Is Oberon as Simple as Possible? A Smaller Object-
Oriented Language Based on the Concept of
Module Type

Atanas Radenski

Department of Computer Science
Winston-Salem State University, P.O.Box 13027
Winston-Salem, North Carolina 27110, U.S.A.
E-mail: radenski@ecsvax.uncecs.edu

Abstract. The design of the programming language Oberon was led by the
quote by Albert Einstein: 'make it as simple as possible, but not simpler'.
The objective of this paper is to analyze some design solutions and propose
alternatives which could both simplify and strengthen the language without
making it simpler than possible.

The paper introduces one general concept, the module type, which can be
used to represent records, modules, and eventually procedures. Type
extension is redefined in terms of component nesting and incomplete
designators. As a result, type extension supports multiple inheritance.

1 Introduction

The design of the programming language Oberon was led by the quote by Albert
Einstein: 'make it as simple as possible, but not simpler'. The objective of this
paper is to analyze some design solutions and propose alternatives which could
both simplify and strengthen the language without making it simpler than possible.

The object orientation of Oberon is based on the concept of type
extension. Section 2 of this paper outlines a problematic point in this concept as
defined in Oberon: type extension applies to record and pointer types, but does not
apply to procedure types. For this reason, procedures cannot be directly and
conveniently redefined for extended types. As a consequence, method overriding
may seem somewhat unnatural and tedious. This problematic point is eliminated
with the concept of module type defined in Section 3. It is a generalization of
record and procedure types and a single substitute for these types. As shown in
Section 3, instances of module types can be used as record variables, or as
procedures, or as Oberon modules. Overriding a method can be easily
implemented by changing the module assigned to a field in an extension. Type
extension itself is redefined in terms of component nesting and incomplete
designators; as a result, it supports multiple inheritance.

Module types and type extension are integrated in an experimental object-
oriented language that evolved from Oberon. The experimental language does not

include record types, procedure types, procedures and modules, since all they are
implemented by means of module types or module variables. The paper represents
those features of the experimental language that are relevant to module types and
type extension. The object orientation of this language is outlined in the end of
Section 3.

2 The Need for Improvement

2.1 Type Extension as a Base of the Object Orientation of Oberon

Classes are implemented in Oberon as pointer types bound to record types with
procedure variables. Objects are dynamic variables of such record types. For
instance:

TYPE
Class = POINTER TO ClassDesc;
ClassDesc = RECORD
x : INTEGER;
method : PROCEDURE (self : Class; v : INTEGER);
END;
VAR
ptr : Class;

Note that ptr.x and ptr.method designate the fields x and method of the dynamic
record variable ptr”.

Methods are implemented in Oberon as procedures. For example, a
method may look like this:

PROCEDURE Method (self : Class; v : INTEGER);
BEGIN self.x := v END Method;

To create a new object, one has to assign specific procedures to all
procedure variables:

NEW (ptr); ptr.method : = Method;

Messages are calls of procedure variables, as, for instance:

ptr.method(ptr, 1);

Inheritance in Oberon is based on the concept of type extension [2, 3]. It
permits the construction of new record types by adding fields to existing ones. For

instance, type SubclassDesc extends type ClassDesc with the data field y:

TYPE

Subclass = POINTER TO SubclassDesc;
SubclassDesc = RECORD (ClassDesc)
v : INTEGER
END;
VAR
subPtr : SubClass;

Type SubclassDesc is said to be a direct extension of type ClassDesc.
Type ClassDesc is the direct base type of type SubclassDesc.

The fields of a record variable of an extended type can be referenced by
usual field designators. For instance, subPtr.x, subPtr.y, subPtr.method are
designators referencing the fields of the record variable subPtr”. A new object that
belongs to Subclass can be created as follows:

NEW (subPtr); subPtr.method := Method;

An extended type is assignment compatible with its base type. For
instance, the assignment ptr”* := subPtr” is legal and acts as a projection of record
subPtr™ onto record ptr”. The field y does not participate in the assignment. In
contrary, the assignment subPtr™ := ptr” is illegal.

Type extension applies also to pointer types. By definition, the pointer
type Class is extended by Subclass (see their declarations above), since the pointer
base type ClassDesc of Class is extended by the pointer base type SubclassDesc of
Subclass.

