For lattice
theorists it is also interesting to note that the 6 rules for ∨ and ∧ are
essentially equivalent to Whitman’s method for deciding if s ≤ t holds
in all lattices, where s, t are lattice terms, and γ, δ in the rules are
taken to be empty sequences. A different method for deciding lattice
inclusions, due to Skolem, is described by Burris in [1].

We now prove the result of Okada and Terui[2] which shows that for
terms s, t, the sequent s ` t is provable iff the inclusion s ≤ t holds in
RL. The forward implication is the soundness of the proof procedure,
and follows from the observation that all the rules are vaild (as quasi-
inclusions) in RL. The reverse implication is completeness, which is
proved by defining a semantics for residuated lattices, based on a non-
commutative version of the phase spaces of linear logic. In the theory

1In the literature on Gentzen systems this corresponds to cut-free provable
since the Gentzen system presented here does not mention the so-called cut-rule
σ ` t γtδ ` u

γσδ ` u
.
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of quantales, such phase spaces can also be viewed as quantic nuclei of
powerset quantales. However the argument below does not require any
knowledge of linear logic or quantales.

A non-commutative phase space is of the form (M,L), where M is a
monoid (with unit e and x · y written as xy), and L ⊆ P(M) such that

(P1) L is closed under arbitrary intersections and
(P2) for all X ⊆ M , Y ∈ L we have X\Y and Y/X ∈ L,

where X\Y = {z ∈ M : X{z} ⊆ Y }, Y/X = {z ∈ M : {z}X ⊆ Y }
and XY = {xy : x ∈ X, y ∈ Y }. We also define

XC =
⋂
{Z ∈ L : X ⊆ Z} the closure of X

X ∨Y = (X ∪Y )C X ∧Y = X ∩Y X∗Y = (XY )C 1 = {e}C

Lemma 1. For any non-commutative phase space (M,L), the algebra
(L,∨,∧, ∗, \, /, 1) is a residuated lattice.

Proof. It is a lattice (in fact a complete lattice) since it is the collection
of closed sets of a closure operation. By definition of \ we have Z ⊆
X\Y iff XZ ⊆ Y , and for Y ∈ L this is equivalent to X∗Y = (XY )C ⊆
Y . Similarly, Z ⊆ Y/X is equivalent to Z∗X ⊆ Y . It remains to show
that ∗ is associative and 1 is an identity.

For all X, Y ⊆ M , XY ⊆ (XY )C implies Y ⊆ X\(XY )C , hence

XY C ⊆ X(X\(XY )C)C = X(X\(X ∗ Y )) ⊆ X ∗ Y

where the middle equality makes use of the fact that X\(XY )C is
closed by (P2). Similarly XCY ⊆ X ∗ Y , hence XCY C ⊆ XC ∗ Y =
(XCY )C ⊆ (X ∗ Y )C = X ∗ Y . Since we also have XY ⊆ XCY C , it
follows that (XY )C = (XCY C)C . Now

(X ∗ Y ) ∗ Z = ((XY )CZ)C = ((XY )CCZC)C = ((XY )Z)C

= (X(Y Z))C = (XC(Y Z)C)C = X ∗ (Y ∗ Z),

and 1 ∗ X = ({e}CX)C = ({e}CCXC)C = ({e}X)C = XC = X for
X ∈ L. �

In logic it is common to refer to a structure with an assignment as
a model. Let X be a set of variables. A non-commutative phase model
M = (M,L, h) is a non-commutative phase space (M,L) together with
an assignment h : X → L. As usual, h extends to a homomorphism
from the absolutely free term algebra T (X ) to L, with h(1) defined as 1.
A term p is satisfied in M if e ∈ h(p). This is equivalent to h(1) ⊆ h(p),
which agrees with the usual algebraic notion of satisfaction for the
inclusion 1 ≤ p under the assignment h. Since s ≤ t is equivalent
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to 1 ≤ s\t, the satisfaction of arbitrary inclusions is captured by this
notion.

