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Abstract 

In response to a long-lasting anticipation by the Java community, version 1.5 of the 

Java 2 platform - referred to as Java 5 - introduced generic types and methods to 

the Java language. The Java 5 generics are a significant enhancement to the 

language expressivity because they allow straightforward composition of new generic 

classes from existing ones while reducing the need for a plethora of type casts. While 

the Java 5 generics are expressive, the chosen implementation method, type erasure, 

has triggered undesirable orthogonality violations. This paper identifies six cases of 

orthogonality violations in the Java 5 generics and demonstrates how these 

violations are mandated by the use of type erasure. The paper also compares the 

Java 5 cases of orthogonality violations to compatible cases in C# 2 and NextGen 2 

and analyzes the trade-offs in the three approaches. The conclusion is that Java 5 

users face new challenges: a number of generic type expressions are forbidden, 

while others that are allowed are left unchecked. 

Categories and Subject Descriptors 
D.3.3 [Language Constructs and Features]: Polymorphism; Data types and 

structures; D.3.m [Miscellaneous]: Generics 

General Terms 
Languages, Design 

Keywords 
Genericity, orthogonality, type erasure, Java, NextGen, C# 

1. Introduction 

A language without type parameters can still support generic programming. The first 

version of Java offered a popular generic library of container classes, in which the 
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role of a type parameter is taken by the root of the class hierarchy, the Object class 

(Gosling and Henry, 1996). Actual type arguments can be inserted through type 

casts and type tests. In this way, the language offers a generic idiom (Bracha et al., 

1998b) that is based on well known and established language features, without the 

complexity of type parameters. Meanwhile, the Java community had promptly 

recognized that the use of the generic idiom leads to programs that are uneasy to 

read and to maintain, and are more likely to fail with runtime errors (Bracha et al., 

2001). In addition, the extensive use of type casts that are required by the generic 

idiom is detrimental to execution speed. Some authors consider the use of the Object 

class as a generic parameter too cumbersome or even insufficient to capture some 

generic concepts (Agesen et al., 1997). Direct linguistic support for genericity had 

become one of the most frequently requested extensions to Java.  

Several popular languages that support generics, such as C++, Ada, Modula 3, 

Eiffel, Haskell, and ML, have provided valuable experience of how type parameters 

can be incorporated in Java; see (Garcia R. et al., 2003) for a comparative study. 

Adding generics to Java has been extensively explored by several groups (Agesen et 

al., 1997; Bank J. et al., 1997; Bracha et al. 1998b; Allen and Cartwright, 2002). 

Some of this research experience has been used by Sun Microsystems in a formal 

process of adding generics to Java. As a result, version 1.5 of the Java 2 platform, 

also known as Java 5 or “Tiger”, introduced generic types and methods to the Java 

language. 

The Java 5 generics extend Java with type polymorphism. The Java 5 

approach is essentially the same as in the GJ language (Bracha et al., 1998b), a 

descendant of Pizza (Odersky and Wadler, 1997). In Java 5 type parameters can be 

used to define generic classes and methods. Type expressions can be used as 

arguments for type parameters. In contrast to the generic idiom, the use of type 

parameters allows the compiler to replace some runtime type tests with compile time 

tests, and to generate some useful type tests and type casts, without engaging the 

programmer in this activity. When compared to the generic idiom, type parameters 

seem to make generic code easier to read and to reduce the chance of failing 

runtime tests. Typical use of type parameters in the generic Java 5 is illustrated in 

Table 1. 
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abstract class Ring<E> { 

    E e; 

    protected Ring () { } 

     abstract Ring<E> add(Ring<E> other); 

     abstract Ring<E> mul(Ring<E> other); 

     abstract Ring<E> zero(); 

     E get() { return e; } 

     void set(E e) { this.e = e; } … 

} 

class RingOfInt extends Ring<Integer> { 

    RingOfInt add(Ring<Integer> other) { 

       e = e + other.get(); return this; } 

    RingOfInt mul(Ring<Integer> other) { … } 

    RingOfInt zero() {  

       e = new Integer(0); return this; } 

    RingOfInt() { zero(); } … 

} 

Table 1. Definitions1 of a generic class Ring and its client, class RingOfInt.  

The syntax of the Java 5 generics is superficially similar to C++ templates. 

This superficial syntactic similarity is intended to provide a feeling of familiarity with 

the new language features. However, the similarity with C++ does not run deep, 

because the two languages use completely different translation patterns for their 

genericity (Ghosh, 2004).  

C++ template instantiation is implemented through a translation process 

termed code specialization. Through code specialization, a C++ compiler only 

instantiates those portions of generic code that are actually used in a particular C++ 

program. This means that a C++ class instantiated from a class template may have 

less executable code that a regular non-generic class in C++. A benefit of code 

specialization is that generic class members that are not needed in a particular C++ 

program do not in fact exist in the instantiated class code, opposite to a non-generic 

class which is present in the executable with all its members no matter whether they 

are used or not [ISO, 1998]. On the negative side, generic type checking is 

performed at instantiation time, on the template instance, and not on the template 

itself. This situation can lead to incomprehensible error messages and this can be 

problematic, especially when the template developer and the template user are 

different persons.  

                                   
1 Operations in RingOfInt return values of the newly defined type, RingOfInt. The 

parameters of these operations, however, cannot be of type RingOfInt. Such 

parameters can have the composed Ring<Integer> type instead. As noted later, the 

awkwardness described is due to the lack of covariant rules, or type alias facilities 

(class synonyms). Either would fix the problem. 
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In contrast to the C++ templates, Java 5 generics are translated by means of 

an operation termed type erasure that removes type parameters and replaces them 

when necessary with concrete types, typically class Object (Bracha et al., 1998a). 

The translation performs all possible type checks at compile time and automatically 

generates appropriate type casts. This process is termed code sharing. A benefit 

from this translation pattern is that it generates a single class file to be used by all 

generic instances. Roughly speaking, the Java translation pattern converts programs 

that use the Java 5 generics into programs that use the traditional generic idiom.  