Since subPtr is an extension of ptr, the assignment ptr := subPtr is legal.
After the assignment, ptr points to a dynamic variable of type SubclassDesc. After
the assignment, ptr is said to be of dynamic type Subclass, while its declared
(static) type continues to be Class. Thus, only ptr.x and ptr.method are accepted
by the compiler as legal field designators. The field y can be referenced through
ptr by means of a type guard, as illustrated by the following example:

ptr(Subclass).y := 0;
An attempt to execute the above statement when ptr does not actually point to a
dynamic record of type SubclassDesc results in an abnormal halt. An abnormal

halt can be prevented by a type test:

IF ptr IS Subclass THEN ptr(Subclass).y := 0 END;

2.2 What is Problematic with Type Extension

Overriding a method in Oberon can be implemented by changing the procedure
assigned to a field in an extension [1]. Unfortunately, procedures cannot be
directly and conveniently redefined for extended types. For this reason, method
overriding may seem somewhat unnatural and tedious. Consider, for example, the

following procedure:

PROCEDURE OverridingMethod (self : Subclass; v : INTEGER);
BEGIN

self.x :=v; self.y:=v
END OverridingMethod;

To override Method with OverridingMethod, one may wish to use the assignment
subPtr.method := OverridingMethod. However, the definition of Oberon implies
that OverridingMethod is not assignment compatible with method, and this
assignment is not allowed.

More precisely, field method of SubclassDesc is inherited from ClassDesc
and has the following procedure type:

PROCEDURE (self : Class; v : INTEGER)
Besides, the heading of the newly created OverridingMethod is
PROCEDURE OverridingMethod (self : Subclass; v : INTEGER);

The type of the formal parameter self of OverridingMethod, namely Subclass, is an
extension of the type indicated in the declaration of method, namely Class.
According to the definition of type extension, the type of OverridingMethod is not
an extension of the type of method. Thus, OverridingMethod is not assignment
compatible with subPtr.method.

The following implementation of OverridingMethod can be assigned to
subPtr.method, since now OverridingMethod and subPtr.method have a single
formal parameter of the same type:

PROCEDURE OverridingMethod (self : Class; v : INTEGER);
BEGIN
self.x :=v;
IF self IS SubClass THEN
self(SubClass).y := v;
END
END OverridingMethod;

Despite of the fact that the formal parameter of OverridingMethod is Class, it can
and has to be called with actual parameters of type SubClass. By means of a type
test and type guard, the overriding method treats the parameter as a variable of
type Subclass. On the other end, the type of formal parameter of
OverridingMethod is the same as that indicated for subPtr.method, and
OverridingMethod can be assigned into subPtr.method. Such implementation of
OverridingMethod seems somewhat unnatural and tedious.

3 Our Approach

A major problem with the object orientation of Oberon is that type extension
applies to record and pointer types, but does not apply to procedure types. For this
reason, methods cannot be directly and conveniently overridden for subclasses (see
Section 2.2). The problem can be eliminated with the concept of module type
defined in this section. Module types can be viewed as generalized record types.
As shown in what follows, instances of module types can be used as record
variables, or as procedures, or as Oberon modules. Overriding a method can be
easily implemented by changing the module assigned to a field in an extension.

Module types and type extension are integrated in an experimental object-
oriented language named K2 that evolved from Oberon. K2 does not include
record types, procedure types, procedures and modules, since all they are
implemented by means of module types or module variables. This section
represents all features of the experimental language that are relevant to module
types and type extension. The object orientation of this language is outlined in the
end of the section.

3.1 Module Types

A module type consists of a definition, and optionally, a body. A module definition
is a collection of declarations of constants, types, and variables. A module body is
a collection of declarations, other bodies, and a sequence of statements. The
statements are executed when the body is activated through a module call (Section
3.6). The definition of a global identifier and/or its body may include an import
list (Section 3.7). A module type allows a body only if its definition contains a
forward body declaration. Then a body can be declared within the same scope, or
it can be left undefined (Section 3.4).

ModuleDefinition =
"("[ImportList]
DeclarationSequence
[ForwardBodyDeclaration|
0
DeclarationSequence = {declaration ";"}
declaration = = ConstantDeclaration | TypeDeclaration
VariableDeclaration
ForwardBodyDeclaration = BODY
BodyDeclaration =
BODY ident ";"
[ImportList]
DeclarationSequence
BodySequence
[BEGIN

StatementSequence]

END ident
BodySequence = {BodyDeclaration ";"}

Examples:

TYPE Date = (day, month, year: INTEGER);
TYPE PersonalRecord = (

CONST length = 32;

TYPE Name = ARRAY length OF CHAR;
name, firstName: Name;

age: INTEGER

);

Constants, types and variables declared in a module definition are called
public components, while those declared in the corresponding body are referred to
as local components. Public components that are variables are also referred to as
parameters (see Section also 3.6). Public types and constants are not parameters.

