

Abstract – While merge sort is well-understood in parallel
algorithms theory, relatively little is known of how to
implement parallel merge sort with mainstream parallel
programming platforms, such as OpenMP and MPI, and run
it on mainstream SMP-based systems, such as multi-core
computers and multi-core clusters. This is misfortunate
because merge sort is not only a fast and stable sort
algorithm, but it is also an easy to understand and popular
representative of the rich class of divide-and-conquer
methods; hence better understanding of merge sort
parallelization can contribute to better understanding of
divide-and-conquer parallelization in general. In this paper,
we investigate three parallel merge-sorts: shared memory
merge sort that runs on SMP systems with OpenMP;
message-passing merge sort that runs on computer clusters
with MPI; and combined hybrid merge sort, with both
OpenMP and MPI, that runs on clustered SMPs. We have
experimented with our parallel merge sorts on a dedicated
Rocks SMP cluster and on a virtual SMP luster in the
Amazon Elastic Compute Cloud. In our experiments, shared
memory merge sort with OpenMP has achieved best speedup.
We believe that we are the first ones to concurrently
experiment with - and compare – shared memory, message
passing, and hybrid merge sort. Our results can help in the
parallelization of specific practical merge sort routines and,
even more important, in the practical parallelization of other
divide-and-conquer algorithms for mainstream SMP-based
systems.

Keywords: Parallel merge sort, OpenMP, MPI, SMP, Cluster
computing, cloud computing

1 Introduction
Merge sort is an efficient divide-and-conquer sorting
algorithm. Because merge-sort is easier to understand than
other useful divide-and-conquer methods, it is often
considered to be a typical representative of such methods, and
frequently used to introduce the divide-and-conquer approach
itself [3, Ch 2].

Intuitively, merge sort operates on an array of n objects as
follows: (1) if n > 1, divide the array into two sub-arrays of
about half the size each; (2) apply merge sort on each sub-

array; (3) merge the two sorted sub-arrays from step 2 into
one sorted array. For small arrays, some implementations
switch from recursive merge sort to non-recursive methods,
such as insertion sort – an approach that is known to improve
execution time. (Fig. 1 in Section 2.1 outlines a serial merge
sort implementation in C.)

The average complexity of merge sort is O(n log n) [7], the
same as quick sort and heap sort. In addition, best-case
complexity of merge sort is only O(n), because if the array is
already sorted, the merge operation perform only O(n)
comparisons; this is better than best case complexity of both
quick sort and heap sort. The worst case complexity of merge
sort is O(n log n) [7], which is the same as heap sort and
better than quick sort. However, classical merge sort uses an
additional memory of n elements for its merge operation (the
same as quick sort), while heap sort is an in-place method
with no additional memory requirements.

The average/best/worst asymptotic complexity of merge
sort is at least as good as the corresponding
average/best/worst asymptotic complexity of heap sort and
quick sort; despite of this, merge sort is often considered to be
slower than the other two in practical implementations. On
the positive side, merge sort is a stable sort method, in
contrast to quick sort and heap sort, which fail to maintain the
relative order of equal objects. The practical performance of
merge sort is known to improve with recursion removal and
cache memory utilization [8].

The focus of this paper is not on efficiency improvements
that are specific to merge sort. Instead, we regard recursive
merge sort as a typical and well-understood representative of
the divide-and-conquer approach. We use merge sort as a test
bed to explore parallelization schemes that may possibly
apply without significant changes to other divide-and conquer
methods.

Merge sort parallelization is well-studied in theory. For
example, Cole [2] describes a O(log n) parallel merge sort
algorithm for a CRW PRAM (an abstract machine which
neglects synchronization and communication), while Cormen
et al outline another O(log n) parallel merge sort for abstract
comparison networks [3, Ch. 27].