We have designed a comprehensive generic composition example in order to 

evaluate the expressivity of the Java 5 generics. Generic composition is a suitable 

testbed because it represents complex, deep relationships among generic types. This 

testbed is also used to evaluate the ease of use of the Java 5 generics and to 

systematically identify Java 5 orthogonality violations.  

This paper only focuses on selected generic Java 5 features that are needed 

for the discussion of all essential orthogonality violations that stem from type erasure, 

six of them altogether. To keep the size of this article within reasonable limits, we do 

not discuss generic Java 5 features that are not essential for the analysis of 

orthogonality violations, such as single and multiple bounds for the type parameters, 

wildcards, subtypes and super-types of parameterized types, generic methods, and 

bridge methods. More importantly, the exclusion of these features allowed us to run 

and compare the same generic experiments in three different languages: Java 5, 

NextGen 2, and C#. Other publications analyze the special generic features of Java 5 

quite well (Bracha et al., 1998b; Bracha, 2004). In addition, a beneficial overview of 

various changes in the Java language throughout its evolution is offered in (Kamil, 

2003).  

We chose Java 5 and C# because they are important mainstream languages, 

and we chose NextGen 2 because it satisfies the Java genericity goals without 

sacrificing orthogonality so much as Java 5 does. In addition, a separate related 

work section reviews a number of other projects that are related to Java 5 generics. 

The rest of the paper is organized as follows. Section Generic Composition 

discusses the use of generic class composition, providing a comprehensive example 

of generic composition. Section Generics Design: Constraints and Solutions focuses 

on the Java 5 generics design and its impact on the Java compatibility and 

orthogonality. This section also compares the Java 5 genericity to alternative 

approaches adopted in C# 2 and NextGen 2. Section Orthogonality Violations 
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presents six cases of orthogonality violations in the generic Java 5 and also analyzes 

these same cases in the context of C# 2 and NextGen 2. Alternative approaches to 

genericity in Java are presented in section Related Work. The paper ends with 

Conclusions that summarize the paper's findings and outlines the paper's original 

contributions.  

2. Generic Composition 

2.1. Background 

Type parameters have been considered critical for using collection libraries in a 

flexible, yet safe way (Bracha et al., 1998a). Providing adequate support for 

parameterized collections has been stated as the first goal for the design of the Java 

5 generics, and the core Collections API has been targeted as the most important 

customer of the Java 5 genericity (Bracha et al., 2001; Naftalin and Wadler, 2006). 

Sun Microsystems has proclaimed that the Java 5 genericity adds compile-time type 

safety to its Collections Framework and eliminates the drudgery of casting. The vast 

majority of published samples of Java generics are various generic collections. 

Still, the Java 5 generics can have uses that go beyond generic collections. In 

this paper, we are particularly interested in using the Java 5 generics to define 

generic classes through generic composition. The generic Java 5 Collections API, 

being straightforward converted-to-generics version of the traditional Java 

Collections API, heavily relies on class and object composition, but offers very little 

insight in the potential of generic composition.  

The main purpose of this section is to investigate the Java 5 support for 

generic composition. We offer an extensive example of Java-based generic 

composition which points to two Java 5 generic features that are detrimental to 

readability and simplicity. More important, the same generic composition example is 

employed in later sections as a testbed to reveal Java 5 orthogonality violations. In 

addition to Java 5, the same generic composition example has been also 

implemented in C# 2 and NextGen 2. This triple implementation has served as a 

common comparison base for the Java 5, C# 2, and NextGen 2 genericity 

approaches. This section does not introduce fancier features of the Java 5 generics 

that are irrelevant to any of our orthogonality concerns. This intentional omission 

should not be a problem for the reader because all fancy features of the Java 5 

generics have already been discussed by others.  
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Functional composition allows building new functions from existing ones: 

given functions f(y) and g(x), their composition f(g(x)) defines a function of x. 

Generic composition is intuitively similar to functional composition: given type 

expressions P<F> and Q<E> that depend on type parameters F and E 

correspondingly, their composition P<Q<E>> is a type expression that depends on 

the parameter E2. Functional composition can employ an arbitrary nesting level, such 

as in h(f(g((x)), y), and so can generic composition, as in R<P<Q<E>>, F> for 

example. Type expressions designate types. In Table 1, for instance, the type 

expression Ring<E> is used to designate the return type and the parameter type of 

methods add() and mul().  

Type expressions are the fundamental core of generic composition in Java. 

Type expressions can be built by generic or non-generic type identifiers, such as Ring 

and Integer, type parameters, such as E in Ring<E>, and array types. The scope of a 

type parameter is its introducing class or interface declaration. The composition rules 

for type expressions are fairly intuitive. For example, Ring<Integer, Integer> is an 

invalid type expression because the generic class Ring introduces exactly one type 

parameter (see Table 1). A complete specification of the generic Java type system is 

available by Gosling et al., 2005. 

                                   
2 In the context of this publication, type expressions involve only type names and 
parameters. We do not consider type features that are not essential for the analysis 
of orthogonality violations, such as bounded type parameters, wildcards, subtypes 
and super-types of parameterized types. 
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2.2. Generic Composition Example 

Some researchers believe that it is particularly difficult to build generic classes by 

means of generic composition. It is claimed (1) that doing so would require 

considerable foresight to provide the appropriate parameters, and (2) that it may be 

problematic to obtain the required subclass relationship (Palsberg and Schwartzbach, 

1994). Our experience, however, is that generic composition in Java 5 can be 

successfully used to construct sets of interrelated generic classes.  

Table 2 outlines a sample set of classes declared with extensive use of 

generic composition. Please, refer to the Appendix for implementations of all classes 

from Table 2.  

Declared Class Base Class Recursive Composition 

Ring<E> Object      - 

RingOfInt Ring<Integer>      - 

Array<E> Object      - 

ArrayOfRing<E> Array<Ring<E>>       - 

ArrayOfArray<E> Array<Array<E>> Yes 

Matrix<E> Ring<ArrayOfArray<Ring<E>>> Yes 

MatrixOfInt Matrix<Integer>      - 

MatrixOfMatrix<E> Matrix <Matrix<E>> Yes 

RingOfBool Ring<Boolean>      - 

MatrixOfBool Matrix<RingOfBool>      - 

Table 2.  Classes declared with extensive use of generic composition.  

