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Abstract. The Rudin-Keisler ordering of ultrafilters is extended to com-
plete Boolean algebras and characterised in terms of elementary embeddings
of Boolean ultrapowers. The result is applied to show that the Rudin-Keisler
poset of some atomless complete Boolean algebras is nontrivial.

1. Introduction

All concepts and notations not defined below can be found in [3].
Let B be a Boolean algebra, and let PB denote the set of all partitions of B

(i.e. maximal sets of pairwise disjoint elements). Note that PB is ordered by the
refinement relation: τ ≤ σ if for all x ∈ τ there exists a y ∈ σ such that x ≤ y.
Let σ̂ =

⋃
{τ : τ ≤ σ} be the set of nonzero elements of B that are below some

element of σ. Since σ is a partition, each x ∈ σ̂ is less than or equal to a unique
y ∈ σ, so there is a natural map jσ from σ̂ to σ given by jσ(x) = y. For a map
s : σ → Y we define ŝ = s ◦ jσ, and occasionally we also abbreviate doms by sd.

For σ ∈ PB we let P(σ) be the powerset Boolean algebra over the set σ. If all
joins of subsets of σ exist in B (e.g. if B is |σ|-complete) then we identify P(σ)
with the complete subalgebra of B that is completely generated by σ.

For powerset Boolean algebras, the Rudin-Keisler ordering of ultrafilters is
defined on D ∈ Uf(P(X)), E ∈ Uf(P(Y )) by D ≤ E if there exists a function
f : Y → X such that

for all S ∈ P(X), S ∈ D implies f−1[S] ∈ E. (∗)
We also write D ≤f E if (∗) holds. Note that this implication implies its converse,
since S /∈ D implies X \S ∈ D, hence f−1[X \S] = Y \ f−1[S] ∈ E and therefore
f−1[S] /∈ E.

The duality between sets and powerset Boolean algebras implies the following
equivalent definition: D ≤ E iff there exists a complete homomorphism α :
P(X) → P(Y ) such that α[D] ⊆ E.
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We wish to extend this ordering to complete (but not neccessarily atomic)
Boolean algebras. Given a filter D in a complete Boolean algebra B, and a
partition σ of B, we let Dσ = D ∩ P(σ). Note that if D is an ultrafilter of B,
then Dσ is an ultrafilter of P(σ). The idea of the definition below is to reduce
the ordering of ultrafilters of B and C, to the usual Rudin-Keisler ordering of the
induced ultrafilters on complete and atomic subalgebras of B and C. However,
we need an additional concurrancy condition to ensure some nice properties of
this extended ordering.

Definition 1.1. Let B, C be complete Boolean algebras, D ∈ Uf(B) and E ∈
Uf(C). We say that D ≤ E if there exists a map g : PB → PC and a family of
maps fσ : g(σ) → σ (σ ∈ PB) such that

(i) for all S ⊆ σ,
∑

S ∈ D implies
∑

f−1
σ [S] ∈ E, (i.e. Dσ ≤fσ Eg(σ)

for all σ ∈ PB) and,
(ii) the family of fσ satisfies the following concurrancy condition

∀τ, σ ∈ PB, τ ≤ σ implies
∑
{y ∈ g(τ)⊗ g(σ) : f̂τ (y) ≤ f̂σ(y)} ∈ E.

Here⊗ is the meet operation in PB, i.e. σ⊗τ is the greatest common refinement
of σ and τ , given by {xy : x ∈ σ, y ∈ τ} \ {0}. To make the connection with the
previous version for powerset algebras, we have the following observation.

Proposition 1.2. Suppose B, C and D, E are as above, and α : B → C is a
complete homomorphism such that α[D] ⊆ E. Then D ≤ E.

Proof. Let g : PB → PC be defined by g(σ) = α[σ]\{0}. The completeness of α is
needed to ensure that

∑
g(σ) = 1, and since α is meet-preserving, it is injective

on families of disjoint elements that are not mapped to 0. Hence we can define
an inverse fσ : g(σ) → σ by fσ(y) = x iff y = α(x). Let S ⊆ σ, and suppose∑

S ∈ D. Then
∑

f−1
σ [S] =

∑
α[S] = α(

∑
S) ∈ E.

Finally, the concurrency condition holds in a somewhat stronger form: for
τ ≤ σ ∈ PB, we have g(τ) ≤ g(σ) and for all y ∈ g(τ), f̂τ (y) ≤ f̂σ(y). �

The Rudin-Keisler ordering for complete Boolean algebras reduces to the usual
ordering in case B, C are powerset algebras. In one direction this follows imme-
diately from the above proposition.

