
 

  
Abstract – While merge sort is well-understood in parallel 
algorithms theory, relatively little is known of how to 
implement parallel merge sort with mainstream parallel 
programming platforms, such as OpenMP and MPI, and run 
it on mainstream SMP-based systems, such as multi-core 
computers and multi-core clusters. This is misfortunate 
because merge sort is not only a fast and stable sort 
algorithm, but it is also an easy to understand and popular 
representative of the rich class of divide-and-conquer 
methods; hence better understanding of merge sort 
parallelization can contribute to better understanding of 
divide-and-conquer parallelization in general. In this paper, 
we investigate three parallel merge-sorts: shared memory 
merge sort that runs on SMP systems with OpenMP; 
message-passing merge sort that runs on computer clusters 
with MPI; and combined hybrid merge sort, with both 
OpenMP and MPI, that runs on clustered SMPs. We have 
experimented with our parallel merge sorts on a dedicated 
Rocks SMP cluster and on a virtual SMP luster in the 
Amazon Elastic Compute Cloud. In our experiments, shared 
memory merge sort with OpenMP has achieved best speedup. 
We believe that we are the first ones to concurrently 
experiment with - and compare – shared memory, message 
passing, and hybrid merge sort. Our results can help in the 
parallelization of specific practical merge sort routines and, 
even more important, in the practical parallelization of other 
divide-and-conquer algorithms for mainstream SMP-based 
systems.  
 
Keywords: Parallel merge sort, OpenMP, MPI, SMP, Cluster 
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1  Introduction 
Merge sort is an efficient divide-and-conquer sorting 
algorithm. Because merge-sort is easier to understand than 
other useful divide-and-conquer methods, it is often 
considered to be a typical representative of such methods, and 
frequently used to introduce the divide-and-conquer approach 
itself [3, Ch 2].  

Intuitively, merge sort operates on an array of n objects as 
follows: (1) if n > 1, divide the array into two sub-arrays of 
about half the size each; (2) apply merge sort on each sub-
 
 

array; (3) merge the two sorted sub-arrays from step 2 into 
one sorted array. For small arrays, some implementations 
switch from recursive merge sort to non-recursive methods, 
such as insertion sort – an approach that is known to improve 
execution time. (Fig. 1 in Section 2.1 outlines a serial merge 
sort implementation in C.) 

The average complexity of merge sort is O(n log n) [7], the 
same as quick sort and heap sort. In addition, best-case 
complexity of merge sort is only O(n), because if the array is 
already sorted, the merge operation perform only O(n) 
comparisons; this is better than best case complexity of both 
quick sort and heap sort. The worst case complexity of merge 
sort is O(n log n) [7], which is the same as heap sort and 
better than quick sort. However, classical merge sort uses an 
additional memory of n elements for its merge operation (the 
same as quick sort), while heap sort is an in-place method 
with no additional memory requirements.  

The average/best/worst asymptotic complexity of merge 
sort is at least as good as the corresponding 
average/best/worst asymptotic complexity of heap sort and 
quick sort; despite of this, merge sort is often considered to be 
slower than the other two in practical implementations.  On 
the positive side, merge sort is a stable sort method, in 
contrast to quick sort and heap sort, which fail to maintain the 
relative order of equal objects. The practical performance of 
merge sort is known to improve with recursion removal and 
cache memory utilization [8]. 

The focus of this paper is not on efficiency improvements 
that are specific to merge sort. Instead, we regard recursive 
merge sort as a typical and well-understood representative of 
the divide-and-conquer approach. We use merge sort as a test 
bed to explore parallelization schemes that may possibly 
apply without significant changes to other divide-and conquer 
methods.  

Merge sort parallelization is well-studied in theory. For 
example, Cole [2] describes a O(log n) parallel merge sort 
algorithm for a CRW PRAM (an abstract machine which 
neglects synchronization and communication), while Cormen 
et al outline another O(log n) parallel merge sort for abstract 
comparison networks [3, Ch. 27].  