2.3. Java 5 Difficulties with Generic Composition 

Although the Java 5 generics allow for deep generic composition with many levels of 

generic type nesting, there is more to be desired with respect to readability and 

simplicity. In particular, the absence of (1) covariant parameters and (2) class 

synonyms can be detrimental for the simplicity and readability of generically 

composed classes. 

Covariant Parameters. A language supports covariance if, when an inherited 

method is redefined, parameter types or the result type can be replaced by more 

specific types. Java 5 introduced covariant return types. Consider the following 

excerpt from our generic composition example (see Table 2 and the Appendix for 

details). 
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class Matrix<E> extends Ring<ArrayOfArray<Ring<E>>> { … 

Matrix<E> add(Ring<ArrayOfArray<Ring<E>>> other) {… } … 

} 

 

The return type covariance of Java 5 allows the return type Matrix<E> of the 

overriding method add() in class Matrix<E> to be an extension of the return type 

Ring<E> of the overridden method in class Ring<E>.  

In Java 5, covariance only applies to return types but does not apply to 

formal parameter types in overriding methods. This limitation forces the use of bulky 

parameter type expressions such as Ring<ArrayOfArray<Ring<E>>>other. While it 

is unfortunate that covariance does not apply to argument types, it is fair to say that 

this is not a peculiar drawback of Java 5. In fact, covariant argument types in 

languages like Java 5 and C# would be statically unsound; hence their 

implementation would impose some runtime overhead. 

Class Synonyms. In a generic language, it can be beneficial to have a class 

declaration method that is alternative to subclassing (Palsberg and Schwartzbach, 

1994). Such an alternative class declaration method introduces a synonym of a class, 

rather than a true subclass, and the synonym can be used where the original class is 

expected. The original class and its synonym share the same super and subclasses. 

If the generic Java 5 had this type of mechanism, Matrix<E> could have been 

declared as a synonym of Ring<ArrayOfArray<Ring<E>>>, as shown below. 

 

class Matrix<E> is Ring<ArrayOfArray<Ring<E>>> { // synonym declaration 

 Matrix<E> add(Matrix<E> other) {… }  // synonym as parameter type 

…} 

 

The above example shows how synonyms would have simplified generic definitions 

and would have made them more readable.  

Synonym declarations should be used when subclassing is not actually needed. 

As a matter of fact, type parameters in the generic Java 5 are effectively synonyms 

of actual classes, typically class Object. Other languages, such as C++ and Standard 

ML support synonyms, which reduces the verbosity of generic code (Garcia et al., 

2003). Unfortunately, synonyms are not universally supported in Java. Introducing 

synonym declarations in the generic Java 5 would have reduced the complexity of 

the otherwise bulky type expressions. 
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3. Generics Design: Constraints and Solutions 

In this section, we offer a comparative review of the design of generics in Java 5, C# 

2, and NextGen 2 with a focus on design constraints and on adopted solutions. This 

overview lays the foundation for the next section, where we present six different 

cases of orthogonality violations in Java 5 and analyze the same cases in the context 

of C# 2 and NextGen 2. 

3.1. Generic Java 5 

The design of the Java 5 generics was guided by a comprehensive list of design 

constraints (Bracha et al., 2001; Cabana et al., 2004). Several crucial design 

constraints require compatibility of the Java 5 generic code with legacy code. These 

constraints mandate the possibility to: 

 Run new generic Java code on an unmodified legacy JVM  

 Use legacy Java code in new generic Java code 

 Use new generic Java code in legacy Java code 

Compliance with the above compatibility constraints ensures, for example, 

that an applet that uses generics will run on a browser with a standard JVM, 

including a JVM that has been released prior to the introduction of generics. It should 

be obvious that compatibility constraints are of paramount importance for a Java 

language extension, as they are for the extension of any language with a significant 

amount of legacy software.  

Compatibility constraints have been satisfied in Java through the introduction 

of several new techniques, such as type erasure, retrofitting, raw types, weakened 

assignment compatibility rules, and unchecked warnings. We introduce these 

techniques in the rest of this subsection as a preparation for our technical discussion 

of orthogonality violations. 

Type erasure is an operation that transforms Java 5 generic code into code 

that utilizes the legacy generic idiom (see Section 1). When used as a translation 

pattern, type erasure transforms all instances of a generic class into the same 

compiled class and this single class exists at runtime to represent all instances.  

For example, type erasure translates Ring<Integer>, Ring<Boolean>, and 

Ring<ArrayOfArray<Ring<Integer>>> into a single Ring class that is used at 

runtime to implement all of them. The term type erasure is somewhat misleading 

because it implies erasing all generic type information. In fact, generic type 

information is stored by the compiler in the class file in the form of an extra 
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"signature" attribute, an option that is supported by the original JVM class file format. 

The "signature" attribute is ignored by the JVM, but is now used by the compiler to 

support separate compilation.  

The JVM has never been meant to support type parameters. Hence, generic 

type information is not loaded into the JVM at runtime (Cabana et al., 2004). This 

lack of generic type information inhibits runtime type tests and type casts on 

parameterized types. Attempts to use instanceof type tests on type expressions 

result in compilation error messages. Type casts result in warning messages at 

compile time and in possible exceptions at runtime, such as ClassCastException for 

example. On the positive side, since the JVM is unchanged in the transition to the 

generic Java 5, no performance degradation is expected (Gosling et al., 2005). 

Retrofitting is a compiler mode that allows adding generic type information to 

non-generic legacy code. Technically, the developer provides a retrofitting file that 

defines a new generic interface for the legacy code, and the compiler adds this 

interface to the class file (using the "signature" attribute discussed above). Thus, a 

retrofitted legacy file looks as if it were a compiled Java 5 generic file. 

To facilitate interfacing with non-generic legacy code, it is possible to use as a 

legitimate type the erasure of a generic type expression. Such a type is called a raw 

type (Bracha et al., 1998a). A raw type is non-generic and has no type parameters. 