In contrast to theory, little is known of how to implement
parallel merge sort on mainstream architectures (such as
standalone and clustered Symmetric Multiprocessing
Systems, SMPs), by means of mainstream shared memory and

Shared Memory, Message Passing, and Hybrid Merge
Sorts for Standalone and Clustered SMPs

Atanas Radenski
School of Computational Sciences, Chapman University, Orange, California, USA

radenski@chapman.edu http://www.chapman.edu/~radenski

radenski
Typewritten Text

radenski
Typewritten Text

radenski
Typewritten Text

radenski
Typewritten Text
Radenski, A. Shared Memory, Message Passing, and Hybrid Merge Sorts for Standalone and Clustered SMPs. Proc. PDPTA’11, the 2011 International Conference on Parallel and Distributed Processing Techniques and Applications, CSREA Press (H. Arabnia, Ed.), 2011, pp. 367 - 373.

message passing platforms (such as OpenMP [13] and MPI
[12]). Our goal in this paper is to provide a better
understanding in this direction.

We choose OpenMP to parallelize merge sort on SMPs and
MPI to parallelize it on clustered systems. We choose
OpenMP to implement shared-memory merge sort on SMPs
because (i) OpenMP is standardized and comes ready-to-use
with contemporary C/C++ compilers, including compilers that
are freely available; (ii) OpenMP is easier to use than various
thread libraries because it supports a higher level parallel
programming model; (iii) OpenMP is can work on a wider
number of shared-memory computers as opposed to other
interesting yet less available higher-level frameworks, such as
UPC [4] and Orio [9]. We choose MPI to implement
message-passing merge sort on computer clusters because (i)
MPI is implemented for a broad variety of architectures,
including implementations that are freely available; (ii) MPI
is well documented; (iii) MPI has grown much more popular
than alternative platforms, such as PVM [5]. Finally, our
preference for an implementation language is ANSI C
because (i) C is fast and available on virtually any platform;
(ii) C can be used to implement merge sort versions with both
OpenMP and MPI, including a hybrid implementation of
parallel merge sort, based on both OpenMP and MPI (see
Section 2.3).

In the rest of this paper, we describe parallel merge-sort
algorithms with OpenMP and MPI, and evaluate their
performance (Section 2); then we offer conclusions (Section
3). Section 2.1 is devoted to a shared memory OpenMP
implementation of merge sort, while Section 2.2 delivers a
message-passing merge sort with MPI. Section 2.3 is focused
on a hybrid parallel sort that combines both OpenMP and
MPI. Section 2.4 evaluates and compares the performance of
the three parallel merge sorts as measured on a dedicated
SMP cluster. In addition, Section 2.5 describes experience
with the same parallel merge sorts on AWS, the Amazon
cloud computing platform [1] and provides performance
evaluation accordingly.

2 Recursive Merge Sort Parallelization
and Evaluation
Recursive merge sort is a typical and well-understood divide-
and-conquer algorithm (Fig. 1).

void mergesort_serial(int a[], int size, int temp[]) {
 if (size < SMALL) { insertion_sort(a, size); return; }
 mergesort_serial(a, size/2, temp);
 mergesort_serial(a + size/2, size - size/2, temp);
 merge(a, size, temp);
}
Fig. 1. Serial recursive merge sort in C. It sorts an array a
using additional array temp of the same size as a

We design parallel versions of this algorithm not as much
for the sake of merge sort parallelization alone, but to also
hopefully provide insights into parallelization of divide-and-
conquer algorithms in general. This is why we do not to
employ parallelization techniques that are (i) too specific for
merge sort or (ii) founded on specific functionality of
particular parallel computers.

2.1 Shared Memory Merge Sort with OpenMP
The OpenMP API [13] supports, on a variety of platforms,
programming of shared memory multiprocessing. With
OpenMP, C/C++ and Fortran programmers use a set of
compiler directives (pragmas), library routines, and
environment variables to specify multi-threaded execution
that is implicitly managed by the OpenMP implementation.

OpenMP supports a straightforward conversion of serial
recursive merge sort (Fig. 1) into a multi-threaded recursive
merge sort (Fig. 2). A parallel sections directive calls for
enclosed independent sections of code – as defined by nested
instances of the section directive - to be divided between
automatically generated threads (Fig. 2).