In the other direction, suppose B = P(X), C = P(Y ) and we are given a
map g : PB → PC , and maps fσ such that Dσ ≤fσ Eg(σ). Consider the smallest
partition σX = {{x} : x ∈ X} in PB and the corresponding smallest partition
σY ∈ PC . The required map f : Y → X is induced by the map fσX

◦ jg(σX)

restricted to σY , via the obvious isomorphism between a set and its collection of
singleton subsets. Hence D ≤ E in the usual Rudin-Keisler order.

Problem 1.3. For which algebras does the converse of Proposition 1.2 hold?
Note that it does hold for powerset algebras.
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The relation ≤ is a quasi-order on the class of all ultrafilters on complete
Boolean algebras. We write D ≈ E if D ≤ E and E ≤ D. When we restrict
ourselves to a single algebra B, the partially ordered set of equivalence classes
Uf(B)/≈ is denoted by RK(B).

2. Characterisation by elementary embeddings

For the RK-order on powerset Boolean algebras, Blass [1] proved the following
characterisation theorem:

Theorem 2.1. Let D ∈ Uf(P(X)) and E ∈ Uf(P(Y )). The following are equiv-
alent:

(i) D ≤ E
(ii) for every structure M , there exists an elementary embedding from the

ultrapower MX/D to MY /E.

Since we will generalise this result to the extended RK-order, we briefly recall
the details of this fundamental result. Assuming f : Y → X is the function that
establishes D ≤ E, one can define a map e : MX/D → MY /E by e(s/D) =
(s◦ f)/E, and this map is an elementary embedding since if φ is a formula in the
language of M , and s1, . . . , sn ∈ MX then

MX/D |= φ[s1/D, . . . , sn/D]

iff {x ∈ X : M |= φ[s1(x), . . . , sn(x)]} ∈ D

iff f−1[{x ∈ X : M |= φ[s1(x), . . . , sn(x)]}] ∈ E

iff {y ∈ Y : M |= φ[s1(f(y)), . . . , sn(f(y))]} ∈ E

iff MY /E |= φ[e(s1/D), . . . , e(sn/D)].

The converse requires the following definition:

Definition 2.2. For any set A, we let Ā be the complete structure on A, defined
as the model in which every relation R is the interpretation of some relation
symbol, say R̄, and and every function f is the interpretation of some function
symbol, say f̄ , respectively.

Now, given an elementary embedding e from X̄X to X̄Y , the map f is obtained
by choosing any representative of e(idX/D), since for any S ⊆ X

S ∈ D

iff {x ∈ X : X̄ |= S̄[idX(x)]} ∈ D

iff X̄X/D |= S̄[idX/D]

iff X̄Y /E |= S̄[e(idX/D)]

iff {y ∈ Y : X̄ |= S̄[f(y)]} ∈ E

iff f−1[S] ∈ E.
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In order to generalise this result to the extended RK-order, we replace the
ultrapowers above by Boolean ultrapowers. Recall that the (unbounded) Boolean
power M [B] of a model M over a complete Boolean algebra B can be constructed
as a direct limit of powers Mσ, where σ ∈ PB (see e.g. [5]). If B is a powerset
algebra P(X), this construction reduces to the ordinary power MX . Similarly, for
any ultrafilter D of B, the Boolean ultrapower M [B]/D is (isomorphic to) a direct
limit of ultrapowers Mσ/Dσ, and when B = P(X), then M [B]/D ∼= MX/D. We
include some of the details here, since they are relevant to the results of this
section.

Definition 2.3. Let M be a structure for some language L, and let B be a
complete Boolean algebra, with D a filter in B. The structure M [B]/D has as
universe the set (

⋃
ρ∈PB

Mρ)/θD, where θD is the equivalence relation defined by

sθDt iff
∑

{x ∈ sd ⊗ td : ŝ(x) = t̂(x)} ∈ D.

Given an n-ary relation R on M , and s1/D . . . sn/D ∈ M [B]/D, we have

M [B]/D |= R[s1/D . . . sn/D] iff(1) ∑
{x ∈ sd

1 ⊗ · · · ⊗ sd
n : M |= R[ŝ1(x) . . . ŝn(x)]} ∈ D.(2)

Thus M [B]/D is also a structure of the language L, usually called the (un-
bounded) reduced Boolean power of M (with respect to B, D). If we take D to
be the trivial filter {1}, we get the unbounded Boolean power M [B], and if we
take D to be an ultrafilter, we get a Boolean ultrapower.

