
MINIMAL EXPANSIONS OF SEMILATTICES

P. JIPSEN AND A. KISIELEWICZ

Abstract. We determine the minimal extension of the sequence
〈0, 1, 1, . . . , 1, 2〉. This completes and extends the work of K. M.
Koh, started in 1970, and solves Problem 15 in the survey on pn-
sequences and free spectra [GK92]. The results involve the inves-
tigation of some minimal expansions of semilattices.

1. Introduction

Let A be any algebra, and let pn = pn(A) be the number of essen-
tially n-ary term operations on A. This sequence is closely connected
with the free spectrum of A, and has received considerable attention
in universal algebra (see [GK92] for an extensive survey).

A finite sequence a = 〈a0, a1, . . . , ak〉 is represented by an algebra A
if pn(A) = an for all n ≤ k. If the collection of pn-sequences of all
algebras that represent a has a (pointwise) minimum member p, then
a is said to have the minimal extension property (MEP), and p is called
the minimal extension of a. This notion was introduced by G. Grätzer
in 1970, and since then the MEP has been proved for many sequences
(cf. [GK92]). It is noteworthy that still no finite sequence is known
without this property.

Some authors have considered the MEP restricted to certain classes
of algebras. In particular, J. Dudek considered the MEP of the se-
quence 〈0, 1, 2〉 in the class C of algebras whose clone is generated by
two commutative binary operations. He showed in [Du83] that if this
sequence has the MEP in C, then it is represented by the two-element
distributive lattice D2. More recently, in [Du97], he proved that there
exist further two four-element algebras N2 and A4 such that the pn-
sequence of any algebra A ∈ C is pointwise greater or equal to pn(D2),
pn(N2) or pn(A4).

Hence, what remained in this case was to compare the pn-sequences
of the three concrete algebras. It was known that p2 = 2 for all three
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algebras, p3(N2) = 10 > 9 = p3(D2), and p4(N2) = 114 = p4(D2).
Using a computer, and some optimizations to make the computation
feasible, Burris and Willard [BW96] showed that p5(N2) = 2586 <
6894 = p5(D2), thus completing the proof that 〈0, 1, 2〉 has no MEP in
the class C.

In [Ki03], A. Kisielewicz proved that it is generally the case that for
every MEP problem there exists a finite set of finite algebras such that
it suffices to compare the pn-sequences of these algebras.

The present paper is a result of our attempt to find an example of a
finite sequence without MEP in a general case, following the approach
of Dudek, Burris and Willard. Note that the sequence 〈0, 1, 2〉 has the
MEP (in the class of all algebras), represented by any rectangular band
B with one essentially binary operation (in which case pn(B) = 0 for
all n > 2).

A good candidate seemed to be the sequences 〈0, 1, 1, . . . , 1, 2〉 of
length m + 1. For 〈0, 1, 1, 2〉, i.e. m = 3, K. M. Koh [Ko72] proved
that there are two algebras S3 and T3, with 5 elements each, such that
any algebra A that represents 〈0, 1, 1, 2〉 has pn(A) ≥ pn(S3) for all
n or pn(A) ≥ pn(T3) for all n. The problem of comparing the two
pn-sequences of S3 and T3 has been open for three decades, and ap-
pears as Problem 15 in [GK92]. Koh considered also a general case for
〈0, 1, 1, . . . , 1, 2〉, but here he has obtained weaker results ([Ko72], The-
orem 19 [GK92]), and does not produce the set of algebras representing
minimal pn-sequences.

The small numbers pn on the one hand (considerably narrowing the
possibilities to be considered), and the apparent difficulties in estab-
lishing definite results on the other hand, suggested that the situation
in this case might be similar to that considered by Dudek, Burris and
Willard. Yet in the end we proved that all these sequences have the
MEP. This not only solves Problem 15 in [GK92], but also generalizes
the solution to the case of 〈0, 1, 1, . . . , 1, 2〉.

In particular, we prove that there are two algebras Sm and Tm with
m+ 2 elements, such that any algebra A that represents the sequence
〈0, 1, 1, . . . , 1, 2〉 of length m + 1 has a homomorphic image from a
subreduct onto either Sm or Tm. This implies that either pn(A) ≥
pn(Sm) for all n, or pn(A) ≥ pn(Tm) for all n. For m = 3, this result
is due to K. M. Koh [Ko72]. In the second half of this paper we then
prove that pn(Sm) ≤ pn(Tm) for all n.