By default, the additional array temp is shared by all
threads. Therefore, the second recursive call from the serial
version (Fig. 1) must be modified to provide to each thread a
unique part of the shared additional temp array (Fig. 2).

void mergesort_parallel_omp

(int a[], int size, int temp[], int threads) {
 if (threads == 1) { mergesort_serial(a, size, temp); }
 else if (threads > 1) {
 #pragma omp parallel sections
 {

 #pragma omp section
 mergesort_parallel_omp(a, size/2, temp, threads/2);
 #pragma omp section
 mergesort_parallel_omp(a + size/2, size - size/2,
 temp + size/2, threads - threads/2);
 }
 merge(a, size, temp);
 } // threads > 1
}
Fig. 2. Shared memory parallel merge sort with OpenMP
(it uses parallel sections to assign recursive calls to threads)

It is possible to further parallelize the OpenMP merge sort

by parallelizing the merge operation as well. This can be done
by a conversion into OpenMP of a platform-specific
technique originally developed for the .Net Task Parallel
Library [6]. Reportedly, this technique can make parallel
merge sort 25% faster than parallel quick sort, probably
because the merge operation is easier to parallelize than quick
sort’s partition operation.

The performance of the above shared memory (with

OpenMP) implementation has been measured (i) on a stand-
alone multi-core computer and (ii) on an Amazon AWS’s
large multi-core instance; performance results are reported in
Sections 2.4 and 2.5 correspondingly.

2.2 Message-Passing Merge Sort with MPI
The MPI API [12] supports, on a variety of platforms,
programming of message-based communication between
processes and is typically used in distributed-memory
systems, such as computer clusters. With MPI, programmers
in a wide variety of languages use a set of library routines to
implement communication and synchronization between
processes.

Recall that OpenMP threads are dynamically assigned to
parallel sections when the execution reaches such sections.
This means that with OpenMP, the tree of recursive merge
sort calls is automatically mapped onto threads. In contrast to
OpenMP, all MPI processes start at once at the very
beginning of program execution, and all processes
concurrently execute the same code – the entire program.
Consequently, the MPI program must permit each process to
recognize its own place and role in the recursion tree. With
MPI, processes need to be explicitly programmed to map
themselves to nodes in the recursion tree, while with
OpenMP, it is OpenMP itself that straightforwardly maps
nodes from the recursion tree to threads. This difference
makes the task of the MPI programmer more complicated in
comparison to the task of the OpenMP programmer.

As MPI processes map themselves to nodes from the
recursion tree, they form a virtual process tree. Process 0 is at
the root of the tree, with the remaining processes appearing as
nodes of the tree (Fig. 3). The root process splits the data and
sends half of it to a helper process which sorts the data and
returns it to the root process (send operations are visualized
as arrows in Fig. 3). The other half of data is retained by the
root process for further sorting by using this same procedure
(data retention within processes are visualized by dotted lines
in Fig. 3). Once sorted, the two halves of data are merged by
the root process.

Fig. 3. MPI process tree for recursive merge-sort. Arrows
visualize communications with helper processes; dotted
lines represent data retained by process for further sorting

Note that the root process can further split its retained data

and send half of it to yet another helper process. Helper
processes themselves can follow the same procedure as the
root process. Splitting and sending data continues until each
MPI process becomes a node in the virtual process tree, i.e.
until all processes are sent some amount of data to sort.

All MPI processes run the same main function (Fig. 4)
which differentiates between the root process and helper
processes. The root process prepares the array to sort and
then invokes parallel merge sort while each helper process: (i)
receives data from its parent process; (ii) invokes parallel
merge sort; and (iii) sends sorted data back to parent (Fig. 3).
Note that each helper process calculates the level of its top-
most appearance in the process tree and passes it to the
parallel merge sort function (see Fig. 4).

int main(…) {
// ask MPI for my_rank;
if (my_rank == 0) {

// allocate array to sort then run root to sort it:
run_root_mpi(a, size, temp, …);