In contrast to theory, little is known of how to implement 
parallel merge sort on mainstream architectures (such as 
standalone and clustered Symmetric Multiprocessing 
Systems, SMPs), by means of mainstream shared memory and 
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message passing platforms (such as OpenMP [13] and MPI 
[12]). Our goal in this paper is to provide a better 
understanding in this direction.  

We choose OpenMP to parallelize merge sort on SMPs and 
MPI to parallelize it on clustered systems. We choose 
OpenMP to implement shared-memory merge sort on SMPs 
because (i) OpenMP is standardized and comes ready-to-use 
with contemporary C/C++ compilers, including compilers that 
are freely available; (ii) OpenMP is easier to use than various 
thread libraries because it supports a higher level parallel 
programming model; (iii) OpenMP is can work on a wider 
number of shared-memory computers as opposed to other 
interesting yet less available higher-level frameworks, such as 
UPC [4] and Orio [9]. We choose MPI to implement 
message-passing merge sort on computer clusters because (i) 
MPI is implemented for a broad variety of architectures, 
including implementations that are freely available; (ii) MPI 
is well documented; (iii) MPI has grown much more popular 
than alternative platforms, such as PVM [5]. Finally, our 
preference for an implementation language is ANSI C 
because (i) C is fast and available on virtually any platform; 
(ii) C can be used to implement merge sort versions with both 
OpenMP and MPI, including a hybrid implementation of 
parallel merge sort, based on both OpenMP and MPI (see 
Section 2.3). 

In the rest of this paper, we describe parallel merge-sort 
algorithms with OpenMP and MPI, and evaluate their 
performance (Section 2); then we offer conclusions (Section 
3). Section 2.1 is devoted to a shared memory OpenMP 
implementation of merge sort, while Section 2.2 delivers a 
message-passing merge sort with MPI. Section 2.3 is focused 
on a hybrid parallel sort that combines both OpenMP and 
MPI.  Section 2.4 evaluates and compares the performance of 
the three parallel merge sorts as measured on a dedicated 
SMP cluster.  In addition, Section 2.5 describes experience 
with the same parallel merge sorts on AWS, the Amazon 
cloud computing platform [1] and provides performance 
evaluation accordingly. 

 

2  Recursive Merge Sort Parallelization   
and Evaluation  
Recursive merge sort is a typical and well-understood divide-
and-conquer algorithm (Fig. 1).  
 

void mergesort_serial(int a[], int size, int temp[]) { 
    if (size < SMALL) { insertion_sort(a, size); return; } 
    mergesort_serial(a, size/2, temp); 
    mergesort_serial(a + size/2, size - size/2, temp); 
    merge(a, size, temp);  
} 
Fig. 1. Serial recursive merge sort in C. It sorts an array a 
using additional array temp of the same size as a 

 

We design parallel versions of this algorithm not as much 
for the sake of merge sort parallelization alone, but to also 
hopefully provide insights into parallelization of divide-and-
conquer algorithms in general. This is why we do not to 
employ parallelization techniques that are (i) too specific for 
merge sort or (ii) founded on specific functionality of 
particular parallel computers. 

 
2.1  Shared Memory Merge Sort with OpenMP 
The OpenMP API [13] supports, on a variety of platforms, 
programming of shared memory multiprocessing. With 
OpenMP, C/C++ and Fortran programmers use a set of 
compiler directives (pragmas), library routines, and 
environment variables to specify multi-threaded execution 
that is implicitly managed by the OpenMP implementation. 

OpenMP supports a straightforward conversion of serial 
recursive merge sort (Fig. 1) into a multi-threaded recursive 
merge sort (Fig. 2). A parallel sections directive calls for 
enclosed independent sections of code – as defined by nested 
instances of the section directive - to be divided between 
automatically generated threads (Fig. 2).   