Special weakened assignment compatibility rules allow assignments between generic 

types and their corresponding raw types. For example, a variable rawRing that has 

been declared to have the raw type Ring is assignment compatible with variables 

intRing of type Ring<Integer> and boolRing of type Ring<Boolean>. The 

assignments rawRing = intRing and rawRing = boolRing are harmless and are 

permitted. To ensure compatibility with legacy code, the assignments intRing = 

rawRing and boolRing = rawRing are also permitted - despite of them being unsafe 

and able to contribute to a runtime inconsistency. For example, such assignments 

allow interoperation between a legacy Ring that is based on the generic idiom, and a 

generic Ring.  

In order to support interoperability between new generic code and legacy 

code, the Java 5 compiler allows unsafe raw type assignments, but issues the so-

called unchecked conversion warnings. These warnings signal the compilation of 

unsafe assignments that can not be type checked - neither at compile time nor at 

run time. Such unsafe assignments may produce type inconsistencies at runtime and 

fail. On the positive end, any source code that compiles without warning messages is 
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guaranteed to be type safe (Gosling et al., 2005). Type safety in this context means 

that a ClassCastException may only be raised by an explicit cast, but not by an 

implicit cast added by the type erasure transformation. 

3.2. Generic C# 2 

The .NET Framework is similar to the Java Platform. It is based on an Intermediate 

Language (IL), which is analogous to the Java byte-code. Programs are executed by 

the Common Language Runtime (CLR), the .NET version of the JVM. At the time of 

our generic experiments, the latest .NET release was 2.0 Beta 2. Through this paper 

we use short references, such as .NET 2 and C# 2. 

When it comes to generics there are considerable architectural differences 

between the Java 5 Platform and the .NET Framework 2 (Hejlsberg, 2004). While the 

Java 5 generics were founded on the approach taken in the GJ language (Bracha et 

al., 1998b), the .NET 2 generics were inspired by Baby IL with generics (Yu et al., 

2004). Each design supports generics, but achieves this new functionality with a 

different central goal. Java 5 requires full backward compatibility with existing JVMs. 

In contrast to Java 5, .NET 2 dismisses any backward compatibility requirements 

with 1.x virtual machines, and strives for forward compatibility only, namely having 

1.x code operate successfully on 2.0 platforms.  

In .NET 2, the CLR and IL components have been redesigned to allow for 

generic types to be explicitly represented at runtime. Backward compatibility is lost 

as a result from the redesign.  

Generics are implemented in C# 2 through a combination of code 

specialization and code sharing. 

Generic value types, such as List<bool>, are implemented via code 

specialization.  This method involves code replication for each value type, a process 

that is managed by the JIT compiler. 

Generic reference types, such as List<string>, are implemented via code 

sharing. As discussed in Section 1, code sharing generates a single class file to be 

used by all generic instances. In addition, the compiler builds type dictionaries that 

are used by the CLR at runtime to guarantee type-safe use of a shared generic class 

files. 

By using code sharing when possible - instead of pure code specialization – 

C# 2 limits generic code size overhead to 10% to 20% (Kennedy and Syme, 2001).  
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An essential feature of the C# 2 generics is the availability of complete type 

information at runtime (Kennedy and Syme, 2001). This information permits 

adequate type inference and supports type-safe operations. Also, considerably more 

type-checks can be performed statically by the C# 2 compiler than by the Java 5 

compiler, because of the C# 2 designers’ decision not to support raw types. On the 

negative side, the generic .NET CLR is not backward compatible and may not execute 

old non-generic code, while a current JVM can execute both types of code. This 

difference stems from the different goals of the Java and .NET design teams. 

We successfully implemented our generic composition example in C# 2 but 

faced some difficulties. A most significant limitation of the C# 2 generics turned out 

to be the complete absence of support for covariant types3. The C# 2 designers 

accepted this limitation to increase execution speed (Kennedy and Syme, 2001).  

This tradeoff forces the developer to use even more verbose signatures than those in 

Java 5. An illustration of a verbose C# 2 signature is presented below.  

 

public override Ring<ArrayOfArray<Ring<E>>> add(Ring<ArrayOfArray<Ring<E>>> other) {…} 

 

In contrast to C# 2, Java 5 at least supports covariant return types. An illustration of 

a less verbose Java 5 signature is presented below. 

 

public Matrix<E> add(Ring<ArrayOfArray<Ring<E>>> other){… } 

 

We have already criticized (in section 2) the lack of class synonyms in Java 5. 

Unfortunately, synonyms are not supported by C# 2 as well. 

3.3. Generic NextGen 2 

NextGen (Allen et al., 2002) is an extension to the GJ compiler that is compatible 

with existing JVMs. It resembles the .NET approach described in the previous 

subsection. Like Java 5, NextGen adds generics to the Java language but in contrast 

to Java 5, NextGen makes generic types available at runtime. Instead of erasing type 

information, the NextGen compiler keeps type attributes (Allen and Cartwright, 

2004): the generic type information is stored in a new template class’ constant pool. 

This pool is used by a custom class loader to create type-safe generic instances. The 

                                   
3 Strictly speaking, this is not an orthogonal issue to the point of this paper, because 
it actually hinders writing both parametric and nonparametric abstractions. 
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performance of NextGen is similar to that of Java 5. Because some of the operations 

are in-lined and the average generic instruction overhead is small, NextGen pays 

little performance penalties. In some cases type safety can be statically ensured by 

the compiler thus reducing runtime tests. In such cases the NextGen performance 

improves in comparison to Java 5 (Allen et al., 2002). 

Like Java 5, NextGen does not support type synonyms; it also offers 

covariance in method return types. Covariance for type parameters is announced to 

be future work for the NextGen project. 