Example:

TYPE Sample = (
publicVar: INTEGER;
BODY

);

BODY Sample;
localVar: INTEGER;

BEGIN (* ... *) END Sample;

The scope of an identifier which denotes a public component includes the
module definition itself and the whole body, if any. Such an identifier is also
visible within component designators. An identifier which declares a local
component is not visible outside of the body that contains its declaration. Local
variables keep their values between two successive calls of the body.

In addition to its public components and locally declared components, the
entities declared in the environment of the body and its definition are also visible
in the body. A local component hides non-local entities that have the same name.
Hidden entities can still be referred to by component designators.

A variable declared in a module type definition can be followed by the
read-only mark "-". Such a variable can be assigned values only from within the
module body.

The identifier list of a variable declaration may contain the word
RESULT. In this case, the type of the declared variable(s) can be neither a module
type, nor an array type. Refer to Section 3.6 for the use of variables named
RESULT.

Example:

TYPE Log2 = (

x: INTEGER;
RESULT - : INTEGER;

BODY
);

3.2 Type Extension

A module type Tew directly extends a module type Tmse if Ter has exactly one
component of type Trse. Tex extends a type Twse if it equals Tase or if it directly
extends an extension of Taae.

Examples:

TYPE Modulel = (x : INTEGER);
TYPE Module? = (ancestor : Modulel; y : INTEGER);
TYPE Module3 = (ancestor : Module2; 7 : INTEGER);

In the examples above, Module3 directly extends Module? with
component 7. Module3 is an indirect extension of Modulel. Modulel is a direct
base type of Module2 which is a direct base type of Module3. Nested components
of Module3 can be referenced by incomplete designators that do not contain the
identifier ancestor, as explained below.

Components of module variables can be denoted by incomplete
designators according to the following rules. It is said that ¢ is a nested component
of a module variable m, if ¢ is a component of m, or ¢ is a nested component of
some component of m. Then, if the module variable m does not have a component
¢, then m.c designates a nested component of m determined by left-to-right level-
order search among all nested components of m. If p designates a pointer, then p.c
stands for p*.c and pfe] stands for p”fe] (that is, the dot and the opening bracket
imply dereferencing).

Examples:

m3 : Module3;

m3.z
m3.y (stands for m3.ancestor.y)
m3.x (stands for m3.ancestor.ancestor.x)

3.3 Pointers

Variables of a PointerType assume as values pointers to variables of some
BaseType. The PointerType is said to be bound to its pointer BaseType. Pointer

types inherit the extension relation of their base types. A pointer type P bound to
Twse is extended by any pointer type Per bound to an extension Tew Of Teawe. For
instance, type Ptr3 extends type Ptrl, because Module3 extends Modulel:

TYPE Ptrl = POINTER TO Modulel;
TYPE Ptr3 = POINTER TO Module3;
pl: Pirl; p3: Pur3;

The type with which a pointer variable is declared is called its static type
(or simply its type). The type of the value assumed by a pointer variable at run
time is called its dynamic type. The dynamic type of a pointer variable may be an
extension of its static type (see examples in Section 3.5).

The type guard PointerVariable(DynamicType) asserts that the
PointerVariable has the quoted DynamicType. If the assertion fails, the program
execution is aborted, otherwise the PointerVariable is regarded as having the
DynamicType. The guard is applicable only if the DynamicType is an extension of
the static type of the PointerVariable.

The type test v IS T stands for "the dynamic type of v is 7" and is called a
type test. It is applicable if

(1) T is an extension of the declared type 70 of v, and

(2) v is a pointer variable.

The monadic address operator "@" applies to an operand which is a
variable of any type. The type of the result is a pointer to the operand's type. This
operator is used to implement variable parameters (See an example in Section 3.6.)

Examples:
i (INTEGER) @i (POINTER TO INTEGER)
3.4 Bodies for Module Variables

If a module type definition does not include a forward body declaration, variables
of this type are not allowed to have bodies. If the definition does include a forward
body declaration, two options exist.

First, let 7 be a module type for which a body B has been declared. The
variable declaration M ...: T defines B as a body of M.