By default, the additional array temp is shared by all 
threads. Therefore, the second recursive call from the serial 
version (Fig. 1) must be modified to provide to each thread a 
unique part of the shared additional temp array (Fig. 2). 

 
void mergesort_parallel_omp 

(int a[], int size, int temp[], int threads) {   
    if ( threads == 1) { mergesort_serial(a, size, temp); } 
   else if (threads > 1) { 
       #pragma omp parallel sections 
       { 

  #pragma omp section 
   mergesort_parallel_omp(a, size/2, temp, threads/2); 
   #pragma omp section 
   mergesort_parallel_omp(a + size/2, size - size/2, 
            temp + size/2, threads - threads/2); 
       } 
       merge(a, size, temp);  
    } // threads > 1 
} 
Fig. 2. Shared memory parallel merge sort with OpenMP 
(it uses parallel sections to assign recursive calls to threads) 
 
It is possible to further parallelize the OpenMP merge sort 

by parallelizing the merge operation as well. This can be done 
by a conversion into OpenMP of a platform-specific 
technique originally developed for the .Net Task Parallel 
Library [6]. Reportedly, this technique can make parallel 
merge sort 25% faster than parallel quick sort, probably 
because the merge operation is easier to parallelize than quick 
sort’s partition operation.  

The performance of the above shared memory (with 



 

OpenMP) implementation has been measured (i) on a stand-
alone multi-core computer and (ii) on an Amazon AWS’s 
large multi-core instance; performance results are reported in 
Sections 2.4 and 2.5 correspondingly. 

 
2.2  Message-Passing Merge Sort with MPI 
The MPI API [12] supports, on a variety of platforms, 
programming of message-based communication between 
processes and is typically used in distributed-memory 
systems, such as computer clusters. With MPI, programmers 
in a wide variety of languages use a set of library routines to 
implement communication and synchronization between 
processes. 

Recall that OpenMP threads are dynamically assigned to 
parallel sections when the execution reaches such sections. 
This means that with OpenMP, the tree of recursive merge 
sort calls is automatically mapped onto threads. In contrast to 
OpenMP, all MPI processes start at once at the very 
beginning of program execution, and all processes 
concurrently execute the same code – the entire program. 
Consequently, the MPI program must permit each process to 
recognize its own place and role in the recursion tree. With 
MPI, processes need to be explicitly programmed to map 
themselves to nodes in the recursion tree, while with 
OpenMP, it is OpenMP itself that straightforwardly maps 
nodes from the recursion tree to threads. This difference 
makes the task of the MPI programmer more complicated in 
comparison to the task of the OpenMP programmer. 

As MPI processes map themselves to nodes from the 
recursion tree, they form a virtual process tree. Process 0 is at 
the root of the tree, with the remaining processes appearing as 
nodes of the tree (Fig. 3). The root process splits the data and 
sends half of it to a helper process which sorts the data and 
returns it to the root process (send operations are visualized 
as arrows in Fig. 3). The other half of data is retained by the 
root process for further sorting by using this same procedure 
(data retention within processes are visualized by dotted lines 
in Fig. 3). Once sorted, the two halves of data are merged by 
the root process.  

 
Fig. 3. MPI process tree for recursive merge-sort. Arrows 
visualize communications with helper processes; dotted 
lines represent data retained by process for further sorting 
 
Note that the root process can further split its retained data 

and send half of it to yet another helper process. Helper 
processes themselves can follow the same procedure as the 
root process. Splitting and sending data continues until each 
MPI process becomes a node in the virtual process tree, i.e. 
until all processes are sent some amount of data to sort.   