} else {
run_helper_mpi(my_rank, …);

}
// array is sorted;

}
void run_root_mpi (int a[], int size, int temp[], …) {

int level = 0;
mergesort_parallel_mpi(a, size, temp, level,…);

}
void run_helper_mpi(int my_rank, …) {

// probe MPI for a message from parent process
 // and identify message size and parent_rank;
 // allocate int a[size], temp[size];
 MPI_Recv(a, size, …, parent_rank, …);
int level=my_topmost_level(my_rank);
mergesort_parallel_mpi(a, size, temp, level, …);
 // send sorted array to parent process:
 MPI_Send(a, size,… , parent_rank, …);

}
int my_topmost_level_mpi(int my_rank) {

int level = 0;
while (pow(2, level) <= my_rank) level++;
return level;

}
Figure 4. Root and helper processes in MPI merge sort

Parallel merge sort is executed by various processes at

various levels of the process tree, with the root being at level
0, its children at level 1, and so on (Fig. 3). In that, the
process’s level and the MPI process rank are used to calculate
a corresponding helper process’s rank (Fig. 5). Then, merge
sort communicates for further sorting half of the array with
that helper process. Serial merge sort is invoked when no
more MPI helper processes are available. The helper’s rank
calculation method is adopted from Perera’s MPI quick sort

0

0 1

2 3 1 0

algorithm [10].

void mergesort_parallel_mpi

(int a[], int size, int temp[], int level, …) {
// my_rank is used to calculate helper rank:
int helper_rank = my_rank + pow(2, level);

 if (helper_rank > max_rank) {
mergesort_serial(a, size, temp);

 } else {
 // send second half of array, asynchronous:
 MPI_Isend(a+size/2, size-size/2, …, helper_rank, …);
 // sort first half:
 mergesort_parallel_mpi(a, size/2, temp, level+1, …);
 // receive second half sorted:
 MPI_Recv(a+size/2, size-size/2, …, helper_rank, …);

// merge the two sorted sub-arrays:
 merge(a, size, temp);
 }
}
Fig. 5. Message-passing parallel merge sort with MPI. It
uses explicit mapping of recursive calls to helper processes

The performance of the above message-passing (with MPI)

implementation is evaluated in Section 2.4.

2.3 Hybrid Merge Sort with MPI and OpenMP
A hybrid parallel architecture combines distributed and
shared memory in the same computing system. Some authors
prefer the term “multi-level” parallel architecture but we
choose to use “hybrid” for its brevity. An SMP cluster of
multi-processor multi-core nodes is a typical example of a
hybrid parallel system. Besides computer clusters, NUMA
computers, such as Compaq’s Alpha EV6 and SGI Origin can
also be viewed as hybrid parallel systems.

void mergesort_parallel_mpi_and_omp

(int a[], int size, int temp[], int level, int threads, …) {
int helper_rank = my_rank + pow(2, level);

 if (helper_rank > max_rank) {
mergesort_parallel_omp(a, size, temp, threads);

 } else {
 MPI_Isend(a+size/2, size-size/2, …, helper_rank, …);
 mergesort_parallel_mpi_and_omp
 (a, size/2, temp, level+1, threads, …);
 MPI_Recv(a+size/2, size-size/2, …, helper_rank, …);
 merge(a, size, temp);
 }
}
Fig. 6. Hybrid parallel merge sort with MPI and OpenMP

Recursive merge sort can be mapped rather

straightforwardly onto a hybrid parallel architecture by means
of MPI and OpenMP. On a hybrid system, MPI can provide

coarse-grain parallelism by mapping merge sort recursive
invocations onto a process tree (Fig. 3), as already discussed
in Section 2.2. In addition, OpenMP can provide finer-grain
parallelism by introducing multiple threads within individual
MPI processes, namely those MPI processes that are
visualized as leaf nodes in the process tree (Fig. 3). A more
formal outline of this approach is shown in Fig. 6.

Note that hybrid merge sort (Fig. 6) switches to shared
memory merge sort (rather than to serial merges sort) when
no more MPI helper processes are available, thus utilizing all
available processors and cores on each cluster node.