It is our pleasure to thank Ralph McKenzie for a suggestion that
simplified our proofs in the last section. We also thank the participants
of the Vanderbilt Algebra Seminar for many helpful comments.
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2. Algebras representing 〈0, 1, . . . , 1, 2〉

Throughout this section, let m ≥ 2 be fixed, and let A be an algebra
such that p0(A) = 0, pi(A) = 1 for i = 1, . . . ,m − 1, and pm(A) = 2.
In particular this implies that A has no constant operations, and only
the identity function as unary operation.

As we have noted, for m = 2, any rectangular band with an essen-
tially binary operation represents the minimal extension of 〈0, 1, 2〉. So
we consider m > 2. In this case A has a unique essentially binary
operation, which we denote by x · y or xy.

Lemma 2.1. If m > 2, then 〈A, ·〉 is a semilattice.

Proof. Since A has no constant operations, it follows that xx is es-
sentially unary, and since the identity operation is the only essentially
unary operation on A, the idempotent law xx = x holds. Commutativ-
ity of · follows from the fact that A has exactly one binary operation.

Now consider the operation g(x, y, z) = (xy)z. Substituting x for y,
we get g(x, x, z) = (xx)z = xz. Since xz depends on both x and z, it
follows that g depends on the variable z, as well as on at least one of x or
y. But g is symmetric in the first two variables since · is commutative,
so we conclude that g depends on both x and y. This shows that g
is essentially ternary. The assumption that m > 2 implies there is at
most one other essentially ternary operation on A. Therefore two of
the operations g(x, y, z), g(y, z, x), g(z, x, y) must be identical, and by
symmetry we can assume it is the first two. Hence (xy)z = (yz)x =
x(yz), where the second equality follows by commutativity. �

On the basis of this lemma, we will refer to an algebra that repre-
sents the length m+ 1 sequence 〈0, 1, . . . , 1, 2〉 as an m-ary semilattice
expansion. The argument in the above proof, which shows that g is
essentially ternary, will be used repeatedly in the following form.

Lemma 2.2. Suppose h(x1, . . . , xn) is an operation that satisfies the
identity

h(x1, x2, x3, . . . , xk, xk+1, . . . , xn) = h(x2, x3, . . . , xk, x1, xk+1, . . . , xn)

for some k ≤ n. If h depends on xi for some i ≤ k, then h depends
on xj for all j ≤ k.

It follows from Lemma 2.1 that the semilattice operation · gives rise
to an essentially n-ary operation x1 · x2 · · ·xn for all n > 1. Since we
are assuming that pm = 2, there exists exactly one other essentially
m-ary term operation of A which we denote by f . This operation
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Figure 1. The semilattice orders of Sm and Tm

must be symmetric in all its variables, otherwise there would be further
essentially m-ary term operations.

We are interested in the structure of algebras A that represent the
(m + 1)-tuple 〈0, 1, . . . , 1, 2〉 and have as few essentially n-ary term
operations as possible for n > m. Hence we will assume from now on
that A only has the fundamental operations · and f .

Since f is distinct from the m-ary semilattice operation, there exist
a1, . . . , am, b, c ∈ A such that

a1 · a2 · · · am = b 6= c = f(a1, . . . , am).

We now consider the term f(x1, . . . , xm)x1x2 · · ·xm. Since it is sym-
metric, it is essentially m-ary, and therefore equals either x1x2 · · ·xm

or f(x1, . . . , xm). In the first case it follows that bc = c, hence c ≤ b,
and in the second case bc = b, hence b ≤ c.

In the remainder of this section we prove that the subalgebra of A
that is generated by a1, . . . , am has a homomorphic image with m + 2
elements a′1, . . . , a

′
m, b

′, c′ and that the algebraic structure of this image
is completely determined apart from the dichotomy mentioned above
(see Figure 1).