All MPI processes run the same main function (Fig. 4) 
which differentiates between the root process and helper 
processes. The root process prepares the array to sort and 
then invokes parallel merge sort while each helper process: (i) 
receives data from its parent process; (ii) invokes parallel 
merge sort; and (iii) sends sorted data back to parent (Fig. 3). 
Note that each helper process calculates the level of its top-
most appearance in the process tree and passes it to the 
parallel merge sort function (see Fig. 4). 
 

int main(…) {  
// ask MPI for my_rank; 
if (my_rank == 0) {  

// allocate array to sort then run root to sort it: 
run_root_mpi(a, size, temp, …); 

} else {   
run_helper_mpi(my_rank, …);      

}  
// array is sorted; 

} 
void run_root_mpi (int a[], int size, int temp[], …) { 

int level = 0; 
mergesort_parallel_mpi(a, size, temp, level,…);  

} 
void run_helper_mpi(int my_rank, …) { 

// probe MPI for a message from parent process 
 // and identify message size and parent_rank; 
 // allocate int a[size], temp[size]; 
 MPI_Recv(a, size, …, parent_rank, …); 
int level=my_topmost_level(my_rank); 
mergesort_parallel_mpi(a, size, temp, level, …);   
 // send sorted array to parent process: 
 MPI_Send(a, size,… , parent_rank, …); 

} 
int my_topmost_level_mpi(int my_rank) { 

int level = 0; 
while (pow(2, level) <= my_rank) level++; 
return level; 

} 
Figure 4. Root and helper processes in MPI merge sort 
 
Parallel merge sort is executed by various processes at 

various levels of the process tree, with the root being at level 
0, its children at level 1, and so on (Fig. 3). In that, the 
process’s level and the MPI process rank are used to calculate 
a corresponding helper process’s rank (Fig. 5). Then, merge 
sort communicates for further sorting half of the array with 
that helper process. Serial merge sort is invoked when no 
more MPI helper processes are available. The helper’s rank 
calculation method is adopted from Perera’s MPI quick sort 

0 

0 1 

2 3 1 0 



 

algorithm [10]. 
 
void mergesort_parallel_mpi 

(int a[], int size, int temp[], int level, …) { 
// my_rank is used to calculate helper rank: 
int helper_rank = my_rank + pow(2, level); 

    if (helper_rank > max_rank) { 
mergesort_serial(a, size, temp); 

    } else { 
        // send second half of array, asynchronous: 
        MPI_Isend(a+size/2, size-size/2, …, helper_rank, …); 
        // sort first half: 
        mergesort_parallel_mpi(a, size/2, temp, level+1, …); 
        // receive second half sorted: 
        MPI_Recv(a+size/2, size-size/2, …, helper_rank, …); 

// merge the two sorted sub-arrays: 
        merge(a, size, temp); 
    }  
} 
Fig. 5. Message-passing parallel merge sort with MPI. It 
uses explicit mapping of recursive calls to helper processes 
 
The performance of the above message-passing (with MPI) 

implementation is evaluated in Section 2.4. 
 

2.3  Hybrid Merge Sort with MPI and OpenMP 
A hybrid parallel architecture combines distributed and 
shared memory in the same computing system. Some authors 
prefer the term “multi-level” parallel architecture but we 
choose to use “hybrid” for its brevity. An SMP cluster of 
multi-processor multi-core nodes is a typical example of a 
hybrid parallel system. Besides computer clusters, NUMA 
computers, such as Compaq’s Alpha EV6 and SGI Origin can 
also be viewed as hybrid parallel systems. 

 
void mergesort_parallel_mpi_and_omp 

(int a[], int size, int temp[], int level, int threads, …) { 
int helper_rank = my_rank + pow(2, level); 

    if (helper_rank > max_rank) { 
mergesort_parallel_omp(a, size, temp, threads); 

    } else { 
        MPI_Isend(a+size/2, size-size/2, …, helper_rank, …); 
        mergesort_parallel_mpi_and_omp 
   (a, size/2, temp, level+1, threads, …); 
        MPI_Recv(a+size/2, size-size/2, …, helper_rank, …); 
        merge(a, size, temp); 
    }  
} 
Fig. 6. Hybrid parallel merge sort with MPI and OpenMP 
 
Recursive merge sort can be mapped rather 

straightforwardly onto a hybrid parallel architecture by means 
of MPI and OpenMP. On a hybrid system, MPI can provide 

coarse-grain parallelism by mapping merge sort recursive 
invocations onto a process tree (Fig. 3), as already discussed 
in Section 2.2. In addition, OpenMP can provide finer-grain 
parallelism by introducing multiple threads within individual 
MPI processes, namely those MPI processes that are 
visualized as leaf nodes in the process tree (Fig. 3). A more 
formal outline of this approach is shown in Fig. 6. 