Given a term p, let S(p) be the set of subterms of p. We now define
a syntactical model M(p) = (M(p),L(p), h). The universe M(p) is
the free monoid generated by S(p), i.e. the set of all finite sequences
of subterms of p. The empty sequence is again denoted by ε. For
γ, δ ∈ M(p), u ∈ S(p), define

[γ δ ` u] = {σ ∈ M(p) : γσδ ` u is provable}.

The notation [u] is shorthand for [ε ε ` u], called the value of u. Fur-
ther let

L0 = {[γ δ ` u] : γ, δ ∈ M(p), u ∈ S(p)}

L(p) = {
⋂
K : K ⊆ L0}

h(x) = [x] for any variable x in p.

In the subsequent proofs we will frequently make use of the following
observation:

(∗) For any X ⊆ M(p), t ∈ S(p),

t ∈ XC if and only if

for all γ, δ ∈ M(p) and u ∈ S(p), X ⊆ [γ δ ` u] implies t ∈ [γ δ ` u].

Lemma 2. M(p) is a non-commutative phase model.

Proof. (P1) holds by construction. To prove (P2), let X ⊆ M(p) and
Y ∈ L(p). Now σ ∈ X\Y iff X{σ} ⊆ Y iff for all ρ ∈ X, ρσ ∈ Y =
Y C . By (*) this is equivalent to showing that Y ⊆ [γ δ ` u] implies
ρσ ∈ [γ δ ` u]. This last containment holds iff γρσδ ` u is proveable
iff σ ∈ [γρ δ ` u]. Hence

σ ∈ X\Y iff σ ∈
⋂
{[γρ δ ` u] : ρ ∈ X and Y ⊆ [γ δ ` u]},

which implies that X\Y ∈ L, and Y/X is similar. �

The following result is the central part of the completeness argument.

Lemma 3. Let M(p) be defined as above. For any subterm t of p we
have t ∈ h(t) ⊆ [t]. In particular, if ε ∈ h(t) then the sequent ε ` t is
provable.

Proof. By induction on the structure of the subterm. If it is a variable
of p, say x, then h(x) = [x] by definition, and x ∈ [x] since x ` x is
provable (using Id). Suppose s, t are subterms of p, and s ∈ h(s) ⊆ [s],
t ∈ h(t) ⊆ [t].
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s ∨ t ∈ h(s ∨ t) ⊆ [s ∨ t]: Note that h(s ∨ t) = (h(s) ∪ h(t))C . Let
γ ∈ h(s) ∪ h(t). If γ ∈ h(s), then γ ∈ [s], so γ ` s is provable. By
the ∨right1 rule it follows that γ ` s ∨ t is provable, hence γ ∈ [s ∨ t]
and therefore h(s) ⊆ [s∨ t]. Similarly h(t) ⊆ [s∨ t], and since [s∨ t] is
closed, h(s ∨ t) ⊆ [s ∨ t].

To see that s ∨ t ∈ h(s ∨ t), we use observation (∗): Suppose h(s) ∪
h(t) ⊆ [γ δ ` u] where γ, δ ∈ M(p), u ∈ S(p). Then γsδ ` u and
γtδ ` u are provable (since s ∈ h(s) and t ∈ h(t)). Therefore γs∨tδ ` u
is provable by ∨left and so s ∨ t ∈ [γ δ ` u]. By (∗) we conclude that
s ∨ t ∈ (h(s) ∪ h(t))C = h(s ∨ t).

s ∧ t ∈ h(s ∧ t) ⊆ [s ∧ t]: Let γ ∈ h(s ∧ t) = h(s) ∩ h(t). Then
γ ∈ [s] ∩ [t], hence γ ` s and γ ` t are provable. So now γ ` s ∧ t is
provable by the ∧right rule, which shows that γ ∈ [s ∧ t].

