
"Python First": A Lab-Based Digital Introduction to
Computer Science

Atanas Radenski
Chapman University

Orange, CA 92869, USA
1-714-744-7657

radenski@chapman.edu

ABSTRACT
The emphasis on Java and other commercial languages in CS1 has
established the perception of computer science as a dry and
technically difficult discipline among undecided students who are
still seeking careers. This may not be a big problem during an
enrolment boom, but in times of decreased enrolment such
negative perception may have a devastating effect on computer
science programs and therefore should not be ignored. We have
made our CS1 course offerings more attractive to students (1) by
introducing an easy to learn yet effective scripting language -
Python, (2) by making all course resources available in a
comprehensive online study pack, and (3) by offering an extensive
set of detailed and easy to follow self-guided labs. Our custom-
designed online study pack comprises a wealth of new, original
learning modules: extensive e-texts, detailed self-guided labs,
numerous sample programs, quizzes, and slides. Our recent
student survey demonstrates that students like and prefer Python
as a first language and that they also percept the online study pack
as very beneficial. Our "Python First" course, originally required
for computer science majors, has been so well received that it has
been recently approved as a general education science elective,
thus opening new recruitment opportunities for the computer
science major. Our "Python First" digital pack is published online
at http://studypack.com.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Information
Science Education - computer science education, curriculum;
Computer Uses in Education - distance learning

General Terms
Languages, Human Factors

Keywords
CS1, Python, OOP, CS2, Java, online study pack, self-guided lab

1. THE NEED
Today, the majority of introductory computer science courses are
based on a commercial language, such as Java or C++. While
students with good preliminary background who have already

committed themselves to a computing career usually succeed in
such courses, many others remain disappointed or even
completely fail. One significant problem is that purely commercial
languages are not designed for education but are intended to be
used for large-scale software development. Commercial
applications are complex and so are the programming languages
designed exclusively to support them. For beginner programmers,
purely commercial languages offer very steep learning curves.
Retention rate from Java-based introductory computing courses
can be as low as 50%; this has motivated instructors to explore
non-traditional approaches to CS1 [3].
The complexity of commercial languages and the high dropout
rates from introductory computer science courses have
contributed to the perception of computer science as a dry and
technically difficult discipline among undecided students who are
still seeking careers. In times of decreased enrolment such
negative perception may have a devastating effect on the
enrolment numbers in computer science programs. In many
colleges and universities in the USA, undecided students
constitute a very large pool which should be used for internal
recruitment in order to maintain sufficient enrollment in computer
science programs.
In Java-based courses, beginners inevitably start their study with
the top-most concept, the class. The problem is that the class
concept requires the knowledge of numerous underlying concepts,
such as method, type, parameter, array, access level. These non-
trivial concepts cannot be avoided even in trivial programs, as
shown in Fig. 1. In CS1 courses, it is common to introduce new
Java concepts in terms of other concepts that are actually defined
much later in the course. This awkward necessity is imposed by
the complex design of Java and can be confusing to instructors
and students alike.

Figure 1. A minimal Java program.

"© ACM, 2006. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not
for redistribution. The definitive version was published in
ITiCSE’06, June 26-28, 2006, Bologna, Italy, ISS# 1-59593-
055-8/06/0006, http://doi.acm.org/10.1145/ 1140123.1140177.

In the not so distant past, introductory computer science education
was dominated by languages that were specifically designed for
education, such as Pascal, Basic, and Logo. Purely educational
languages were simpler and smaller than purely commercial
languages and were therefore manageable by everyone who was

http://doi.acm.org/10.1145/%201140123.1140177

interested in learning how to program. These languages were
designed for student success, and success meant happiness. In the
age of the educational languages, learning how to program was
fun.
While purely educational languages were appropriate for
beginning programming education, they were not particularly
suitable for commercial programming. Indeed, educational
languages were not meant at all for large-scale software
development but were exclusively intended to be used for
educational programming. Purely educational languages were
unattractive to commercial employers and thus were gradually
dropped from most institutions' curricula. While the benefits of
some modern educational languages and platforms, such as
Karel++, Alice 2, and BlueJ for example are still being explored
[1], CS1/CS2 courses are in reality dominated by purely
commercial languages.