Note that hybrid merge sort (Fig. 6) switches to shared 
memory merge sort (rather than to serial merges sort) when 
no more MPI helper processes are available, thus utilizing all 
available processors and cores on each cluster node. 

The performance of the above MPI + OpenMP hybrid 
implementation is evaluated in Section 2.4. 
 
2.4  Performance Evaluation 
We measured the performance of our shared memory, 
message-passing, and hybrid parallel merge sorts on a five-
node Rocks 5.2 cluster running OpenMPI 1.3 and OpenMP 3 
under GNU/Linux. Each cluster node contained two Intel 
Xeon quad-core processors running under a 2.80 MHz clock. 
We executed our merge sorts with randomly generated arrays 
of 107 integer elements. Note that cluster node capacity 
permitted experiments with arrays consisting of up to 3*107 

integer elements. No other applications were active on the 
cluster during our performance measurements. 
 

Table 1. Performance results on a standalone Rocks cluster 
(all times are in seconds) 
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40 5 40 2.0 2.1 
Hybrid 8 1 1 8 1.3 3.2 

  8 2 2 16 1.5 2.7 
  8 3 3 24 1.5 2.7 
  8 4 4 32 1.9 2.2 
  8 5 5 40 1.8 2.3 

 
Shared memory merge sort (with OpenMP, Section 2.1) 

was executed on 1, 2, 4, and 8 cores on the master node of the 
Rocks cluster. Message-passing merge sort (with MPI, 



 

Section 2.2) was executed on 1 to 5 nodes by using all 
available cores on all nodes for MPI processes. Hybrid 
memory merge sort (with MPI and OpenMP, Section 2.3) was 
executed on 1 to 5 nodes by using one core on each node for 
distributed MPI processes and all 8 cores for shared memory 
OpenMP processes. Table 1 presents average wall-clock 
times and speedup for serial, shared memory, message-
passing, and hybrid merge sorts.  

In our experiments, shared memory merge sort runs faster 
than message-passing merge sorts. Hybrid merge sort, while 
still slower than shared memory merge sort, is faster than 
message-passing merge sort.  

Different OpenMP sections (see Fig. 2) may – or may not - 
be executed by different threads. It is up to the runtime 
environment to assign threads to sections, and the OpenMP 
programmer has no control over thread-to-section assignment. 
Our experiments show that the runtime environment may 
overuse some threads and underuse others, as illustrated by 
Table2. Despite of this inadequate load balancing, shared 
memory merge sort with OpenMP still performs faster that 
message-passing merge sort with MPI. 

 
Table 2. Merge sort calls per a thread in a test execution 

Thread # 0 1 2 3 4 5 6 7 
Assigned calls 4 3 3 0 1 0 1 3 

 
Our merge sorts process a single array that can be entirely 

held in RAM on a single node. This setup is advantageous for 
single node implementations with OpenMP and 
disadvantageous for multiple-node implementations with 
MPI. Indeed, such a centralized setup involves multiple MPI 
data transmissions that begin and end with the root node; at 
the same time, OpenMP is exempt from such transmissions. 
Should the setup change to permit handling of “big data” that 
do not fit in a single node RAM, all implementations would 
require multiple I/O operations. In a “big data” setup, MPI’s 
parallel I/O functionality may possibly provide considerable 
advantages in comparison to pure OpenMP implementations. 

Eventually, using OpenMP 3 tasks may offer some 
performance benefits in comparison to parallel sections. We 
chose to use parallel sections because they are simpler and 
more intuitive; better documented; and more widely 
implemented at this time. 
 