Lemma 2.3. For any i ∈ {2, . . . ,m}, A satisfies the identity

f(x1x2 · · ·xi, x2x3 · · ·xi+1, . . . , xmx1 · · ·xi−1) = x1 · · ·xm

where addition of indices is calculated modulo m.

Proof. For i = m, the equation holds since f(x, . . . , x) = x. Let
hi(x1, . . . , xm) denote the term on the left side of the above identity.

Assume the result has been proved for m ≥ i > n and consider i =
n > 1. Since hn(x1, x2, . . . , xm) = hn(x2, . . . , xm, x1), it follows from
Lemma 2.2 that hn is essentially m-ary, hence it is either f(x1, . . . , xm)
or x1 · · ·xm. In the first case, replacing xj by xjxj+1 · · ·xj+n−1 for
j = 1, . . . ,m, yields hk(x1, . . . , xm) = hn(x1, . . . , xm) = f(x1, . . . , xm),
for some k > n. But by the inductive hypothesis, hk(x1, . . . , xm) =
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x1 · · ·xm, which contradicts the assumption that f is distinct from the
m-ary semilattice operation. Therefore hn(x1, . . . , xm) = x1 · · ·xm. �

Lemma 2.4. The algebra A satisfies the identity

f(x2, x2, x3, . . . , xm) = x2x3 · · ·xm.

Proof. Let t be the term f(x2, x2, x3, . . . , xm). It suffices to show that
t depends on all its variables, since x2x3 · · ·xm is the only essentially
(m− 1)-ary operation on A.

By the preceding lemma, f(x1x2, x2x3, . . . , xmx1) = x1 · · ·xm, hence

f(x3x2, x2x3, . . . , xm−1xm, xmx3) = x2x3 · · ·xm.

The term on the right depends on x2, while the term on the left has x2

in the first two arguments and is a substitution instance of t. Therefore
t depends on x2.

Similarly, the term on the right depends on xm, while for m ≥ 4
the term on the left has xm in last two arguments only. Therefore t
depends on at least one of its last two arguments, and by symmetry of
f , it must then depend on x3, x4, . . . , xm.

The case m = 3 requires separate consideration. Let t = f(y, y, x).
As before, t depends on y. Assuming it does not depend on x, we have
f(y, y, x) = y. Now consider the term f(x, y, z)x. It depends on all
variables, since f(x, y, y)x = yx depends on x and y, hence f(x, y, z)x
depends on x and on y or z, and by symmetry it must depend on
both. Therefore f(x, y, z)x is either xyz or f(x, y, z). In either case
f(x, y, z)x = f(x, y, z)z, and replacing z by y we get yx = f(x, y, y)x =
f(x, y, y)y = y, which is impossible. Hence f(y, y, x) depends on both
variables. �

Lemma 2.5. Let s1, . . . , sm be semilattice terms using only the vari-
ables x1, . . . , xn for some n < m, and suppose that each of the variables
appears in some si. Then f(s1, . . . , sm) = x1 · · ·xn holds in A.

Proof. Assume by way of contradiction that f(s1, . . . , sm) does not de-
pend on xi for some i ∈ {1, . . . , n}. Replacing xi by x and all other
variables by y, we obtain a term t(x, y) which does not depend on x,
hence t(x, y) = y holds in A.

Now t(xy, y) is of the form f(xy, . . . , xy, y, . . . , y), with at least one
subterm xy, since xi appeared in some sj. Note that either xy or y
appears more than once in this expression, since f has more than two
arguments. By the preceding lemma t(xy, y) = xy, which contradicts
t(x, y) = y. This shows that f(s1, . . . , sm) is essentially n-ary and hence
equals x1 · · ·xn. �
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It follows from this lemma that if S is an (m − 1)-generated sub-
semilattice of A, then f restricted to S is just the m-ary semilattice
operation.

Lemma 2.6. Every term of A depends on all its variables. Hence
every term with less than m variables is equivalent to the meet of these
variables.

Proof. Consider any term containing a variable x. Replacing all other
variables by y, we get a term t(x, y) with less than m variables. Apply-
ing the lemma above inductively shows that t(x, y) = xy, so this term
depends on x. It follows that the original term also depends on x. �

For the next lemma, we define the length |s| of a semilattice term s
to be the number of distinct variables that occur in it.