Suppose h(s) ⊆ [γ δ ` u]. Then γsδ ` u is provable, and by the
∧left1 rule, γs∧tδ ` u is provable. Therefore s ∧ t ∈ [γ δ ` u], and it
follows from (∗) that s∧ t ∈ h(s)C = h(s). Similarly s∧ t ∈ h(t), hence
s ∧ t ∈ h(s ∧ t).

s∗t ∈ h(s∗t) ⊆ [s∗t]: Note that h(s∗t) = (h(s)h(t))C , and let σ ∈
h(s)h(t). Then σ = γδ, where γ ∈ h(s) ⊆ [s] and δ ∈ h(t) ⊆ [t].
Therefore γ ` s and δ ` t are provable, hence by ∗right γδ ` s∗t is
provable, and so σ ∈ [s∗t]. It follows that h(s)h(t) ⊆ [s∗t], and since
[s∗t] is closed, h(s ∗ t) ⊆ [s∗t].

Suppose h(s)h(t) ⊆ [γ δ ` u]. Then st ∈ [γ δ ` u] since s ∈ h(s) and
t ∈ h(t). Thus γstδ ` u is provable, and by ∗left, γs∗tδ ` u is provable.
This implies s∗t ∈ [γ δ ` u], so by (∗), it follows that s∗t ∈ h(s ∗ t).

s\t ∈ h(s\t) ⊆ [s\t]: Here h(s\t) = h(s)\h(t) = {γ ∈ M(p) :
h(s){γ} ⊆ h(t)}. Thus γ ∈ h(s\t) implies sγ ∈ h(t) ⊆ [t], since we
are assuming s ∈ h(s). This means sγ ` t is provable, so by \right
γ ∈ [s\t].

Suppose h(t) ⊆ [γ δ ` u], then t ∈ h(t) implies γtδ ` u is provable.
For any σ ∈ h(s) ⊆ [s] we have that σ ` s is provable, so from \left we
get that σs\t ∈ [γ δ ` u]. By (∗) it follows that σs\t ∈ h(t) whenever
σ ∈ h(s), hence h(s){s\t} ⊆ h(t). This implies s\t ∈ h(s)\h(t) =
h(s\t).

The case for s/t ∈ h(s/t) ⊆ [s/t] is similar. Since we are assuming
that h has been extended to a homomorphism from the term algebra
to L, we have h(1) = 1 = {ε}C . Suppose {ε} ⊆ [γ δ ` u], then γδ ` u
is provable, and by the 1-left rule 1 ∈ [γ δ ` u]. Hence (∗) implies
1 ∈ h(1). Finally, h(1) ⊆ [1] holds since {ε} ⊆ [1] follows from 1-right.

The second statement is a simple consequence: if ε ∈ h(t) then ε ∈ [t]
which means ε ` t is provable. �
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Theorem 4. For any term p the following statements are equivalent:

(i) RL |= 1 ≤ p
(ii) ε ∈ h(p) in M(p)
(iii) ε ` p is provable.

Proof. (i) implies (ii) by Lemma 2, (ii) implies (iii) by Lemma 3, and
(iii) implies (i) by a standard soundness argument using the observation
that all the (quasi-inclusions corresponding to) sequent rules are valid
in RL. �

Since it was observed earlier that condition (iii) is decidable, and
since any equation can be reduced to this form, the equational theory
of RL is decidable. Okada and Terui[2] go on to prove that RL is
generated by its finite members, and they also consider several sub-
varieties and expansions of RL. For example, to decide inclusions for
bounded residuated lattices, one simply adds the two rules

γ0δ`u
and

γ`> . In fact their results are formulated for what amounts to bounded

commutative residuated lattices, and the non-commutative case is only
mentioned briefly at the end. However their method of proving decid-
ability and the finite model property is very versatile and can perhaps
be adapted to cover other subvarieties of RL, such as the varieties of
distributive or of cancellative residuated lattices, or the variety gener-
ated by residuated chains.
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