We tested our generic composition example (see Section 2) in NextGen 2 - a 

recent release of NextGen. No code modifications were necessary for the transition 

from Java 5 to NextGen 2 because our generic composition example employs only 

generic features that are present in both Java 5 and NextGen 2. Unfortunately, the 

NextGen 2 implementation was undocumented and unstable at the time of our 

experiments. Our generic composition example compiled successfully in NextGen 2 

but with an unexpected "unchecked cast" warning. Even worse, when the code 

produced by NextGen 2 was executed in the standard JVM, an unexpected 

ClassCastException was thrown. Our NextGen 2 generic composition experiments 

were difficult because of the unstable state of the NextGen 2 implementation. 

3.4. Tradeoffs in Approaches to Genericity 

There are advantages and disadvantages to the three approaches to genericity in 

Java 5, C# 2, and NextGen 2.  

Java's type erasure allows for backward compatibility, but prohibits type 

information at runtime. This approach is justified for a language with significant 

legacy software. Unfortunately, when a developer adds generic Java 5 code to non-

generic legacy Java code, the reliability of the entire code may become problematic 

because of the absence of runtime tests in generic code.  

By changing the runtime environment, as in the case of C# 2's CLR, generic 

types can be made available at runtime, but this eliminates backward compatibility. 

This approach can be acceptable for a language without considerable legacy code. 

The benefit is that new code can easily be deemed type safe.  

Enhanced class loaders, as in NextGen 2, can distinguish types; this otherwise 

beneficial approach does not seem as well tested as Java's type erasure.  

Unfortunately, the NextGen 2 developer is expected to implement explicit conversion 
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routines between generic NextGen 2 code and legacy Java code, to support the strict 

type rules of NextGen (Allen et al., 2002). 

4. Orthogonality Violations 

4.1. Overview 
The need to satisfy compatibility constraints has led to various orthogonality 

violations in the generic Java 5. Orthogonality in a programming language means 

that “a relatively small set of primitive constructs can be combined in a relatively 

small number of ways to build the control and data structures of the language” 

(Sebesta, 2002). “Furthermore, every possible combination of primitives is legal and 

meaningful.” Good orthogonality means unrestricted combinations of primitive 

linguistic features; poor orthogonality means excessive restrictions on how primitives 

are used in programs.  

The very implementation techniques that have been used to satisfy important 

compatibility constraints have led to orthogonality violations in the generic Java 5. 

The choice of type erasure as a translation pattern has been crucial in this respect: It 

means that type parameters do not exist at runtime. Consequently, a number of 

language features cannot work well with parameterized types. Type erasure has 

been detrimental to the possibility of combining parameterized types with such 

language features as: 

 Subclassing 

 Constructor invocations 

 Class-wide static entities 

 Type tests 

 Type casts 
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In some cases, Java 5 disallows the use of features from the above list in 

parameterized types. In other cases, the application of such features is allowed but 

the compiler issues an unchecked warning, thus telling the programmer that the 

generated code is unsafe and may fail at runtime.  

To conduct orthogonality violation experiments, we have ported our generic 

composition example (Section 2) to C# 2. Then we have compiled the generic 

composition example using the following language processors: 

 Generic Java: 

o The Sun Microsystems JDK 5 

o The CodeGuide 7 IDE of Omnicore, which was the first IDE to support 

the Java 5 generics and sometimes provides more meaningful error 

messages than the JDK (Omnicore Software, 2004) 

o NextGen 2 release 20050221-1718 

 Generic C#: 

o C# 2 under the .NET Framework 2.0 Beta 2 release 

The rest of this section specifies various cases of orthogonality violations in 

the generic Java 5 and also presents these same cases in the context of C# 2 and 

NexGen 2. Each case is illustrated by a brief Java source code sample followed by 

corresponding error, warning, or information messages for all three languages. A C# 

2 source is given only if the code differs from the provided Java code. A NextGen 2 

source is not given, as the source is always the same as the Java source. 

4.2. Subclassing of a Type Parameter 
Subclassing of a type parameter E, as in class T<E> extends E {} is disallowed in 

Java 5 (see illustration in Table 3).  As a result of type erasure, a type parameter 

does not have its own runtime representation; hence it cannot serve as a base class. 

Subclassing of type parameters is disallowed in C# 2 as well but is supported by 

NextGen 2.  

Java 5 source: class T<E> extends E {} 

C# 2 source: class T<E>:E 

JDK 5 message: unexpected type found: type parameter E required class 

CodeGuide message: This type cannot be subclassed 

C# 2 message: Cannot derive from 'E' because it is a type parameter 

NextGen 2 message: Compiles successfully 

Table 3. Orthogonality violation illustration: Subclassing of a type parameter 
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Though the subclassing of a type parameter is forbidden in Java 5, the use of 

class T<E> extends Q<E> {} is allowed in the same language. Indeed, with the use 

of type erasure, there is no reason to ban the extension of Q<E>, as it in fact 

translates to T extends Q.  

The subclassing in the form T<E> extends E of a type parameter E is a 

desirable feature for the implementation of mixins, because mixins encourage code 

reuse without the linguistic complexities of built-in multiple inheritance. In contrast 

to Java 5, mixins are available in Java extensions that run on existing JVMs, such as 

Jam (Ancona et al., 2000). In NextGen 2, support for mixins is also available. 

4.3. Constructor Invocation with a Type Parameter 
Creating an instance of a type variable is illegal in all three languages. In Java, this 

kind of constructor invocation is disallowed because the type is completely 

unavailable at runtime (see illustration in Table 4). In C# 2, the compiler does not 

have enough information about the type to generate a working constructor. As can 

be seen in the error message, the compiler cannot determine if the type defines the 

new() constraint. Recall, all value types include a default no-arg constructor, but 

reference types do not. Hence, E must be constrained to include the no-arg 

constructor. In NextGen 2, because type parameters are translated as abstract 

classes or interfaces, they cannot be directly instantiated. It is indicated that this 

functionality can be added to NextGen in the future (Allen et al., 2002).  