Apparently, any single programming language that is to be used
for introductory computer science education is subject to two
conflicting requirements. First, such a language should be simple
enough so that it can be handled by beginners. Second, such a
language is expected to be commercial and object-oriented, which
implies significant complexity. At present, these contradictory
requirements cannot be fully satisfied by any single language.

2. LANGUAGE CHOICE RATIONALE
2.1 Python's Advantages
Fortunately, there are some interesting languages, such as PhP,
JavaScript, and Python, that offer a reasonable compromise
between simplicity and practical applicability. Among those,
Python has the advantages of being a general purpose language
that can be studied interactively and that is actively maintained by
a single organization. In contrast to Python, which is a general
purpose language, PhP is specialized for server-side Web
programming, while JavaScript is specialized for client-side Web
programming. Both PhP and JavaScript are not really designed
with interactive programming in mind. Also, JavaScript is
distributed in non-standard versions. Debugging PhP and
JavaScript is difficult.

A unique quality of Python is that it is neither a purely
educational language, nor a purely commercial language. Python
was originally designed for education but soon gained popularity
among practical programmers who became the driving force in its
evolution. The Python’s creator, Guido van Rossum, rightfully
claims that while Python is a good first choice for teaching, it also
serves well as a language for more serious application
development [6]. Unlike other languages proposed for teaching to
novices, Python is not just a teaching language. It is a language
that is suitable for developing real-world applications. Nowadays,
the popularity of Python is growing at some high-profile
organizations, such as Yahoo, Google, Disney, Nokia, and the US
Government. Python regularly ranks among the ten most popular
languages [9].
With Python, it is possible to start a CS1 course with simple yet
interesting programs that actually do some useful computing and
produce some meaningful results from the very beginning. Our
preferred first CS1 program is a temperature converter, a program
that defines two functions to convert between Fahrenheit and
Celsius temperatures (Fig. 2). Such a program can be used to

introduce some fundamental yet manageable concepts, such as
program, variable, expression, assignment statement, and
function. These concepts are not difficult to explain, partly
because students usually have good intuition for some of them,
and partly because these concepts are stand-alone and do not use
other complex linguistic structures.

Figure 2. A feasible first Python program

By design, Python supports a highly interactive programming
style that gives students a chance to learn by interactive
experiments and exploration. The process of interactive program
execution is based on concepts that are intuitively clear and easy
to explain (Fig. 3).

Figure 3. Interactive execution in Python

Last but not least, Python is a multi-paradigm language that
adequately supports various programming styles: imperative,
functional, and object-oriented. Those who learn how to program
with Python are well prepared to learn to program in a variety of
other languages in subsequent courses.

The Scheme language is also a good choice for a CS1 language
because, like Python, it is simple, interactive, allows the
discussion of various programming styles, and is really well
supported [8]. However, Scheme can be perceived as an
educational language that is quite different from the typical
commercial languages, such as Java and C++. In comparison to
Scheme, Python has the advantage of being easily seen as a
practical general purpose language that is not so different from the
mainstream commercial languages.

2.2 Middle Way to CS1
The objects-first approach in CS1 has gained popularity among
educators and has perhaps become a fashion. The idea is to start
teaching introductory programming with objects and classes first.
Our experience makes us believe that the objects-first approach
can be difficult for instructors and students alike. Classes do not
seem a feasible choice in the beginning of a CS1 course, because
they are the most complex structure in a programming language, a
structure that builds on knowledge of virtually anything else.
Also, starting with classes can significantly delay the study of
simpler yet fundamental language elements. We have seen

objects-first CS1 textbooks that postpone the simple yet
indispensable if-statements and while-loops until the second half
of the book! Postponing basic control structures until late in a
CS1 course may deprive students from writing self-contained,
interesting, and satisfying programs. Beginner programmers who
do not learn much about control structures until the second part of
their course may not find programming very appealing.

With a dynamic language such as Python, it is tempting to try a
statements-first approach in CS1. This approach may consist of
(1) statement-by-statement execution in interactive mode of the
Python interpreter and (2) writing statements directly within a
module and executing them in file input mode. The learning
benefits of interactive programming are indisputable. However,
learning how to program by writing modules that are plain
sequences of statements, without much use of functions or classes,
may be detrimental to the student’s ability to design and write
well-structured programs later.