Second, let T be a module type which body has been left undefined. The
declaration M ...: T does not define a body for M. An individual body B» may be
defined for M in the scope of M. In this way, module variables of the same type
can have completely different bodies.

In all cases, a whole module assignment (Section 3.5) can be used to give
a new value and a new body to a module variable.

Examples (refer to examples in Section 3.1):

log2: Log?2;

BODY log2; (* assume x > 0 %)
BEGIN RESULT := 0;
WHILE x > I DO x := x DIV 2; INC (RESULT) END;
END log2;
myLog2: Log2;
BODY myLog2; (* assume x > 0 %)
v: INTEGER;
BEGIN RESULT := 0;y := 1;
WHILE x > y DO ASH (y); INC (RESULT) END;
END myLog2;

3.5 Assignments

Assignments teplace the current value of a variable by a new value specified by an
expression. The expression must be assignment compatible with the variable. In
particular, an expression ¢ of type Te is assignment compatible with a variable v of
type Tv if:

- Te and Tv are the same type, as specified below;

- T. and 7v are pointer types and 7. is an extension of 7v;

Some less important cases of type compatibility (numeric types, strings, NIL and
pointer types) need not to be discussed here.

Ts is the same type as T» if:

- Ta and T» are both denoted by the same type identifier, or

- Tz and T» are denoted by type identifiers and 7T is declared to equal T» in

a declaration of the form TYPE T. = T , or

- T. and T» are types of variables a and b which appear in the same

identifier list in a variable declaration, provided Tz and 7» are not open

arrays.

Note that module variables of the same type may have different bodies.

If an expression is assigned to a variable, the value of the variable
becomes the same as the value of the expression. Besides:

(1) If the expression is of a module type, both its value and its body (if
any) are assigned into the variable. If the body of the expression is undefined, the
body of the variable becomes undefined.

(2) If the variable and the expression are of pointer types, the dynamic
type of the variable becomes the same as the dynamic type of the expression.

Examples (refer to examples in Sections 3.3 and 3.4):

pl :=p3; pl(Ptr3).z := 0; log2 := myLog?2;

Compared to Oberon, K2 offers a restricted form of assignment
compatibility: In K2, an extended module type is not assignment compatible with

its base type, while in Oberon an extended record type is assignment compatible
with its base type.

3.6 Module calls

A module call consists of a module variable designator, followed by a (possibly
empty) list of arguments. For the execution of the call, the arguments are assigned
(Section 3.5) to the parameters (Section 3.1), then the body of the module variable
(if any) is executed. The association between the arguments and the parameters is
positional, but the list of arguments may have less members than the total number
of parameters. Module calls can appear as individual statements; they also can be
used in expressions, as specified later in this section.

ModuleCall = designator "(" Arguments ")"
Examples:

Subroutine: (
valuePar: INTEGER;
variablePar: POINTER TO INTEGER;
BODY
);
BODY Subroutine;
BEGIN valuePar := valuePar + 1;
variablePar” : = variablePar” + 1
END Subroutine;

i := 0; Subroutine(0, @i); (*... ™)
Subroutine.valuePar := 0; Subroutine.variablePar := @i;
Subroutine(); (*... %

Subroutine(); i : = Subroutine.ValuePar + 1;

In an expression, a designator of a module variable which is not followed
by an argument list refers to the current value of that variable. If it is followed by
a (possibly empty) argument list, the designator implies the activation of the
module body and stands for the value of the module variable resulting from the
execution.

A factor of the form

F(Arguments)
where F is a designator of a module variable which contains a component named
RESULT, is evaluated as follows:

(1) the module call F(Arguments) is executed first;

(2) the value of F.RESULT is returned as value of F(ARGUMENTS).

Example (refer to the examples in Section 3.4):

log2(k) + 1

If designator is a pointer variable with value NIL, the call
designator” (Arguments) is executed as follows:

(1) NEW(designator) allocates a dynamic module which is thereafter
called and executed;

(2) DISPOSE(designator) deallocates the dynamic module assigning NIL
into designator.

An implementation may use a stack rather than a heap for such implicit
module allocation/deallocation.

Example:

TYPE Factorial = (
n: INTEGER; RESULT - : INTEGER;
BODY
);
BODY Factorial;
localFactorial: POINTER TO Factorial;
BEGIN
IF n = 0 THEN RESULT := 1
ELSE RESULT : = n * localFactorial*(n - 1);
END
END Factorial;

3.7 Compilation Units

A compilation unit is either a module type declaration eventually followed by a
body, or a module variable declaration eventually followed by a body.