Java 5 source: E e1 = new E(); 

JDK 5 message: unexpected type found: type parameter E required: class 

CodeGuide message: There is no applicable constructor 

C# 2 message: Cannot create an instance of the variable type 'E' because 

it doesn't have the new() constraint 

NextGen 2 message: unexpected type found: type parameter E required: class 

Table 4. Orthogonality violation illustration: Constructor invocation with a type 
parameter 

4.4. Constructor Invocation with a Generic Array  
It is illegal in Java 5 to instantiate an array whose elements are specified by means 

of a type parameter in particular and by means of any type expression in general 

(see illustration in Table 5). Since type erasure drops type information, the JVM has 

no information as to what type of array object to create (Gosling et al., 2005). In C# 

2, adequate type information is available to the CLR hence this kind of constructor 

invocation is permitted. The NextGen 2 restriction on type parameter constructor 
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invocation (as discussed in the previous section) is lifted in this case, because no 

formal constructor is actually being called. 

Java 5 source: E[] a1 = new E[10]; 

JDK 5 message: generic array creation 

CodeGuide message: The array creation is not allowed because the created 

array is actually of type java.lang.Object 

C# 2 message: Compiles successfully 

NextGen 2 message: Compiles successfully 

Table 5. Orthogonality violation illustration: Constructor invocation with an array 
type parameter 

4.5. Static Access 
Using a type parameter to declare a static variable is forbidden in Java 5 (see 

illustration in Table 6). The Java Language Specification declares that doing so 

creates a compile time error, although no explanation is given (Gosling et al., 2005). 

In fact, the absence of type information at run time would make a static generic 

variable type unsafe, as explained later in this section. Because C# 2 does store type 

information, generic static variable declarations are permitted. Although the NextGen 

2 approach claims that any static variables are allowed (Allen et al., 2002), there 

seems to be problems with their actual implementation, as illustrated by our Table 6 

data. 

Java 5 Source #1: static E e2; 

Java 5 Source #2: static E[] a2; 

JDK 5.0 message: non-static class E cannot be referenced from a static 

context 

CodeGuide message: This parameter type cannot be referenced from static 

context 

C# 2 message: Compiles successfully 

NextGen 2 message: non-static class E cannot be referenced from a static 

context 

Table 6. Orthogonality violation illustration: Static access 
 

Let us assume for a moment that it is possible to declare a static generic 

variable, static E e2, in a generic Java 5 class T<E>. Instances of T<E> can be 

defined by substitution of various type arguments for the type parameter E of T<E> 

such as for example T<Object> and T<String>. As already discussed in the 

Introduction, the Java 5 compiler uses type erasure to generate a single class file for 
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T<E>. This class file is shared by all generic instances, such as T<Object> and 

T<String>. Recall that a static variable such as e2 is shared between all instances of 

the generic class T<E>. The problem is that the type of e2 in T<Object> is Object, 

while the type of this same variable, e2, is String in T<String>. To avoid this 

problem, Java 5 forbids generic static variables. In contrast to Java 5, C# preserves 

type information at run time. This feature makes it possible to interpret different 

generic instances of T<E> as different types, such as T<Object> and T<String>, 

despite the fact that such instances share the same code as compiled from T<E>. 

4.6. Type Test against Type Expression 
It is forbidden to test a Java 5 object against a type parameter, E (see illustration in 

Table 7). As a consequence of type erasure, the type parameter E does not exist at 

runtime, hence the type test object instanceof E cannot be supported by the JVM. 

Consequently, Java 5 programmers need to simulate the missing functionality 

through alternative and possibly awkward techniques, such as the usage of 

additional interfaces as wrappers. The Java 5 ban of generic type tests is reduced to 

unchecked warnings in NextGen 2. (Technically, we have managed to replace error 

messages with warnings by using the–Xlint:unchecked compilation flag.) In C# 2, 

the type does exist at runtime and can be used for type tests. 

Java 5 source:  boolean test(Object o) { return o instanceof E; } 

C# 2 source: bool test(Object o) { return o is E; } 

JDK 5 message: unexpected type found: E required: class or array 

CodeGuide message: Warning: It is not possible to check at runtime whether an 

instance of type java.lang.Object is of type E 

C# 2 message: Compiles successfully 

NextGen 2 message: warning: [unchecked] unchecked cast found: 

java.lang.Object required: E 

Table 7. Orthogonality violation illustration: Type test of a type parameter 

 
Not only is it forbidden to test a Java 5 object against a type parameter, E, 

but it is also forbidden to test a Java 5 object against a type expression, such as 

T<E>. The only difference between the two cases is in the Java 5 implementation 

that produces different error messages. Type erasure is the common cause of both 

restrictions. 
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4.7. Type Casts 
In Java 5, using a type expression, T<E>, to cast an object is not formally forbidden 

because of the need to support amalgamation of suitable non-generic legacy code 

with new generic code. Although some type casts can be statically checked, most 

casts require run-time checks. However, in the absence of runtime generic type 

information, generic typecasts cannot be verified at run time. This is why the Java 5 

compiler generates a warning message, indicating that the cast is actually not 

checked at run time (Gosling et al., 2005). Such unchecked casts can easily trigger 

run time type cast failures in completely unexpected places of the program. In C# 2, 

since the type information is available, the cast is valid. NextGen 2 implements T as 

an abstract class.  T<E> is implemented as a subclass of T, and the implementation 

is called an instantiation class. NextGen 2 uses several implementation techniques 

for type casts, depending on the code context. In the simplest case, the instantiation 

class of T<E> is used to type-cast. When subclassing is involved, the so-called 

instantiation interface for T<E> is used; however, this type must be recast to the 

base type of T (Allen et al., 2002). In general, NextGen 2 can not safely implement 

all possible type casts, and the NextGen 2 compiler issues warnings like the Java 5 

compiler.  

Java 5 source: T<E> method() { return (T<E>) new Object(); } 

JDK 5 message: warning: [unchecked] unchecked cast found: 

java.lang.Object required: T<E> 

CodeGuide message: Warning: This cast is unsafe because it is impossible to 

check at run time whether an instance of type 

java.lang.Object is of type T<E> 

C# 2 message: Compiles successfully 

NextGen 2 message: warning: [unchecked] unchecked cast found: 

java.lang.Object required: T<E> 

Table 8. Orthogonality violation illustration: Type casts 
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4.8. Orthogonality Tradeoffs 

Our study of orthogonality violations in the generic Java 5 has led us to the following 

conclusions: 

 The use of parameterized type expressions to declare variables, method 

return types, and method parameter types is straightforward and 

unrestricted. 