By an easy induction on the structure of formulas, it follows that if D is an
ultrafilter then (1) and (2) remain equivalent when R is replaced by any formula.

Theorem 2.4. Let B, C be complete Boolean algebras, D ∈ Uf(B) and E ∈
Uf(C). The following are equivalent:

(i) D ≤ E,
(ii) for any model M , there is an elementary embedding of M [B]/D into

M [C]/E,
(iii) there is an elementary embedding of B̄[B]/D into B̄[C]/E.

Proof. Obviously (ii) implies (iii).
Assume (i) holds, and let g and fσ be the associated maps for this inequality.

Define e : M [B]/D → M [C]/E by e(s/D) = (s ◦ fsd)/E. It suffices to check that
this map is elementary: Let φ(x1, . . . , xn) be any formula in the language of M ,
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and s1/D, . . . , sn/D ∈ M [B]/D. Then

M [B]/D |= φ[s1/D, . . . , sn/D]

iff
∑

{x ∈ sd
1 ⊗ · · · ⊗ sd

n : M |= φ[ŝ1(x), . . . , ŝn(x)]} ∈ D

iff
∑

f−1
τ [{x ∈ τ : M |= φ[ŝ1(x), . . . , ŝn(x)]}] ∈ E, where τ = sd

1 ⊗ · · · ⊗ sd
n

iff
∑

{y ∈ g(τ) : M |= φ[ŝ1(fτ (y)), . . . , ŝn(fτ (y))]} ∈ E

iff
∑

{y ∈ g(sd
1)⊗ · · · ⊗ g(sd

n) : M |= φ[s1(f̂sd
1
(y)), . . . , sn(f̂sd

n
(y))]} ∈ E

iff M [C]/E |= φ[e(s1/D), . . . , e(sn/D)]

where the second last “iff” is justified by the concurrancy condition on the fσ:
Since τ ≤ sd

i , it follows by concurrancy that

∑
{y ∈ g(τ)⊗ g(sd

i ) : f̂τ (y) ≤ f̂sd
i
(y)} ∈ E

for each i = 1, . . . , n, hence

∑
{y ∈ g(τ)⊗ g(sd

1)⊗ · · · ⊗ g(sd
n) : ŝi(f̂τ (y)) = si(f̂sd

i
(y)) for all i} ∈ E.

Now assume (iii) holds, and let e be the given elementary embedding. Consider
the identity map idσ : σ → σ ⊆ B, with the codomain extended to the set B.
Then idσ/D is in B̄[B]/D, so e(idσ/D) is an equivalence class in B̄[C]/E. For
each σ ∈ PB, choose fσ ∈ e(idσ/D), and let g(σ) = domfσ. We first argue that
although fσ maps into B̄, we can assume that it’s range is entirely within σ: Let
σ̄ be the relation symbol of B̄ such that B̄ |= σ̄[x] iff x ∈ σ. Since

∑
{x ∈ σ : B̄ |=

σ̄(idσ(x))} = 1 ∈ D, we have that B̄[B] |= σ̄[idσ/D], hence B̄[C] |= σ̄[e(idσ/D)].
But this means that

∑
{y ∈ g(σ) : B̄ |= σ̄(fσ(y))} = c ∈ E. Therefore fσ(y) ∈ σ

whenever y ≤ c. Choose any fixed b ∈ σ and define f ′
σ : g(σ) → σ by

f ′
σ(y) =

{
fσ(y) if y ≤ c

b otherwise

then f ′
σ/E = fσ/E, so we can replace fσ by f ′

σ.
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Next we show that for all S ⊆ σ,
∑

S ∈ D iff
∑

f−1
σ [S] ∈ E. Let S̄ be the

relation symbol of B̄ such that B̄ |= S̄[x] iff x ∈ S. Then∑
S ∈ D

iff
∑

{x ∈ σ : B̄ |= S̄[idσ(x)]} ∈ D

iff B̄[B]/D |= S̄[idσ/D]

iff B̄[C]/E |= S̄[e(idσ/D)]

iff B̄[C]/E |= S̄[fσ/E]

iff
∑

{y ∈ g(σ) : B̄ |= S̄[fσ(y)]} ∈ E

iff
∑

f−1[{x ∈ σ : B̄ |= S̄[x]}] ∈ E

iff
∑

f−1[S] ∈ E.