The performance of the above MPI + OpenMP hybrid
implementation is evaluated in Section 2.4.

2.4 Performance Evaluation
We measured the performance of our shared memory,
message-passing, and hybrid parallel merge sorts on a five-
node Rocks 5.2 cluster running OpenMPI 1.3 and OpenMP 3
under GNU/Linux. Each cluster node contained two Intel
Xeon quad-core processors running under a 2.80 MHz clock.
We executed our merge sorts with randomly generated arrays
of 107 integer elements. Note that cluster node capacity
permitted experiments with arrays consisting of up to 3*107

integer elements. No other applications were active on the
cluster during our performance measurements.

Table 1. Performance results on a standalone Rocks cluster
(all times are in seconds)

Pr
og

ra
m

O
pe

nM
P

Th
re

ad
s

M
PI

Pr

oc
es

se
s

N
od

es
 U

se
d

Co
re

s U
se

d

Av
er

ag
e

Ro

ck
s T

im
e

Ro
ck

s
Sp

ee
du

p

Serial

1 1 4.1 1.0
OpenMP 2 1 2 2.4 1.7

 4

1 4 1.6 2.6
 8

1 8 1.3 3.2

MPI 8 1 8 2.9 1.4

16 2 16 2.2 1.9

24 3 24 2.1 2.0

32 4 32 1.9 2.2

40 5 40 2.0 2.1
Hybrid 8 1 1 8 1.3 3.2

 8 2 2 16 1.5 2.7
 8 3 3 24 1.5 2.7
 8 4 4 32 1.9 2.2
 8 5 5 40 1.8 2.3

Shared memory merge sort (with OpenMP, Section 2.1)

was executed on 1, 2, 4, and 8 cores on the master node of the
Rocks cluster. Message-passing merge sort (with MPI,

Section 2.2) was executed on 1 to 5 nodes by using all
available cores on all nodes for MPI processes. Hybrid
memory merge sort (with MPI and OpenMP, Section 2.3) was
executed on 1 to 5 nodes by using one core on each node for
distributed MPI processes and all 8 cores for shared memory
OpenMP processes. Table 1 presents average wall-clock
times and speedup for serial, shared memory, message-
passing, and hybrid merge sorts.

In our experiments, shared memory merge sort runs faster
than message-passing merge sorts. Hybrid merge sort, while
still slower than shared memory merge sort, is faster than
message-passing merge sort.

Different OpenMP sections (see Fig. 2) may – or may not -
be executed by different threads. It is up to the runtime
environment to assign threads to sections, and the OpenMP
programmer has no control over thread-to-section assignment.
Our experiments show that the runtime environment may
overuse some threads and underuse others, as illustrated by
Table2. Despite of this inadequate load balancing, shared
memory merge sort with OpenMP still performs faster that
message-passing merge sort with MPI.

Table 2. Merge sort calls per a thread in a test execution

Thread # 0 1 2 3 4 5 6 7
Assigned calls 4 3 3 0 1 0 1 3

Our merge sorts process a single array that can be entirely

held in RAM on a single node. This setup is advantageous for
single node implementations with OpenMP and
disadvantageous for multiple-node implementations with
MPI. Indeed, such a centralized setup involves multiple MPI
data transmissions that begin and end with the root node; at
the same time, OpenMP is exempt from such transmissions.
Should the setup change to permit handling of “big data” that
do not fit in a single node RAM, all implementations would
require multiple I/O operations. In a “big data” setup, MPI’s
parallel I/O functionality may possibly provide considerable
advantages in comparison to pure OpenMP implementations.

Eventually, using OpenMP 3 tasks may offer some
performance benefits in comparison to parallel sections. We
chose to use parallel sections because they are simpler and
more intuitive; better documented; and more widely
implemented at this time.