 All other references to parameterized type expressions are problematic – 

they are either disallowed, or they are allowed but unchecked.  

We have found out that the main cause for the orthogonality violations in 

Java 5 is the type erasure translation pattern - which has been adopted as a means 

to satisfy compatibility restrictions. Type erasure, in fact, prohibits runtime 

operations that depend on generic parameters, such as type tests and type casts, for 

example. The generic C# 2 approach changes the entire .NET Framework, including 

the CLR, and loses compatibility. In contrast to C# 2, NextGen 2 achieves genericity 

without changes to the JVM. By using a custom class loader and actually storing type 

information, some of the Java 5 orthogonality violations, such as subclassing of a 

type parameter, are no longer violations in NextGen 2. While there are some bugs in 

the NextGen 2 implementation, they can probably be resolved in future releases. The 

NextGen 2 approach proves it is possible to implement generics without modifying 

the virtual machine as the generic Java 5 does, but without having as many 

sacrifices of orthogonality as in the case of Java 5. 

4.9. Limitations on Generic Type Definitions   

This paper is focused on limitations of the use of Java 5 generic types in 

combinations with other language facilities, such as subclassing, constructor 

invocations, static entities, type tests, and type casts. In Java 5, a different group of 

limitations apply to the possibility to define generic types whatsoever. More 

specifically, exception classes, enumeration types, and anonymous inner classes 

cannot be generic in Java 5. While it is not our goal to study these limitations in 

detail, we provide an overview in this section. 

An exception class is by definition derived from class Throwable. To handle an 

exception, the JVM needs to uniquely identify the particular class of each exception 

object, in order to match the exception object with a suitable catch clause. However, 

type erasure makes it impossible to distinguish between different instances of a 
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generic exception, because it replaces all them with the same raw type. Hence, 

generic exception classes are disallowed whatsoever in Java 5. 

Enumeration values are implemented as static entities. As discussed in 

section 4.5, static access cannot be combined with type parameters. Hence, generic 

enumeration types are entirely disallowed in Java 5. 

By definition, anonymous classes do not have names. For multiple 

instantiations of a generic class, the availability of a class name is essential. While it 

is possible to design a language mechanism that instantiates anonymous classes, 

such opportunity is not practically relevant. Hence, generic anonymous classes are 

not available in Java 5. 

In contrast to Java 5, C# 2 generic types are explicitly represented at runtime. 

Hence, C# 2 supports generic exception classes, while Java 5 does not. Unlike Java 5, 

C# 2 does not support anonymous classes but offers anonymous methods, and 

anonymous methods can be based on type parameters. In C# 2, stand-alone 

enumeration types cannot be directly defined with generic parameters. However, 

enumeration type declarations that are nested in generic classes can actually be 

based on those classes' generic parameters. Hence, in C# 2 generic enumeration 

types can be defined indirectly - through nesting in other generic types, in contrast 

to Java 5, which completely excludes generic enumerations.  

5. Related Work 

The generic Java 5 uses type erasure to implement generic types. This approach 

trades orthogonality for backward compatibility. In contrast, the generic C# 2 

sacrifices compatibility but honors orthogonality. NextGen 2 dismisses type erasure 

in a bid to prove that backward compatibility can be maintained with fewer sacrifices 

of orthogonality. These three approaches have been already discussed in previous 

sections of this paper. This section is devoted to some alternative practical 

approaches to the introduction of generics in Java.  

A naïve generics implementation technique would be to use pure code 

specialization to create runtime types for generic objects. Such an approach would 

be very similar to the C++ template expansion. Custom class loaders supplied by the 

developer together with all developed class files can handle the proper loading of 

new generic types. This method requires no JVM byte code modifications, but leads 

to obvious code bloating and potential performance penalties (Myers et al., 1997). 

An enhancement of this approach can ensure code sharing (in the style of Java 5, 
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but without type erasure) by preserving some additional type information at runtime. 

Unfortunately, such additional runtime type information may not be easily accessed 

from legacy runtime environments, especially those that were not designed with 

future extensions in mind. 

Some researchers have explored alternative methods of embedding type 

information in objects during compile time (Viroli and Natali, 2000). This solution 

leads to some code expansion and runtime penalties because reflection is employed 

to extract type information. 

PolyJ is an extension of Java 1.0 that supports generic types. PolyJ classes 

can run on the JVM and Java classes can work with PolyJ's classes. The problem is 

that in its non-generic parts, PolyJ is limited to Java 1.0 features only, and more 

recent language functionality is not implemented. Thus, PolyJ is backward compatible 

but with an outdated version of the Java language only. In PolyJ, small wrapper 

classes - called trampoline classes - provide access to generic base objects; this 

implementation is code sharing. Primitive types such as int are also available for 

parameterization - a beneficial feature in comparison to Java and NextGen 2. A 

variety of structures can be statically deemed type safe, which eliminates the need 

for runtime checks. Hence, performance has been reported to improve by up to 17% 

for specific cases (Myers et al., 1997).  

The PolyJ compiler is available for use; however, it does not provide adequate 

diagnostics. While the compiler does provide information about parsing errors, in 

many cases no information other than “Compilation failed” is given. Our attempt to 

develop and test generic cases has proved to be rather difficult. 

Java ParTy is an enhanced version of the Java compiler with support for 

parameterized types. It is a good first step in the design and implementation of 

generics; as such, not all features present in Java 5 are implemented in Java ParTy. 

The Java ParTy approach makes use of code specialization and provides compatibility 

with the original JVM. Instead of inducing code bloat during compilation, Java ParTy 

defers type creation until runtime. This approach means that instead of extra storage 

space, extra memory is needed to hold each individual object type. The Java ParTy 

compiler creates a ParTy class, which is just a regular Java class file enhanced with 

type information stored in the constant pool. During load time, a preprocessor takes 

the ParTy classes and creates parameterized class instances, in the form of regular 

Java classes that can be used as types. An extended class loader loads these new 

classes for use within the original JVM. The preprocessor steps clearly slow down 
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performance, but because typecasting is not required, noteworthy runtime 

improvements can be achieved. Additional work, such as parameterization of 

primitives, is claimed to be underway (Li et al., 2000). Unfortunately, the Java ParTy 

compiler is not available for evaluation, and further comparisons cannot be made. 