Lemma 2.7. Let s1, . . . , sm be semilattice terms using only the vari-
ables x1, . . . , xm, suppose that each of the variables appears in some si,
and that at least one of the si is not a variable. Then f(s1, . . . , sm) =
x1 · · ·xm holds in A.

Proof. By symmetry, we may assume x1, x2 appear in s1. The pre-
ceding lemma implies that the term f(s1, . . . , sm) depends on all its
m variables, hence either A |= f(s1, . . . , sm) = x1 · · ·xm or A |=
f(s1, . . . , sm) = f(x1, . . . , xm). Suppose to the contrary that the sec-
ond identity holds, and let xk be a variable that appears in sj (for some
fixed j) but not in s1. Replacing x2 by sj, xj by s2 and xi by si for
i 6= 2, j, we deduce that

f(s′1, . . . , s
′
m) = f(s1, sj, s3, . . . , sj−1, s2, sj+1, . . . , sm) = f(x1, . . . , xm)

where s′1 now includes the variables x1, x2, xk. Repeating this step
for each variable xk not in s′1, we see that A satisfies the identity
f(s′′1, . . . , s

′′
m) = f(x1, . . . , xm), where s′′1 = x1 · · ·xm.

Now choose any xk in s′′2, and replace xk by s′′1, x1 by s′′k, and xi by
s′′i for i 6= 1, k. This produces the equation

f(x1 · · ·xm, x1 · · ·xm, s
′′′
3 , . . . , s

′′′
m)

= f(s′′k, s
′′
2, . . . s

′′
k−1, s

′′
1, s

′′
k+1 . . . , s

′′
m) = f(x1, . . . , xm).

Since the first term reduces to x1 · · ·xm by Lemma 2.4, this is a con-
tradiction. �

It follows from this result that if f(a1, . . . , am) 6= a1 · · · am then the
elements a1, . . . , am are pairwise incomparable. In fact, the next lemma
implies that the structure of any m-generated subalgebra B of A is
completely determined by the semilattice structure of B and the value
of the term f(x1, . . . , xm)x1 · · ·xm applied to the m generators.
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Lemma 2.8. The following identities hold in A.

(i) f(x1, . . . , xm)xi = f(x1, . . . , xm)x1 · · ·xm for any i ∈ {1, . . . ,m},
(ii) f(f(x1, . . . , xm), t2, t3, . . . , tm) = f(x1, . . . , xm)x1 · · ·xm for any

semilattice term t2 and any terms t3, . . . , tm with variables from
x1, . . . , xm.

Proof. (i) By Lemma 2.6 it follows that A satisfies either the iden-
tity f(x1, . . . , xm)xi = f(x1, . . . , xm) or the identity f(x1, . . . , xm)xi =
x1 · · ·xm, and both of them easily imply the desired identity.

(ii) Since the terms t3, . . . , tm use at most m variables, we may as-
sume by Lemma 2.6 that each term is either of the form f(x1, . . . , xm)
or a meet of variables. If one of the ti is f(x1, . . . , xm), then the first
f in the left-hand-side of the identity has a repeated argument, hence
by Lemma 2.4 this side reduces to the product of its arguments, and
by (i) it equals f(x1, . . . , xm)x1 · · ·xm.

So we may assume that t3, . . . , tm are also semilattice terms. By
Lemma 2.6 we have either

(1) A |= f(f(x1, . . . , xm), x2, . . . , xm) = x1 · · ·xm or

(2) A |= f(f(x1, . . . , xm), x2, . . . , xm) = f(x1, . . . , xm).

In case (1) holds, replacing x1 by f(x1, . . . , xm) produces

f(f(f(x1, . . . , xm), x2, . . . , xm), x2, . . . , xm)

= f(x1, . . . , xm)x2 · · ·xm = f(x1, . . . , xm)x1 · · ·xm,

while the left hand side simplifies to f(x1 · · ·xm, x2, . . . , xm) = x1 · · ·xm

by the preceding lemma. Hence A satisfies f(x1, . . . , xm)x1 · · ·xm =
x1 · · ·xm in this case.

Now assume to the contrary that

(∗) f(f(x1, . . . , xm), t2, . . . , tm) = f(x1, . . . , xm).