2.5 Parallel Merge Sort on the Amazon Elastic

Compute Cloud
Amazon Web Services (AWS) is the first – and currently the
largest – public cloud computing platform that provides
virtual computing resources on a metered, pay-per-use basis
[1]. A goal of the AWS development was to offer as a public
utility part of the extensive Amazon data centers by means of
service-oriented virtualization. AWS incorporates a number
of services, most notably the Elastic Compute Cloud (EC2),

and also services built on top of EC2, such as the Elastic
MapReduce.

Using AWS’s EC2, we (i) launched a single server
instance; (ii) uploaded and compiled our OpenMP-based
shared memory merge sort; (iii) ran merge sort experiments
and collected performance data; (iv) terminated the server
instance. In the process, we were charged only for the actual
time during which our server instance was running, and the
charges were covered by a grant provided by Amazon.

To launch our AWS server, we used an abstract machine
image (AMI) provided by Amazon itself, a CentOS system
with an OpenMP-enabled C-compiler readily available. We
launched this AMI as a single 64-bit cluster compute instance
with 8 physical cores from two quad-core Intel Xeon
processors, running under a 2.93 GHz clock. With hyper
threading, the server provided 16 virtual cores. We executed
our shared memory merge sort with randomly generated
arrays of 107 integer elements, much like we did on the
standalone Rocks cluster (Section 2.4). Note that AWS server
capacity permitted experiments with arrays consisting of up to
109 integer elements, much larger than the 307 limit of our
standalone Rocks cluster nodes. On AWS, we chose to
systematically experiment with arrays of 107 integer elements
for the sake of performance comparisons with the standalone
Rocks installation.

Shared memory merge sort (with OpenMP) was executed
on 1, 2, 4, 8, and 16 cores on our AWS server. Table 3
presents average wall-clock times and speedup - for serial and
shared memory merge sorts on the AWS virtual server. For
the sake of more convenient comparisons, Table 3 includes
standalone Rocks cluster performance data from Table 1
(Section 2.4).

Table 3. Performance results on an AWS virtual server

Pr
og

ra
m

O
pe

nM
P

Th
re

ad
s

Vi
rt

ua
l

Co
re

s U
se

d

Ph
ys

ic
al

Co

re
s U

se
d

Av
er

ag
e

AW
S

Ti
m

e

Av
er

ag
e

Ro
ck

s T
im

e

AW
S

Sp
ee

du
p

Ro
ck

s
Sp

ee
du

p
Serial

1 1 2.5 4.1 1.0 1.0

OpenMP 2 2 2 1.4 2.4 1.8 1.7
 4 4 4 0.8 1.6 3.1 2.6
 8 8 8 0.5 1.3 4.7 3.2

16 16 8 0.5 4.7

Time and speedup data from Table 3 clearly indicate that

our rented AWS instance, being a physically hosted on a new
and more powerful shared memory computer, offered a clear
advantage in terms of performance as compared to our
dedicated Rocks node.

Looking at Table 3, one may conclude that hyper threading
is not particularly beneficial for our shared memory merge
sort. In fact, we found out that hyper threading becomes a
positive factor for larger arrays. Shared memory merge sort

(with OpenMP) was executed with large data sets on 8
physical and 16 virtual (with hyper threading) cores on our
AWS instance. Table 4 outlines performance of serial and
shared memory merge sorts on a set of very large arrays. This
table indicates speedup gains from hyper threading for larger
arrays.

Table 4. Performance with hyper threading on large data

O
pe

nM
P

M
er

ge
 S

or
t

Da
ta

 S
ize

Se
ria

l T
im

e

8
 P

hy
sic

al

Co
re

s -
 T

im
e

16
 V

irt
ua

l
Co

re
s -

 T
im

e

8
 P

hy
sic

al

Co
re

s –

Sp
ee

du
p

16
 V

irt
ua

l
Co

re
s -

Sp

ee
du

p

107 2.5 0.5 0.5 4.7 4.7
108 29.5 5.4 4.9 5.4 6.0

5*108 161 28.8 24.4 5.6 6.6
109 334 59.5 50.1 5.6 6.7

While launching and using a single high-performance AWS

instance is straightforward, configuring a multi-node virtual
MPI cluster on AWS is not as easy. As of the time of this
writing (March 2011), we are not aware of good quality
generic AMIs that can be used to launch MPI clusters by
following well documented, sound procedures. At the absence
of pre-packaged MPI-enabled cluster nodes, users who would
like to run MPI on AWS must act as system administrators
and build MPI-enabled, cluster-capable AMIs by themselves.
Despite of the technical difficulty of the process, we managed
to configure and fire a virtual SMP cluster on the on the
Amazon EC2.