All projects discussed above testify that type erasure, although a fundamental 

mechanism in the generic Java 5 is not the only plausible method to implement 

generics or to provide backward compatibility. However, it is the most 

straightforward one to implement within the existing Java language and its 

significant legacy code. Unfortunately, type erasure mandates the exclusion from 

Java 5 of otherwise meaningful and useful ways to use generics. Such exclusions 

decrease the orthogonality and simplicity of the language. 

6. Conclusions 

Since the very appearance of Java in 1995, the language has been widely criticized 

for the lack of direct linguistic support for generic programming. The need for a 

generic language extension has been advocated by many members of the Java 

community. Various experimental generic Java extensions have been proposed. The 

official Java 5 has finally adopted generics by following the design and 

implementation of generics in the GJ language. In this article, we have investigated 

strengths and weaknesses of the Java 5 generics.  

While class composition (through subclassing) and object composition 

(through object nesting) are popular and widely published, little is known about the 

potential of generic composition. The discussion of generic composition in the Java 5 

that is offered in this article can be beneficial for Java users who would like to 

employ generic composition in software design.  

We have compared three technical approaches to genericity, as adapted in 

Java 5, C# 2, and NextGen 2. Type erasure in Java allows for backward compatibility, 

but dismisses type information at runtime. The generic C# 2 changes the original C# 

language to support generics, so that generic types can be made available at 

runtime. There is no backward compatibility preserved. NextGen 2’s enhanced class 

loaders can distinguish types, but this technique is not without a few bugs. It is also 

difficult to support both legacy Java code and NextGen 2 code concurrently in one 

project. 

We have also analyzed how the necessity to provide full backward 

compatibility in the generic Java 5 has turned detrimental to orthogonality. Of course, 
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various linguistic restrictions of the Java 5 generics have been already analyzed in 

the literature. What we do differently from other authors is demonstrate in greater 

detail how orthogonality violations stem from particular design decisions made to 

satisfy compatibility constraints. More importantly, we demonstrate that such 

restrictions are not necessary to preserve backward compatibility by comparing the 

Java 5 approach to several alternative approaches that preserve type information at 

runtime. Finally, we analyze important tradeoffs in these alternative approaches. 

Orthogonality violations in the generic Java 5 result in a complex set of rules 

for combining language constructs; these rules are detrimental to the simplicity and 

ease of use of the language. Type polymorphism does not blend easily with sub-

typing, regardless of the programming language, and Java 5 is not an exception. The 

substantial effort of the Java 5 designers to amalgamate parameterized types and 

sub-typing has resulted in a number of language additions and refinements. It is 

unfortunate that some of these additions and refinements have further complicated 

the language.  
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Appendix 

This Appendix contains various classes that are implemented by means of generic 

composition in Java 5. Generic composition is discussed in Section 2 of this paper. 

 
abstract class Ring<E> { 

E e; 

protected Ring () { } 

 abstract Ring<E> add(Ring<E> other); 

 abstract Ring<E> mul(Ring<E> other); 

 abstract Ring<E> zero(); 

 E get() { return e; } 

 void set(E e) { this.e = e; } 

 … 

} 

class RingOfInt extends Ring<Integer> { 

 RingOfInt add(Ring<Integer> other) { 

  e = e + other.get(); 

  return this; 

 } 

 RingOfInt mul(Ring<Integer> other) { … } 

 RingOfInt zero() { e = new Integer(0); return this; } 

RingOfInt() { zero(); } 

… 

} 

class Array<E> { 

 protected Object[] data; 

 Array (int size) { data = new Object[size]; } 

 void set(int i, E e) { data[i] = e; } 

 E get(int i) { return (E)data[i]; } 

 int size() { return data.length; } 

 … 

} 

class ArrayOfRing<E> extends Array<Ring<E>> { 

 ArrayOfRing(int size) { super(size); } 

} 
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class ArrayOfArray<E> extends Array<Array<E>> { 

 ArrayOfArray(int size1, int size2) { 

  super(size1); 

  for (int i = 0; i < size(); i++) {  

set(i, new Array<E>(size2));  

} 

 } 

} 

class Matrix<E> extends Ring<ArrayOfArray<Ring<E>>> 

{ 

 Matrix(int size1, int size2) { 

set(new ArrayOfArrayOfRing<E>(size1, size2)); 

} 

 Matrix<E> add(Ring<ArrayOfArray<Ring<E>>> other) 

{ 

  for (int i = 0; i < get().size(); i++){ 

   for (int j = 0; j < get().get(i).size(); j++) { 

    get().get(i).set(j, get().get(i).get(j). 

add(other.get().get(i).get(j))); 

   } 

  } 

  return this; 

 } 

 Matrix<E> mul(Ring<ArrayOfArray<Ring<E>>> other) 

{…} 

 Matrix<E> zero() { … } 

 … 

} 

class MatrixOfInt extends Matrix<Integer> { 

 MatrixOfInt(int size1, int size2) { super(size1, size2); } 

 MatrixOfInt fillRandom(int limit) { … }  

 … 

} 

abstract class MatrixOfMatrix<E> extends Matrix <Matrix<E>> { 

 MatrixOfMatrix(int size1, int size2) { super(size1, size2); } 

} 
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class RingOfBool extends Ring<Boolean> { 

RingOfBool add(Ring<Boolean> other) { 

 e = (boolean)e || (boolean)other.get(); 

return this; 

} 

RingOfBool mul(Ring<Boolean> other) { … } 

RingOfBool zero() { e = new Boolean(false); return this; } 

RingOfBool () { zero(); } 

… 

} 

class MatrixOfBool extends Matrix<RingOfBool> { 

 MatrixOfBool(int size1, int size2, Boolean b) {  

super(size1, size2);  

} 

} 
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