CompilationUnit =
TypeDeclaration [";"BodyDeclaration]
| VariableDeclaration [";"BodyDeclaration]

A compilation unit declares a single global identifier which is exported by
the declaring unit. The exported identifier can be imported and used by other
compilation units by means of an import list (see also Section 3.1).

ImportList = IMPORT ident [":="ident] {","ident [":="ident]}";"

Each identifier / from the import list of a module definition can be used in
the definition itself, and in the type's body, if the type has a body. It the import
list belongs to a module body, / can only be used in the body. If the form 1] := [
is used in the import list, then the imported entity is referred as /7 rather than /.

A main program can be implemented as a compilation unit which consists
of a module variable declaration and a body. A conventional module (or a
package) is a also a compilation unit consisting of a module variable declaration
plus eventually a body. A separately compiled class is a compilation unit which
consists of a module type declaration and, in most cases, a body.

Examples:

TYPE ClassDesc = (

TYPE Class = POINTER TO ClassDesc;
x : INTEGER;

method : (v : INTEGER; BODY);

BODY

);

BODY ClassDesc;
BODY method;
BEGIN

X:=v
END method;
END ClassDesc;

MainProgram: (BODY);

BODY MainProgram;
IMPORT ClassDesc;
ptr: ClassDesc. Class;

(*... %)

BEGIN (* MainProgram *)
NEW (ptr); ptr.method (1);
(*... %)

END MainProgram;

3.8 Module Types and Object Orientation

In K2, a pointer type bound to a module type represents a class (see Class and
ClassDesc in Section 3.7). A variable (such as p#7”) of that module type is an
object. A module component of that module type is a method. A call of a module
component (such as ptr.method(1)) is a message.

Type extension implements inheritance in K2. For instance, SubclassDesc
inherits field x from ClassDesc extending ClassDesc with a field y:

TYPE SubclassDesc = (
IMPORT ClassDesc;
superclass : ClassDesc;
v : INTEGER;

BODY
)i

A module variable declared in the body of an extension can be used to
override an inherited method:

BODY SubclassDesc;
overridingMethod : (v : INTEGER; BODY);
BODY overridingMethod;
BEGIN x := v; y := v END;
BEGIN (* SubclassDesc *)
superclass.method : = overridingMethod;
END SubclassDesc;

subPtr : POINTER TO SubclassDesc;
NEW (subPtr); subPtr™();

The module call subPtr*() executes the assignment superclass.method :=
overridingMethod from the body of SubclassDesc. This assignment overrides (in
subPtr*) the method inherited from ClassDesc. Thus, overriding a method is
simply a module variable assignment. The difficulty with Oberon outlined in
Section 2.2 does not exist in K2.

Note finally that the fields of an extension can be referred by incomplete
designators. For instance:

SubPtr.x (stands for subPtr.superclass.x)
subPtr.method (stands for subPtr.superclass.method)

4 Conclusion

A problematic point in Oberon is that procedure fields of records cannot be
directly and conveniently redefined for extensions. From a standard object-
oriented point of view, method overriding in Oberon may seem unnatural and
tedious (see Section 2.2). To cure this problem, Oberon-2 [4] extends Oberon with
the new concept of type bound procedures. Besides, Oberon-2 adds to Oberon
open array variables, FOR loops, and read-only export of data. (Object Oberon [5]
is an experimental predecessor of Oberon-2.) In fact, Oberon-2 implants the
standard concept of method in Oberon. The resulting language is not so simple and
clean as Oberon was intended to be. In particular, it supports too many different
structures related to procedures: type bound procedures, traditional constant
procedures, procedure types, and procedure variables.

K2 evolved from Oberon by introducing only one new feature, the module
type. Grace to the generality of the new concept, several features of Oberon were
eliminated. Namely, K2 does not contain record and procedure types (because they
are special kinds of module types), and does not need procedures and modules

(because they are modeled by module variables). While record extension is
supported by a specially designated language feature in Oberon, it is simply
achieved by module nesting and use of incomplete module component designators
in K2.

The body of a K2 module that is a component of a larger module has
access to the components of the enclosing module. Thus, syntactical binding is as
simple as module nesting, and there is no need for a special concept such as the
type-bound procedure of Oberon-2.

One more advantage of K2 compared to Oberon is that a module type that
implements a class can be compiled separately and need not be enclosed in a
package or Oberon module.