Using an instance of (1), with x1 replaced by f(x1, . . . , xm) and xi

replaced by ti for i > 1, we see that

f(x1, . . . , xm) = f(f(x1, . . . , xm), t2, . . . , tm) by(∗)
= f(f(f(x1, . . . , xm), t2, . . . , tm), t2, . . . , tm) by(∗)
= f(x1, . . . , xm)t2 · · · tm instance of (1)

= f(x1, . . . , xm)x1 · · ·xm = x1 · · ·xm by Lemma 2.8(i).

The second last = holds since the ti are semilattice terms, and the last =
follows from the identity of the previous paragraph. This contradiction
shows that the result holds under the assumption of (1).
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In case (2) holds, we have

f(x1, . . . , xm)x1 · · ·xm = f(x1, . . . , xm)x3 · · ·xm by Lemma 2.8 (i)

= f(f(x1, . . . , xm), f(x1, . . . , xm), x3, . . . , xm) by Lemma 2.4

= f(f(x1, f(x1, . . . , xm), x3, . . . , xm), f(x1, . . . , xm), x3, . . . , xm)

= f(x1, f(x1, . . . , xm), x3, . . . , xm) by (2), with f(x1, . . . , xm) for x2

= f(x1, . . . , xm) symmetric version of (2)

where the middle equality also follows from a symmetric version of (2)
applied to the first argument of f .

Now assume to the contrary that

(∗∗) f(f(x1, . . . , xm), t2, . . . , tm) = x1 · · ·xm.

Using the identity just proven, with x1 replaced by f(x1, . . . , xm) and
xi replaced by ti for i > 1, we obtain

x1 · · ·xm = f(f(x1, . . . , xm), t2, . . . , tm) by (∗∗)
= f(f(x1, . . . , xm), t2, . . . , tm)f(x1, . . . , xm)t2 · · · tm
= x1 · · ·xmf(x1, · · · , xm)t2 · · · tm by (∗∗)
= f(x1 · · ·xm)x1 · · ·xm by Lemma 2.8(i).

This contradiction completes the proof. �

Lemma 2.9. Let B be a subalgebra of A that is generated by elements
a1, . . . , am ∈ A, let b = a1 · · · am, c = f(a1, . . . , am), and assume that
b 6= c. Then the equivalence relation θ with equivalence classes {a1},
. . . , {am}, {c} and [b] = B \ {a1, . . . , am, c} is a congruence relation
on B.

Proof. It suffices to show that if u, v ∈ [b] then for all w,w2, . . . , wm ∈ B
we have uwθvw and f(u,w2, . . . , wm)θf(v, w2, . . . , wm).

Each w ∈ B is obtained from a term t(x1, . . . , xm) applied to the
generators a1, . . . , am. By the preceding lemmas, we may assume this
term evaluates to either a1, . . . , am, c, a meet of generators, or bc. Ear-
lier we already observed that the last expression is either b or c, hence
[b] contains only meets of generators. Now consider u, v ∈ [b] and
w ∈ B. If w = c = bc then uw = vw = c, and otherwise uw, vw ∈ [b],
by Lemma 2.8(i). Similarly, using (ii) of the same lemma, it fol-
lows that if bc = c ∈ {w2, . . . , wm} ⊆ B then f(u,w2, . . . , wm) =
f(v, w2, . . . , wm) = c and otherwise f(u,w2, . . . , wm), f(v, w2, . . . , wm) ∈
[b]. Therefore θ has the substitution property. �

Consider the quotient algebra B/θ of the subalgebra B from the pre-
ceding lemma. As observed earlier, the elements a1, . . . , am are pairwise
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incomparable, and bc is either b or c. By Lemma 2.8 the operation f
is completely determined by the value of bc, hence B/θ is one of two
possible nonisomorphic m + 2-element algebras. These two algebras
will be denoted by Sm and Tm. The underlying set of elements for
both of them is {{a1}, . . . , {am}, [b], {c}}, but for simplicity we rename
the elements a1, . . . , am, b, c. The operation f is defined by

f(x1, . . . , xm) =

{
c if {x1, . . . , xm} = {a1, . . . , am}
x1x2 · · ·xm otherwise.