Python is a language that offers a reasonable middle way between
the objects-first and statements-first approaches. The middle way
consists of (1) using functions from the very beginning to
encapsulate code and to structure programs and (2) introducing
control structures as early as possible, but only as parts of
properly designed functions. The middle way allows students to
write interesting and well-structured programs early in the course,
and prepares the ground for classes and objects in the second part
of the CS1 course.

2.3 The Need for Java in CS2
While Python is an excellent choice as a first language, Java is a
great choice for a second language. Java should be studied as a
second language for basically the same reasons it should be
avoided as a first language:

■ Classes are required for everything students do in Java. With
hybrid languages, such as C++, PhP, or Python, students can
avoid classes and actually never learn OO design.

■ Java is a mainstream commercial language.

As a commercial language, Java is favored by employers. In
addition, Java is needed for upper-level courses.

To address the contradictory requirements to CS1/CS2: simplicity
versus commercial object-orientation, we have adopted a "Python
First, Java Second" approach to CS1/CS2. The guiding idea is to
start introductory computer science education with a gentle
Python-based first course and then continue with a comprehensive
Java-based second course. Our Java-based CS2 course has the
same extensive online component [5] as our Python-based CS1
course, to the extent that lectures are declared as optional.

3. IMPLEMENTATION
We have implemented a "Python First, Java Second" CS1/CS2
course sequence at Chapman University (est. 1861), California,
USA, beginning in the 2004/05 academic year.

At Chapman University, the CS1/CS2 courses enroll a diverse
student body. Both courses are required for students majoring in
Computer Science, Mathematics, and Computer Information
Systems. Computer Science majors specialize in either Software
Design Emphasis or Integrated Circuit Design. Within the

Mathematics major, the university offers a Joint Engineering
Program with the University of California, Irvine.

3.1 "Python First" Course
The focus of this paper is on our "Python First" CS1 course. In
this course, Python programming is used as a vehicle for a
technical introduction to computing. The course is not exclusively
targeted on "learning how to program in Python" but is actually
focused on "programming in Python to learn about computing".
The "Python First" course is taught around a monotonically
increasing sequence of subsets of the Python language. Each
subset is self-contained and depends only on previously covered
subsets. This approach ensures that students are exposed to new
concepts and techniques gradually, without disturbing references
to important concepts that are to be studied later.

Technically, the "Python First" course content is organized as a
sequence of topics, as outlined below.

1. Preliminaries
2. Computing Basics

2.1. Introduction
2.2. Control Structures: Selection
2.3. Control Structures: Iteration
2.4. Functions

3. Object-Based Computing
3.1. Data Collections: Lists and Dictionaries
3.2. Strings, Files, and the Web
3.3. Graphics and Interfaces

4. Classes
5. Review
Whenever possible, concepts are introduced completely and at
once. As an exception, some concepts are initially introduced in a
limited fashion and then revisited in a later topic for full coverage.
For example, string basics are presented in the Introduction then
sting objects are fully covered in the topic on Strings, Files, and
the Web. Likewise, simple "void" functions without parameters
are presented in the Introduction, while full coverage of functions
is offered later in a dedicated topic. Partial coverage of primary
concepts is sometimes necessary to open early opportunities for
existing lab experiments and exploration.

3.2 Online Study Pack
This "Python First" course of study is supported by a
comprehensive online study pack [4]. The study pack offers a
variety of custom-made learning modules, such as e-texts, slides,
lab assignments, forums, and quizzes. We are the original authors
of all learning modules.
The "Python First" study pack is based on Moodle, an
increasingly popular free lightweight course management system.
The home page of the study pack consists of a list of the principal
course topics, together with links to available learning contents
modules. The appearance of a single topic in the "Python First"
home page is depicted in Fig. 4.

Each topic starts with an e-text, which is a chapter from a digital
textbook. Although the slides follow the e-text, they are detailed
and self-contained, and can be used by students as an alternative
reading resource. One online quiz comes with each topic and is

normally due a few days after the topic has been finished in
lectures.