Most features of K2 have been tested by an experimental compiler
implemented as a Turbo Pascal 6.0 program of about 5000 lines. A K2
compilation unit (a module type or variable declaration, eventually followed by a
body) is translated into a Turbo Pascal unit; then this unit is compiled by the Turbo
Pascal compiler. The K2 compiler extracts all constant and type declarations from
module definitions and generates Turbo Pascal representations for those
declarations. Module definitions are compiled into record types. Turbo Pascal
objects are not used in the implementation. At present, type tests and type guards
are not supported by the experimental compiler.

This paper describes an approach to the design of a small and simple, yet
practically convincing object-oriented language. Our approach can be
characterized as simplicity through generality. While we present a solution, we do
not consider it as a final one. The absence of procedures as a special language
feature and their implementation by means of module variables is a point that is
widely open for criticism. Although a pointer variable of a module base type can
be used as a conventional procedure (as illustrated in Section 3.6), programmers
may wish to have procedures explicitly included in the language. Fortunately, our
solution can be relatively easily modified to include procedures, while merging
record types and modules in the same concept. A careful evaluation of this
alternative is a subject of future work.

References

1. M. Reiser, N. Wirth: Programming in Oberon. Steps beyond Pascal and
Modula.
Wokingham: Addison-Wesley 1992

2. N. Wirth: The Programming Language Oberon. Software - Practice and
Experience 18, 671-690 (1988)

3. N. Wirth: Type Extensions. ACM Transactions on Programming
Languages and Systems 10, 204-214 (1987)

4. H. Moessenboeck, J. Templ: Object Oberon - A Modest Object-Oriented

Language. Structured Programming 10, 44-46 (1989)

5. H. Moessenboeck: The Programming Language Oberon-2 Report. Computer
Science Report 160, ETH Zurich 1991

Appendix: Syntax Description

declaration = ConstantDeclaration | TypeDeclaration | VariableDeclaration
ConstantDeclaration = CONST ident "=" ConstExpr
TypeDeclaration = TYPE ident "=" type "
type = ArrayDefinition | ModuleDefinition | PointerDefinition | TypeDesignator
TypeDesignator = qualident
qualident = {ident "."} ident
ArrayDefinition = ARRAY [ConstExpr {"," ConstExpr}] OF type
ModuleDefinition = "(" [ImportList] DeclarationSequence [BODY] ")"
ImportList = IMPORT ident [":=" ident] {","ident [":=" ident]}";"
DeclarationSequence = {declaration ";"}
BodyDeclaration =
BODY ident ";" [ImportList] DeclarationSequence BodySequence
[BEGIN StatementSequence] END ident
BodySequence = {BodyDeclaration ";"}
PointerDefinition = POINTER TO Type
VariableDeclaration = ident["-"] ["," ident["-"]] ":" type
expression = SimpleExpression [relation SimpleExpression]

relati()n — " — " | ll#ll | " < " | " < — " | " > " | " > — " | IN | IS
SimpleExpression = ["+" | "-"] term {AddOperator term}
AddOperator = "+" | "-" | "OR"

term = factor {MulOperator factor}
MulOperator = "*" | "/" | DIV | MOD | "&"
factor = number | CharConstant | string | NIL | set | "~" factor | "@"
designator
| designator ["("[ExprList]")"] | "("expression")"
designator = qualident {"."ident | "[" ExprList "]" | "("TypeDesignator")" | "*"}
set = "{" [element {"," element}] "}"
element = expression [".." expression]
statement = [assignment | ModuleCall | IfStatement | CaseStatement
| WhileStatement | RepeatStatement LoopStatement | WithStatement
| EXIT | RETURN]
assignment = designator ":=" expression
ModuleCall = designator "(" [ExprList] ")"
IfStatement = IF expression THEN StatementSequence {ELSIF expression
THEN StatementSequence} [ELSE StatementSequence] END
CaseStatement =
CASE expression OF case {"| "case} [ELSE StatementSequence] END

case = [CaseLabels {"," CaseLabels} ":" StatementSequence]
Caselabels = ConstExpr [".." ConstExpr]
WhileStatement = WHILE expression DO StatementSequence END
RepeatStatement = REPEAT StatementSequence UNTIL expression
LoopStatement = LOOP StatementSequence END
WithStatement = WITH qualident ":" typeDesignator DO StatementSequence
END
CompilationUnit = TypeDeclaration [";"BodyDeclaration]

| VariableDeclaration [";"BodyDeclaration]