The difference between the algebras is in the semilattice structure. For
Sm the semilattice has height two with minimal element b, and for
Tm it has height 3 with minimal element c and unique cover b (see
Figure 1).

Corollary 2.10. Let A be an m-ary semilattice expansion with m > 2
and pm(A) = 2. Then either pn(A) ≥ pn(Sm) for all n, or pn(A) ≥
pn(Tm) for all n.

For the case m = 3, these algebras appear in [Ko71], and generate
the varieties K1 and K2 in [GK92].

For the case m = 2, an analogous result involves in addition the two-
element lattice D2, and follows directly from Dudek’s results mentioned
in the introduction. The algebras N2 and A4 in [Du97] are respectively,
S2 and T2 in our notation. The proofs and results in the remaining
sections hold also for m = 2.

3. The pn-sequence of Tm

In this section we prove that the value of pn(Tm) is given by the
number of antichains in a certain poset. In the subsequent section we
then show that pn(Sm) is strictly less than pn(Tm) for all n > m.

Let X = {x1, . . . , xn} be a set of n distinct variables. An m-
subpartition of X is any partition into m (disjoint nonempty) blocks of
some subset of X. The collection of all m-subpartitions of X is denoted
by SPartm(X). We define a relation v on SPartm(X) by ρ v σ iff there
exists a bijection φ : ρ→ σ such that Y ⊆ φ(Y ) for each block Y ∈ ρ.

Lemma 3.1. The relation v is a partial order on SPartm(X).

Proof. It is clearly reflexive and transitive. Assume ρ v σ and σ v ρ
for some ρ, σ ∈ SPartm(X), with corresponding bijections φ : ρ → σ
and ψ : σ → ρ. Then Y ⊆ φ(Y ) ⊆ ψ(φ(Y )), and since blocks are
disjoint it follows that Y = ψ(φ(Y )), whence Y = φ(Y ). This means
φ = σ, so v is antisymmetric. �
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For a subset Y = {y1, . . . , yk} of X, Y denotes the term y1 · · · yk, and
for an m-subpartition ρ = {Y1, . . . , Ym}, we let f(ρ) = f(Y 1, . . . , Y m).
Let α = {ρ1, . . . , ρk} be an antichain in this partial order, and let Y be
the (possibly empty) set of variables that do not occur in (a block of)
these subpartitions. Consider the term

tα = f(ρ1)f(ρ2) · · · f(ρk)Y .

Note that the empty antichain corresponds to the term x1 · · ·xn.
The next lemma lists some facts about Tm, as may be checked by

straightforward verification.

Lemma 3.2. The following statements hold in Tm:

(i) For any i = 1, . . . ,m, a term t evaluates to ai iff all variables
in t are assigned ai.

(ii) If one of the subterms in a term t evaluates to c, then t evalu-
ates to c (i.e. c is a zero).

(iii) For terms t1, . . . , tm, if ti and tj have some variable in common
for some i 6= j, then Tm |= f(t1, . . . , tm) = t1 · · · tm.

(iv) For semilattice terms s1, . . . , sm, if x is a variable that appears
in at least one of these terms, then Tm |= f(s1, . . . , sm)x =
f(s1, . . . , sm).

(v) Tm |= f(f(x1, . . . , xm)y1, y2, . . . , ym)
= f(x1 · · ·xmy1, y2, . . . , ym)f(x1, . . . , xm).

(vi) If ρ v σ in SPartm(X), then f(ρ)f(σ) = f(ρ)Y , where Y =⋃
σ \

⋃
ρ (if this is empty, the factor Y is omitted).

Theorem 3.3. There is a bijective correspondence between the an-
tichains of (SPartm(X),v) and the essentially n-ary term functions
on Tm. In fact, for each antichain α, the term tα is a normal form for
the term function tTm

α .