To launch our AWS cluster, we created a custom AMI, an
Ubuntu Lucid system enhanced with MPI and containing our
own merge sort programs. We used this AMI to fire an MPI
cluster of five extra-large EC2 instances. In AWS
terminology, each instance was a 64-bit platform with 4
virtual cores. Again, we executed our message-passing merge
sort with randomly generated arrays of 107 integer elements,
just like we did on the standalone Rocks cluster (Section 2.4).

Note that although our AWS cluster and the standalone
Rocks cluster consisted of the same number of nodes, the two
clusters differed in their node architectures, including the
number of cores in each node (8 physical cores on the Rock
cluster as opposed to 4 virtual cores on the AWS cluster).
This is why it is difficult to formally compare performance
results obtained on these different clusters with our message-
passing merge sort. Yet, it became clear that our message-
passing merge sort achieved higher performance on the Rocks
cluster than on the AWS cluster. More important, execution
times that we measured on the AWS cluster were unstable and
varied in a much larger range than execution times on the
Rocks cluster.

Data in Table 5 illustrate the performance instability of the
AWS virtual cluster. Table 5 includes a representative
selection of: average, minimal, and maximal wall-clock times;

corresponding standard deviations; corresponding speedup
data for message-passing merge sort on the AWS virtual
cluster and, for comparison, on the Rocks cluster.

Table 5. Performance deviations, AWS and Rocks clusters

Pl
at

fo
rm

N
od

es

To
ta

l C
or

es

Av
er

 T
im

e

M
in

 T
im

e

M
ax

 T
im

e

St
an

da
rd

De

vi
at

io
n

Sp
ee

du
p

AWS 4 16 3.3 2.5 4.9 0.9 1.2

Rocks 4 32 1.91 1.89 1.93 0.02 2.2

AWS 5 20 13.6 3.0 40.5 11.9 0.3

Rocks cluster’s performance advantages over the AWS

cluster can be attributed to the following factors. First, our
AWS virtual nodes, being AWS EC2 instances, shared the
same hardware with other unknown AWS instances and their
applications, and load spikes in those anonymous applications
had been probably quite detrimental to the AWS virtual
cluster performance; in contrast, we had the Rocks cluster
dedicated to our experiments. Second, our Rocks cluster
nodes were physically located on the same rack while our
AWS virtual nodes were located in the same region, but quite
likely on different racks; thus slower and busier network
connections negatively affected AWS cluster performance
and stability. Last but not least, virtualization in EC2 may
induce significant penalties for scientific computing
workloads [14].

3 Conclusions
This paper introduces three parallel versions of recursive
merge sort: shared memory (with OpenMP), message-passing
(with MPI) and hybrid (with MPI and OpenMP). While
others have developed merge sort algorithms with either
multi-threading [6] or message-passing [11], this paper offers
comparable multi-threaded, message-passing, and hybrid
implementations. The paper reports performance experiments
with the three approaches and draws conclusions accordingly
(while neither [6], nor [11] report systematic performance
results of their individual algorithms). Out performance
experiments show that shared memory merge sort (with
OpenMP) is faster than message-passing merge sort (with
MPI) when applied to arrays that fit entirely in RAM; the
performance of hybrid merges sort falls between that of
shared merges sort and message passing merge sort. (These
relations, however, may not hold for very large arrays that
significantly exceed RAM capacity.) Note, however that
which programming paradigm is best widely depends on the
nature of the problem, the hardware and software in cluster
nodes, and the cluster network; for example, a fast network
can make a message-passing (with MPI) solution for some
problem faster than shared-memory (with OpenMP) and
hybrid solutions [15].