2.5  Parallel Merge Sort on the Amazon Elastic 

Compute Cloud 
Amazon Web Services (AWS) is the first – and currently the 
largest – public cloud computing platform that provides 
virtual computing resources on a metered, pay-per-use basis 
[1]. A goal of the AWS development was to offer as a public 
utility part of the extensive Amazon data centers by means of 
service-oriented virtualization. AWS incorporates a number 
of services, most notably the Elastic Compute Cloud (EC2), 

and also services built on top of EC2, such as the Elastic 
MapReduce.  

Using AWS’s EC2, we (i) launched a single server 
instance; (ii) uploaded and compiled our OpenMP-based 
shared memory merge sort; (iii) ran merge sort experiments 
and collected performance data; (iv) terminated the server 
instance. In the process, we were charged only for the actual 
time during which our server instance was running, and the 
charges were covered by a grant provided by Amazon. 

To launch our AWS server, we used an abstract machine 
image (AMI) provided by Amazon itself, a CentOS system 
with an OpenMP-enabled C-compiler readily available. We 
launched this AMI as a single 64-bit cluster compute instance 
with 8 physical cores from two quad-core Intel Xeon 
processors, running under a 2.93 GHz clock. With hyper 
threading, the server provided 16 virtual cores. We executed 
our shared memory merge sort with randomly generated 
arrays of 107 integer elements, much like we did on the 
standalone Rocks cluster (Section 2.4). Note that AWS server 
capacity permitted experiments with arrays consisting of up to 
109 integer elements, much larger than the 307 limit of our 
standalone Rocks cluster nodes. On AWS, we chose to 
systematically experiment with arrays of 107 integer elements 
for the sake of performance comparisons with the standalone 
Rocks installation. 

Shared memory merge sort (with OpenMP) was executed 
on 1, 2, 4, 8, and 16 cores on our AWS server. Table 3 
presents average wall-clock times and speedup - for serial and 
shared memory merge sorts on the AWS virtual server. For 
the sake of more convenient comparisons, Table 3 includes 
standalone Rocks cluster performance data from Table 1 
(Section 2.4). 

 
Table 3. Performance results on an AWS virtual server 
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16 16 8 0.5  4.7  

 
Time and speedup data from Table 3 clearly indicate that 

our rented AWS instance, being a physically hosted on a new 
and more powerful shared memory computer, offered a clear 
advantage in terms of performance as compared to our 
dedicated Rocks node.  

Looking at Table 3, one may conclude that hyper threading 
is not particularly beneficial for our shared memory merge 
sort. In fact, we found out that hyper threading becomes a 
positive factor for larger arrays.  Shared memory merge sort 



 

(with OpenMP) was executed with large data sets on 8 
physical and 16 virtual (with hyper threading) cores on our 
AWS instance. Table 4 outlines performance of serial and 
shared memory merge sorts on a set of very large arrays. This 
table indicates speedup gains from hyper threading for larger 
arrays. 

Table 4. Performance with hyper threading on large data 
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While launching and using a single high-performance AWS 

instance is straightforward, configuring a multi-node virtual 
MPI cluster on AWS is not as easy. As of the time of this 
writing (March 2011), we are not aware of good quality 
generic AMIs that can be used to launch MPI clusters by 
following well documented, sound procedures. At the absence 
of pre-packaged MPI-enabled cluster nodes, users who would 
like to run MPI on AWS must act as system administrators 
and build MPI-enabled, cluster-capable AMIs by themselves. 
Despite of the technical difficulty of the process, we managed 
to configure and fire a virtual SMP cluster on the on the 
Amazon EC2. 

To launch our AWS cluster, we created a custom AMI, an 
Ubuntu Lucid system enhanced with MPI and containing our 
own merge sort programs. We used this AMI to fire an MPI 
cluster of five extra-large EC2 instances. In AWS 
terminology, each instance was a 64-bit platform with 4 
virtual cores. Again, we executed our message-passing merge 
sort with randomly generated arrays of 107 integer elements, 
just like we did on the standalone Rocks cluster (Section 2.4). 