Proof. We have to show that each term function can be obtained from
a term tα, and that for distinct antichains α and β, the term functions
tTm
α and tTm

β are different.
For the first part we observe that by Lemma 3.2 (v), any term t can

be rewritten to a term that has no nested occurrences of the operation
f , and by 3.2 (iii) we may assume that the collection of sets of variables
that occur as arguments in any f -subterm form an m-subpartition of
X. Thus t is of the form f(ρ1)f(ρ2) · · · f(ρk)Y for some ρ1, ρ2, . . . , ρk ∈
SPartm(X). Moreover, by 3.2 (iv), we may assume that the variables
in Y do not appear in any of the blocks of the m-subpartitions. Finally,
by 3.2 (vi), we may delete any factors f(ρi) that are not minimal with
respect to v restricted to {ρ1, . . . , ρk}, as long as any variables that do
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Figure 2. SPart3{x1, x2, x3, x4}

not appear in the minimal subpartitions are added to the set Y . Hence
the collection of subpartitions form an antichain.

Suppose now that α and β are distinct antichains. Then one of
them, say α, contains a subpartition ρ that is not greater or equal to
any subpartition σ in β with respect to v. Choose an assignment of
a1, . . . , am to the variables of ρ such that f(ρ) = c, and assign b to all
other variables. Then tα evaluates to c, but none of the factors of tβ
evaluate to c, hence the two terms induce distinct term functions. �

The poset SPart3{x1, x2, x3, x4} is shown in Figure 2, and it has
26 + (24 − 1) + 4 · (23 − 1) + 6 = 113 antichains, hence p4(T3) = 113.
While it is possible to give upper and lower bounds for the number of
antichains in the posets corresponding to larger values of m,n it seems
unlikely that an exact formula can be obtained.

4. Comparing the pn-sequences of Sm and Tm

In this section we prove that the pn-sequence of Sm is strictly below
the pn-sequence of Tm when n > m. As before we consider terms t with
variables from X = {x1, . . . , xn}. Since we want to count terms that
induce essentially n-ary operations, we may assume that all variables
of X occur in t.

Let u, v, w : X → Sm be assignments, and denote their extension to
the collection of all terms by the same symbols. The symbol û is defined
to be the collection {u−1{a1}, . . . , u−1{am}}. Note that if u(t) = c and
u is nonconstant then û is an m-subpartition of X.

For a term t we let

S(t) = {û : u is a nonconstant assignment and u(t) = c}.
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Figure 3. A term with an antichain of u-critical subterms

By the preceding observation, S(t) is a subset of SPartm(X), hence it is
also partially ordered by the relation v introduced in Section 3.2. The
next result follows from the fact that u(t) = ai if and only if u(x) = ai

for all variables x in t.

Lemma 4.1. If t and t′ are terms such that S(t) = S(t′), then t and
t′ induce the same term function on Sm.

Although S(t) is not an antichain in general, the following facts are
used to show that S(t) is determined by the antichain of its minimal
members.

A u-critical subterm (of t for an assignment u) is a subterm s such
that u(s) = c but u(r) 6= c for all proper subterms r of s. Note that
if s is a variable x, then it is u-critical iff u(x) = c. Otherwise, s is
necessarily of the form s = f(r1, . . . , rm) (since for a meet we have
u(r1r2) = c iff u(r1) = c and u(r2) = c), and it is u-critical if and only
if {u(r1), . . . , u(rm)} = {a1, . . . , am}.

Let s1, . . . , sk be a list of all u-critical subterms of a term t. By
definition, neither of them is a subterm of another, and hence they
form an antichain in the tree of all subterms of t ordered by the “is a
subterm of” relation (cf. Figure 3). Moreover, if u is a nonconstant
assignment with u(t) = c, then this is a maximal antichain, i.e. each
occurrence of a variable in t is an occurrence in some u-critical subterm
s.
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Indeed, consider a chain of subterms in t containing this occurrence
(which corresponds to a path from a leaf to the root in the tree), and
let s be the least subterm in this chain with u(s) = c. Such a term
exists, since t is on the top of the chain. If s is a variable, then it
is u-critical. Otherwise, it has the form s = f(r1, . . . , rm), by the
same argument as above, with u(ri) 6= c for some i. Since u(s) = c,
{u(r1), . . . , u(rm)} = {a1, . . . , am}, as required.

Note that what we proved is equivalent to that there is a term
t′(x1, . . . , xk) such that t′(s1, . . . , sk) = t. The term tree for t′ is ob-
tained from the term tree of t by cutting branches outgoing from the
nodes corresponding to u-critical terms (in Figure 3 they are denoted
by •).