Figure 4. Learning modules in the "Python First" study pack

Each lab assignment incorporates detailed self-guided labs and
also a collection of useful sample programs. Completed labs are
submitted online when ready, which liberates students from the
need to physically deliver lab work to the instructor at specific
time and in a specific location. Furthermore, students file an
online lab report which immediately gives them provisionary
credit for the lab assignment. Online lab submissions are subject
to an audit by the instructor.

Quizzes and lab assignments allow multiple online submissions.
Students can use various forms of help and can submit work as
many times as they want. Because a submission can always be
corrected by yet another submission (prior to the programmed
deadline), students are free to explore, experiment, and learn at
their own pace. Students are well aware that quizzes and lab
assignments are intended more as learning tools, rather than as
principal evaluation tools, and the majority of students use them
to learn and prepare for exams.

The type and amount of digital content that is included in the
"Python First" digital pack [4] is outlined in Table 1.

Table 1. Digital contents in the "Python First" study pack
Learning Modules Total Volume

E-texts (10) 66,000 words

Slides 730 slides

Lab assignments 36,000 words in 37 required self-
guided labs and 25 optional labs

Sample programs 58 sample programs

Quizzes 280 questions

It is important to clarify that a digital study pack is not the same
as an online course. At Chapman University in California for
example, the "Python First" online pack is used to teach on-site
courses, with lectures and supervised labs conducted two times a
week. Most entry-level students benefit best from face-to-face
onsite instruction with lectures and supervised labs. It is also
possible to use the "Python First" online study pack for online

courses. This pack can support remedial online courses or
independent study online courses for mature and/or independent
learners.

3.3 Self-Guided Labs
A typical self-guided lab starts with three sections: Objectives,
Background, and Lab Overview. The Objectives section defines
the lab goals. The Background section introduces concepts and
techniques necessary for the particular lab but not covered in the
e-text. The Lab Overview section outlines the steps that should be
performed to complete the lab. The rest of the lab text contains
detailed step-by-step instructions of how to complete the lab.

Students are free to choose one of three recommended approaches
to a self-guided lab:

■ Follow the detailed step-by-step lab instructions, or

■ Try the lab independently, but also consult the instructions
when needed, or

■ Perform the lab independently, without looking at
instructions at all.

Any of the above approaches can be beneficial for students,
depending on their background, motivation, and physical location.
For example, a student who chooses not to attend a certain
supervised lab and prefers to work independently instead, can
follow the detailed step-by-step lab instructions. A student who is
gaining confidence may choose to try the lab independently, but
also peek at the instructions when needed. A more advanced
student may choose to perform the entire lab independently,
without looking at instructions at all.

Figure 5. A sample fractal (left) and a student fractal (right)

Most labs require the exploration and then the enhancement of
sample programs. For example, Lab B from the topic on Graphics
and Interfaces is accompanied with a sample fractal program. The
sample program draws the pattern shown in Fig. 5 (left). For this
lab, students are asked to study the sample fractal program and
then to modify it so that their new program produces a different
and original pattern. As a final activity, students are expected to
post their original pattern in a forum, together with a brief
description of their enhanced program. This lab unleashes student
creativity and triggers competition that results in some interesting
designs, such as the one shown in Fig. 5 (right).

During the entire course of study, students are expected to
complete 37 required self-guided labs. Also, students may choose
to work on 25 optional labs for extra credit. Optional labs do not
provide detailed step-by-step instructions and are usually more
challenging than required labs. In a fourteen-week semester,
required labs average 2.6 per week, while optional labs average
1.8 per week.

CONCLUSIONS
This paper introduces a new "Python First" lab-based digital
introduction to computer science. Others have already
successfully used Python in CS1 courses [7, 10]. The original
contribution of our approach is the comprehensive online study
pack which includes detailed self-guided lab assignments, among
other useful digital resources [4]. With detailed self-guided labs,
students are free to make various choices that best suit their
background and goals. Our "Python First" course liberates
students from the complexity of commercial languages and is
expected to stimulate them to explore computing careers.

In the fall 2005 semester, we administered a voluntary anonymous
survey of student perceptions of the "Python First" course. We
adopted some excellent survey questions from [2].

Answers to the first survey question reveal that more than half of
all students were true beginners (Table 2).