Finally we prove the concurrancy condition: Let τ ≤ σ, and let R̄ be a relation
symbol for the graph of jσ�τ , i.e., B̄ |= R̄[b, c] iff b ∈ τ , c ∈ σ and b ≤ c.

Then B̄[B]/D |= R̄[idτ/D, idσ/D] since
∑
{x ∈ τ : B̄ |= R[idτ (x), îdσ(x)]} = 1.

Therefore B̄[C]/E |= R̄[fτ/E, fσ/E], which means that
∑
{y ∈ g(τ)⊗g(σ) : B̄ |=

R̄[f̂τ (y), f̂σ(y)]} ∈ E. This is equivalent to the concurrancy condition. �

Remark 2.5. In the definition of D ≤ E, it suffices to consider partitions from
a dense subsemilattice S of PB. This follows from the characterisation theorem
above since if f ∈ Bσ for some σ ∈ PB, then there exists τ ∈ S with τ ≤ σ, and
we may replace f by f̂�τ .

Example 2.6. Let A =
∏

i∈I Bi be a product of complete Boolean algebras.
Recall that each factor Bi is isomorphically embedded into the relative subalgebra
A�ei, where ei is the I-tuple for which ei(i) = 1Bi

and ei(j) is 0Bj
in all other

coordinates j 6= i. We denote this relative embedding of Bi into A by γi. Observe
that πi◦γi is the identity function on Bi, and although γi is not a homomorphism,
it does preserve all existing joins and meets.

For a family of partitions σi ∈ PBi
(i ∈ I) we define the partition product

Xi∈Iσi to be
⋃

i∈I γi[σi]. This is easily seen to be a partition of A, and the set of
all partition products forms a dense subsemilattice of PA.

Recall from [3] the definition of a relative subalgebra B�u of a Boolean algebra
B with u ∈ B. If D ∈ Uf(B) and u ∈ D, we let Du = {x · u : x ∈ D}. Note that
Du is an ultrafilter in B�u. With the characterisation theorem at hand, we get
the following result.

Proposition 2.7. Let B, C be complete Boolean algebras, and D ∈ Uf(B), E ∈
Uf(C). The following are equivalent:

(i) D ≤ E,
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(ii) there exist u ∈ D and v ∈ E such that Du ≤ Ev,
(iii) for some u ∈ D and some complete subalgebra C ′ of C, we have Du ≤

C ′ ∩ E.

Proof. (i) implies (ii), and (i) implies (iii) follow immediately if we take u =
1B, v = 1C and C ′ = C. To prove (ii) implies (i), we observe that for any
structure M , M [B]/D ∼= M [B�u]/Du, and by the preceeding theorem, the latter
is elementarily embedded in M [C�v]/Ev ∼= M [C]/E. Another application of the
same theorem gives (i).

The implication from (iii) to (i) is proved similarly, using the additional fact
that M [C ′]/(C ′ ∩ E) is elementarily embedded in M [C]/E. �

3. Extending RK-posets

In this section we look at conditions under which the RK-poset of one Boolean
algebra is embedded in the RK-poset of another.

3.1. Relative subalgebras.

Lemma 3.1. Let B be a Boolean algebra and C = B�a a relative subalgebra of
B. If D is an ultrafilter of C then D̄ = {x ∈ B : x ≥ y for some y ∈ D} is an
ultrafilter of B.

Proof. By definition, D̄ is up-closed, and since D is meet-closed, the same holds
true for D̄. Therefore D̄ is a filter. Given x ∈ B, we have x · a ∈ C, hence
x · a ∈ D or −a(x · a) ∈ D. Since −a(x · a) = −x · a, we either have x ∈ D̄ or
−x ∈ D̄, as required. �

Corollary 3.2. If C is isomorphic to a relative subalgebra of B, then RK(C) is
embeddable into RK(B).

Proof. We can assume that C = B�a for some a ∈ B. Let D, E ∈ Uf(C). Then
D = D̄a and E = Ēa, so if D ≤ E, then D̄ ≤ Ē follows from Proposition 2.7(ii)
⇒ (i).

Conversely, D̄ ≤ Ē implies D ≤ E since relativization preserves the compara-
bility of ultrafilters. �

3.2. Powers of complete Boolean algebras. For a set J and a complete
Boolean algebra B, consider the direct power BJ . For ultrafilters D in B, and H
in P(J), we define DH = {s ∈ BJ : s−1[D] ∈ H}.