Note that although our AWS cluster and the standalone 
Rocks cluster consisted of the same number of nodes, the two 
clusters differed in their node architectures, including the 
number of cores in each node (8 physical cores on the Rock 
cluster as opposed to 4 virtual cores on the AWS cluster). 
This is why it is difficult to formally compare performance 
results obtained on these different clusters with our message-
passing merge sort. Yet, it became clear that our message-
passing merge sort achieved higher performance on the Rocks 
cluster than on the AWS cluster. More important, execution 
times that we measured on the AWS cluster were unstable and 
varied in a much larger range than execution times on the 
Rocks cluster.  

Data in Table 5 illustrate the performance instability of the 
AWS virtual cluster. Table 5 includes a representative 
selection of: average, minimal, and maximal wall-clock times; 

corresponding standard deviations; corresponding speedup 
data for message-passing merge sort on the AWS virtual 
cluster and, for comparison, on the Rocks cluster.  

 
Table 5. Performance deviations, AWS and Rocks clusters 
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Rocks cluster’s performance advantages over the AWS 

cluster can be attributed to the following factors. First, our 
AWS virtual nodes, being AWS EC2 instances, shared the 
same hardware with other unknown AWS instances and their 
applications, and load spikes in those anonymous applications 
had been probably quite detrimental to the AWS virtual 
cluster performance; in contrast, we had the Rocks cluster 
dedicated to our experiments. Second, our Rocks cluster 
nodes were physically located on the same rack while our 
AWS virtual nodes were located in the same region, but quite 
likely on different racks; thus slower and busier network 
connections negatively affected AWS cluster performance 
and stability. Last but not least, virtualization in EC2 may 
induce significant penalties for scientific computing 
workloads [14]. 

 

3  Conclusions 
This paper introduces three parallel versions of recursive 
merge sort: shared memory (with OpenMP), message-passing 
(with MPI) and hybrid (with MPI and OpenMP). While 
others have developed merge sort algorithms with either 
multi-threading [6] or message-passing [11], this paper offers 
comparable multi-threaded, message-passing, and hybrid 
implementations. The paper reports performance experiments 
with the three approaches and draws conclusions accordingly 
(while neither [6], nor [11] report systematic performance 
results of their individual algorithms).  Out performance 
experiments show that shared memory merge sort (with 
OpenMP) is faster than message-passing merge sort (with 
MPI) when applied to arrays that fit entirely in RAM; the 
performance of hybrid merges sort falls between that of 
shared merges sort and message passing merge sort. (These 
relations, however, may not hold for very large arrays that 
significantly exceed RAM capacity.) Note, however that 
which programming paradigm is best widely depends on the 
nature of the problem, the hardware and software in cluster 
nodes, and the cluster network; for example, a fast network 
can make a message-passing (with MPI) solution for some 
problem faster than shared-memory (with OpenMP) and 
hybrid solutions [15]. 



 

Last but not least, this paper describes cloud computing 
experiments with shared memory merge sort (with OpenMP) 
and with message-passing merge sort (with MPI) on AWS in 
general and on the Amazon Elastic Compute Cloud in 
particular. The use of OpenMP on AWS is straightforward; it 
has led us to a better speedup, thanks to the readily available 
high-performance instance on a pay-per-use basis. In contrast, 
MPI virtual clusters are not readily available on AWS and 
their configuration for AWS requires technical system 
administration skills. Our experiments with a virtual AWS 
cluster exhibited poor and unstable performance. A recent 
EC2 benchmark performance analysis concludes that the 
performance and reliability of the EC2 cloud are low [14]. 
Yet, the EC2 cloud “may still appeal to scientists who need 
resources immediately and temporarily” [14]; our shared 
memory merge sort EC2 experiments demonstrate that 
specific problems and software may actually give 
performance gains to the high-performance cloud user.  
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