Table 2. Preliminary student programming background

What was your knowledge of programming (in any language,
not necessarily Python) when you came to this course?
Practically you were a beginner. 53.3%
You knew some programming but not much. 26.7%
Your programming knowledge was intermediate. 13.3%
You were good in creating programs. 6.7%
You were already an excellent programmer. 0%

Answers to the second question demonstrate that students prefer
online resources to printed ones. Online sample programs, the
online study pack in its entirety, and the online labs are identified
as most beneficial (Table 3).

Table 3. Preferred learning resources

How have various resources helped you (would have helped
you if available) in learning how to program? Select
importance from 1 (least important) to 5 (most important).

Sample programs (available online) 4.7
The entire online study pack 4.5
Online lab assignments 4.3
Online e-texts 3.7
Online slides 3.3
Printed (by you) lab assignments 3.1
Printed (by you) e-texts 2.5
Printed (by you) slides 2.5
Published paper lab manual (if it were available) 1.9
Published paper textbook (if it were available) 1.8

Answers to the third question reveal that students recognize the
entire course of study to be more beneficial than any individual
activity, and that lectures are considered least beneficial (Table 4).

Table 4. Preferred learning activities

How have various activities helped you learn in this course?
Select importance from 1 (least important) to 5 (most
important).

The entire course of study 4.2
Scheduled lab sessions, working with someone 4.0
Taking quizzes online 3.8
Scheduled lab sessions, working alone 3.7
Studying with someone else 3.7
Working on programs outside of labs 3.7
Studying alone 3.5
Lectures 3.3

Answers to the fourth question show that student like and would
recommend Python (Table 5).

Table 5. Python evaluation

Select answers to these questions from 1 (least important) to 5
(most important).

Would you recommend Python as a first language
to beginners in computing?

4.5

Would you recommend Python programming to
others?

4.1

Would you recommend another language, not
Python, as a first language to beginners?

2.4

Our "Python First" course has been so well received that it has
been recently approved by Chapman University as a general
education science elective, thus opening new recruitment
opportunities for the computer science major. Since the
introduction of Python in CS1, the attrition rate in our Java-based
CS2 courses has not exceeded 4%.

4. REFERENCES
[1] Kelleher C., R. Pausch. Lowering the barriers to

programming: A taxonomy of programming environments
and languages for novice programmers. ACM Computing
Surveys, Vol. 37, Issue 2 (June 2005), 83 - 137.

[2] Lahtinen E., Ala-Mutka K., Järvinen H-M. A study of the
difficulties of novice programmers. ITiCSE'05 (Caparica,
Portugal), 14-18.

[3] Mahmoud, Q., W. Dobosiewicz, D. Swayne. Redesigning
introductory computer programming with HTML, JavaScript,
and Java. SIGCSE'04 (Norfolk, Virginia), 120 - 124.

[4] Radenski, A. Introduction to Computing with Python.
http://www.studypack.com.

[5] Radenski, A. Object-Oriented Computing with Java.
http://www.studypack.com.

[6] Rossum G. van. Computer programming for everybody.
http://www.python.org/doc/essays/cp4e.html

[7] Shannon C. Another breadth-first approach to CS 1 using
Python. SIGCSE'03 (Reno, Nevada), 248-251.

[8] The TeachScheme! Project. http://www.teach-scheme.org/.
[9] TIOBE Software. TIOBE programming community index.

http://www.tiobe.com/tpci.htm
[10] Zelle J. Python as a first language.

http://mcsp.wartburg.edu/zelle/python/python-first.html.

http://www.studypack.com/
http://www.studypack.com/
http://www.python.org/doc/essays/cp4e.html
http://www.teach-scheme.org/
http://www.tiobe.com/tpci.htm
http://mcsp.wartburg.edu/zelle/python/python-first.html

	1. THE NEED
	2. LANGUAGE CHOICE RATIONALE
	2.1 Python's Advantages
	2.2 Middle Way to CS1
	2.3 The Need for Java in CS2

	3. IMPLEMENTATION
	3.1 "Python First" Course
	3.2 Online Study Pack
	3.3 Self-Guided Labs

	CONCLUSIONS
	4. REFERENCES