If B is a powerset algebra, say P(I), then BJ is isomorphic to P(I × J) and
DH is isomorphic to the product ultrafilter D × H (as defined in [2]). It is
straightforward to check that DH is an ultrafilter in this more general setting.

Lemma 3.3. Suppose B is a complete Boolean algebra, D ∈ Uf(B), F ∈
Uf(P(I)) and H ∈ Uf(P(J)). If F ≤ H then DF ≤ DH .
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Proof. Since F and H are ultrafilters in powerset algebras, we can use the original
definition of the RK-order. Assume F ≤ H, and let h be the function from J to
I such that for all S ⊆ I, S ∈ F implies h−1[S] ∈ H. To show that DF ≤ DH ,
it suffices by Proposition 1.2 to define a complete homomorphism α : BI → BJ

such that α[DF ] ⊆ DH . Given s ∈ BI , we let α(s) = s ◦ h. Since the operations
in BI are defined pointwise, this is a complete homomorphism, and for s ∈ DF

we have s−1[D] ∈ F , hence (s ◦ h)−1[D] = h−1[s−1[D]] ∈ H. �

The reverse implication requires a bit more work and an additional assumption.
A filter D is said to be κ-complete if for any set S ⊂ D with |S| < κ we have∏

S ∈ D. For an ultrafilter in a complete Boolean algebra B, this is equivalent
to the condition that for any σ ∈ PB with |σ| < κ we have D ∩ σ 6= ∅ (see e.g.
[4] 0.9).

Lemma 3.4. Suppose B is a complete Boolean algebra, D ∈ Uf(B), F ∈
Uf(P(I)) and H ∈ Uf(P(J)). If D is |I|+-complete then DF ≤ DH implies
F ≤ H.

Proof. Suppose DF ≤ DH . Then there exists a map g : PBI → PBJ and maps
hγ : g(γ) → γ ∈ PBI such that for all S ⊆ γ,

∑
S ∈ DF implies

∑
h−1

γ [S] ∈ DH .

Consider the partition σI = {χ{i} ∈ BI : i ∈ I} and the corresponding partition
σJ ∈ PBJ , where χK is the charateristic function of K ⊆ I or J respectively. Let
α be the complete homomorphism from P(σI) to P(g(σI)) given by α(

∑
S) =∑

h−1
σI

[S].
To show that F ≤ H, we need to define a map h : J → I such that S ∈ F

implies h−1[S] ∈ H for all S ⊆ I. Given j ∈ J and i ∈ I, let h(j) = i iff
πj(α(χ{i})) ∈ D. The map is well-defined for all j ∈ J since we are assuming
that D is |I|+-complete, so the partition πj ◦ α[σI ] \ {0} intersects D, and since
D is a filter, this intersection is a singleton.

Let S ∈ F . This is equivalent to {i ∈ I : χS(i) ∈ D} ∈ F , and hence to
χS ∈ DF . It follows that α(χS) ∈ DH and therefore α(χS)−1[D] ∈ H. The
following equivalent statements show that α(χS)−1[D] = h−1[S]:

j ∈ α(χS)−1[D]
iff

α(χS)(j) ∈ D
iff (since χS =

∑
i∈S χ{i})∑

i∈S α(χ{i})(j) ∈ D
iff (since D is |I|+-complete)

α(χ{i})(j) ∈ D for some i ∈ S
iff (since πj(s) = s(j))

h(j) ∈ S
iff

j ∈ h−1[S]

�
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Theorem 3.5. Let B be a complete Boolean algebra, and suppose there exists a
κ+-complete ultrafilter in B. Then the poset RK(P(λ)) is order embeddable into
the poset RK(Bκ) for any λ ≤ κ.

If B is homogeneous and contains a partition of size κ then Bκ ∼= B. Hence if
B has a κ+-complete ultrafilter then RK(P(κ)) is order embeddable into RK(B).

An example of such a boolean algebra B is given by the collapsing algebra
Col(κ+, λ) if we assume that κ+ is strongly inaccessible and |Col(κ+, λ)|-almost
compact (see [4] Theorem 3.6), or if we assume that κ+ is measurable.

Problem 3.6. Can the above theorem be proved in ZFC (i.e. without the large
cardinal assumption about the existence of a κ+-complete ultrafilter)?
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