Last but not least, this paper describes cloud computing
experiments with shared memory merge sort (with OpenMP)
and with message-passing merge sort (with MPI) on AWS in
general and on the Amazon Elastic Compute Cloud in
particular. The use of OpenMP on AWS is straightforward; it
has led us to a better speedup, thanks to the readily available
high-performance instance on a pay-per-use basis. In contrast,
MPI virtual clusters are not readily available on AWS and
their configuration for AWS requires technical system
administration skills. Our experiments with a virtual AWS
cluster exhibited poor and unstable performance. A recent
EC2 benchmark performance analysis concludes that the
performance and reliability of the EC2 cloud are low [14].
Yet, the EC2 cloud “may still appeal to scientists who need
resources immediately and temporarily” [14]; our shared
memory merge sort EC2 experiments demonstrate that
specific problems and software may actually give
performance gains to the high-performance cloud user.

4 References
[1] Amazon Web Services. Retrieved on March 1, 2011 from

http://aws.amazon.com/.
[2] Cole , Richard. Parallel merge sort. SIAM Journal on Computing,

Volume 17 Issue 4, August 1988, 770-785.
[3] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,

Clifford. Introduction to Algorithms (3rd ed.), MIT Press, 2009.
[4] El-Ghazawi, Tarek; Carlson, William; Sterling, Thomas; Yelick,

Katherine. UPC: Distributed Shared Memory Programming. Wiley,
2005.

[5] Geist, Al; Beguelin, Adam; Dongarra, Jack; Jiang, Weicheng;
Manchek, Robert; Sunderam , Vaidy. PVM: Parallel Virtual Machine.
MIT Press, 1994.

[6] Huba , Dzmitry. Parallel merge sort. Retrieved on March 1, 2011 from
http://dzmitryhuba.blogspot.com/2010/10/parallel-merge-sort.html.

[7] Katajainen, Jyrki; Träff, Jesper L. A meticulous analysis of mergesort
programs. Lecture Notes in Computer Science, 1997, Volume
1203/1997, 217-228.

[8] LaMarca, Anthony; Ladner, Richard. The influence of caches on the
performance of sorting. Proc. 8th Ann. ACM-SIAM Symposium on
Discrete Algorithms (SODA97), 370–379.

[9] Orio: An Annotation-Based Empirical Performance Tuning
Framework. Retrieved on March 1, 2011 from
http://trac.mcs.anl.gov/projects/performance/wiki/Orio.

[10] Perera, Prasad. Parallel quicksort using MPI & performance analysis.
Retrieved on March 1, 2011 from
http://www.codeproject.com/KB/threads/Parallel_Quicksort/Parallel_Q
uick_sort_without_merge.pdf.

[11] Rolfe ,Timothy J. A Specimen of parallel programming: Parallel merge
sort implementation. ACM Inroads, Volume 1, Issue 4, December
2010, 72-79.

[12] The Message Passing Interface (MPI) standard. Retrieved on March 1,
2011 from http://www.mcs.anl.gov/research/projects/mpi/.

[13] The OpenMP specification for parallel programming. Retrieved on
March 1, 2011 from http://openmp.org.

[14] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema. A performance analysis of EC2 cloud computing services for
scientific computing. In: Cloud Computing: Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer, 2010, Vol. 34, Book
Series Editor: O. Akan et al., pp. 115-131.

[15] G. Jost, H. Jin, D. Mey, F. Hatay. Comparing the OpenMP, MPI, and
hybrid programming paradigms on an SMP cluster. NAS Technical
Report NAS-03-019, November 2003.

	2.1 Shared Memory Merge Sort with OpenMP
	2.2 Message-Passing Merge Sort with MPI
	2.3 Hybrid Merge Sort with MPI and OpenMP
	2.4 Performance Evaluation
	2.5 Parallel Merge Sort on the Amazon Elastic Compute Cloud