Lemma 4.2. Let {U1, . . . , Um}, {V1, . . . , Vm} ∈ S(t) and suppose Vi ⊆
Ui for i = 1, . . . ,m, with at least one of the inclusions proper. Then
{U1 \ V1, . . . , Um \ Vm} ∈ S(t).

Proof. Let u, v be assignments that have correspondingm-subpartitions
û = {U1, . . . , Um}, v̂ = {V1, . . . , Vm}, and let w : X → Sm be the as-
signment defined by

w(x) =

{
ai if x ∈ Ui \ Vi

c otherwise.

Note that w is nonconstant since Vi 6= ∅ and Ui \ Vi 6= ∅ for some i, so
it suffices to prove that w(t) = c. And since t = t′(s1, . . . , sk) for some
term t′, where s1, . . . , sk are u-critical subterms, it is enough to show
that w(s) = c for each u-critical subterm s.

If s is a variable, then w(s) = c since u−1{c} ⊆ w−1{c}. If s is not
a variable, then by remarks preceding this lemma, s = f(r1, . . . , rm),
and without loss of generality we may assume that u(ri) = ai for i =
1, . . . ,m. Since Vi ⊆ Ui, it follows that v(ri) = ai or v(ri) = c for each
i. Moreover, since v(t) = c, either v(ri) = c for all i or v(ri) = ai for
each i. In the first case, by definition, w(ri) = ai for all i, and therefore
w(s) = c, as required. In the second case, w(ri) = c for all i, and
therefore, again, w(s) = c. �

Two m-subpartitions ρ, σ of X are said to be completely disjoint if⋃
ρ ∩

⋃
σ = ∅. Note that the lemma above states that if a partition û

properly contains a partition v̂, then it can be decomposed into com-
pletely disjoint partitions v̂ and ŵ. The following is the converse of
this fact.
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Lemma 4.3. Let {V1, . . . , Vm}, {W1, . . . ,Wm} be two completely dis-
joint m-subpartitions in S(t), and define Ui = Vi∪Wi for i = 1, . . . ,m.
Then {U1, . . . , Um} ∈ S(t).

Proof. Let u, v, w be assignments such that û = {U1, . . . , Um}, v̂ =
{V1, . . . , Vm} and ŵ = {W1, . . . ,Wm}. Since v̂ and ŵ are completely
disjoint, the nontrivial v-critical subterms and the nontrivial w-critical
subterms of t are incomparable in the tree of subterms of t. We will
prove that u(s) = c for any such subterms. Since we also have u(x) = c
for any variable that is both v-critical and w-critical, it follows that
u(t) = c.

So let s = f(r1, . . . , rm) be a nontrivial v-critical subterm (the argu-
ment for w is similar). Then v(s) = c and we may assume v(ri) = ai

for i = 1, . . . ,m. So v(x) 6= c for all variables x in s, hence u(x) = v(x)
for all these variables x. Clearly this implies u(s) = v(s) = c. �

Theorem 4.4. For all n > m, we have pn(Sm) < pn(Tm).

Proof. For a term t, let M(t) be the antichain of minimal members
of S(t). The preceding two lemmas imply that S(t) is determined by
M(t).

Now consider the map given by tSm 7→ M(t). It is well-defined
by Lemma 4.1. Since M(t) is an antichain of SPartm(X), it follows
from Theorem 3.3 that this map is an injection that proves pn(Sm) ≤
pn(Tm).

To prove that the inequality is strict we need to exhibit an antichain
of m-subpartitions of X = {x1, . . . , xn}, which is not of the form M(t)
for any term t in n variables. To this end, consider the antichain N
consisting of the following two m-subpartitions (with singleton blocks
each): x1| . . . |xm and x1| . . . |xm−1|xm+1. This is well defined, since
n > m > 2. Suppose now that N = M(t). It follows, by definition
of M(t), that t has subterms f(x1, . . . , xm), and f(x1, . . . , xm−1, xm+1).
Also, in particular, u(t) = c under the assignment u(xi) = ai for i ≤ m
and xi = c, otherwise. Yet, for this assignment the second subterm
evaluates to b, which yields u(t) = b, a contradiction. �
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