Introducing Objects and Parallelism to an Imperative

Programming Language

A. A. Radenski
Department of Computer Science, WSSU, P. O. Box 13069
Winston-Salem, North Carolina 27110, U.S.A.
E-mail: radenski@uncecs.edu

Abstract

The problem of enhancing objects with parallelism has been in the focus of numerous
research projects in the recent years, but a satisfactory and commonly accepted solution has not
appeared yet. A major problematic points seems to be providing inheritance for parallel objects.
The general objective of this paper is to contribute to a better understanding of the language design
issues in the area of parallel object-oriented programming (OOP), and in particular, to design a
framework for parallel OOP with multiple inheritance. What makes our proposed framework
different from the other parallel OOP languages is its easy-to-use and efficient multiple inheritance
for parallel objects. Our framework is easy-fo-use because it is designed as a minimal parallel and
OOQOP enhancement of the imperative programming paradigm - a paradigm which is relatively
simple, very popular, and well understood. It is efficient for the same reasons, and because the
implementation of dynamic binding in our proposed multiple inheritance scheme does not require
run-time method tables. Dozens of known serial and parallel OOP languages employ run-time
method tables which may impose significant space and time overhead, particularly in a parallel

environment.

1 Introduction

Objective. Possible models for the integration of the OOP paradigm and the parallel
programming paradigm have been in the focus of numerous research projects in the recent years.
Language designers believe that providing objects with parallelism will substantially increase the
power of the OOP paradigm. However, despite of the observation that objects seem to blend
naturally and well with concurrency, the transition from serial to parallel OOP languages turns out
to be a complex problem. It has been found [19] that popular parallel OOP languages are "... often
compromised in important areas, including inheritance capability, efficiency, ease of use, and
degree of parallel activity... Unless concurrency, synchronization, and communication are
carefully integrated, a parallel object-oriented language can be inefficient and difficult to use.” One
of the most difficult issues seems to be providing practical inheritance for parallel objects [8].

The general objective of this paper is to contribute to a better understanding of the

relationship between objects, parallelism, and inheritance. Our particular goal is to define a
framework for OOP which provides easy-to-use and efficient multiple inheritance for parallel
objects.

Approach. Some of the most successful OOP languages are extensions of statically typed
imperative languages. Well-known examples in this respect are the languages from the C++
family and the object-oriented versions of Pascal, which extend C and Pascal with classes,
inheritance, dynamic binding and other mechanisms needed for object-oriented programming.
Other examples are given by Ada 9X and Oberon, which can be considered as object-oriented
enhancements of such typical statically typed languages as Ada and Modula-2.

The transition of programmers from a sequential language to its parallel object-oriented

enhancement would be easier and less frustrating, if the syntactical, semantical and terminological

changes made for the enhancement are only minimal. Designing a parallel OOP framework as a
minimal enhancement of a sequential language will facilitate the reuse of existing serial software,
while designing an entirely new language will be a serious obstacle to such reuse. A parallel
enhancement of a serial language is easier to implement than a language designed from scratch.
For these reasons, we adopt the following approach to the integration of the object-orientation and
parallelism: Find the smallest possible enhancement of the imperative programming paradigm
which can support the needs of the parallel object-oriented programming paradigm with multiple
inheritance.

Minimality of extensions was a major criterion in the transition from Modula-2 to its
sequential object-oriented descendant Oberon [18]. Wirth did not introduce the concepts of class
and method in Oberon, but used such traditional languages features as records and procedures
instead. Because traditional record types do not support inheritance, Wirth developed the
mechanism of record type extension to implement single-class inheritance [16]. The object-
orientation of Oberon [17], Oberon-2 [11] and Ada 9X [14] is based on the notion of type extension
or its modifications. Unfortunately, Oberon does not provide support for parallelism and multiple
inheritance. A major disadvantage of Ada 9X is its high complexity. Like Oberon, Ada 9X
directly supports only single-class inheritance for serial objects.

The design of our framework for parallel OOP is guided by three main theses. The first

thesis is that record types can be enhanced to contain bodies for the purpose of encapsulation and
information hiding. Record types enhanced with bodies are an adequate substitute for classes.

Such record types provide support for dynamic method overriding and time-efficient dynamic
binding. The second thesis is that the concept of record extension can be redefined in terms of

record nesting and use of incomplete designators. The new concept provides easy-to-use and

efficient multiple inheritance. The third thesis is that separately executable procedures with
synchronization guards can adequately support parallelism in a OOP language based on extensible
record types. These three theses are developed in details in Section 2. Section 3 discusses work
performed by others in the area of parallel OOP and outlines some advantages of our approach.

Our model for parallel OOP is specified in an Oberon-like syntax for concreteness and
clarity but applies to diverse sequential languages which support record or structure types.

Contributions. What makes our proposed framework different from the other parallel
OOP languages is its easy-to-use and efficient multiple inheritance for parallel objects. Our
framework is easy-to-use because it is designed as a minimal parallel and OOP enhancement of the
imperative programming paradigm - a paradigm which is relatively simple, very popular, and well
understood. Our framework is efficient for the same reasons, and because the implementation of
dynamic binding in our proposed multiple inheritance scheme does not require run-time method
tables. Typically, dozens of known serial and parallel OOP languages employ run-time method
tables which may impose significant space and time overhead, particularly in a parallel environment
[19]. We know of only one OOP language, Oberon [17], which inheritance scheme does not
require run-time method tables; however, Oberon is not parallel and does not support multiple

inheritance.

2 A Framework for Parallel OOP with Multiple Inheritance

Classes as Types. In our parallel OOP framework, a class is implemented as a pointer type
bound to a record type with procedure component(s), and an object is a dynamic variable of such

record type. A method is a procedure which belongs to a dynamic record and manipulates data
components of the same record. Such a procedure must be explicitly connected to the record type
and considered local to that type. We employ a special linguistic construct, the record body, to
relate procedures to record types.

For example, Figure 1 defines Class as a pointer type bound to a class description record,
ClassDesc. Method is specified as a procedure in the class description body. An object is a
dynamic record variable, obj”.

Note that the dynamic record obj” has public components (data, method), and private
components (hiddenData, procedure Method). By definition, implicit dereferencing is used to
denote public components of dynamic records. Thus, obj.data is a correct designator for
obj*.data. On the other end, hiddenData is not visible out of the body and the designator
obj.hiddenData is illegal.

The statements from the body of the dynamic variable obj” are executed when the variable
is created by a call of the predeclared procedure NEW. Thus, the call NEW (obj) allocates memory
for obj™ and then executes the statements obj.method := Method; hiddenData := 0 from the record

body. These statements install Method and initialize the hiddenData record component. (A static
record variable is created when the block containing its declaration is activated.)

A message i1s be straightforwardly implemented as a call of a procedure field, as for

instance obj.method(0).

As shown by the above example, a record type consists of a public part, and optionally, a
body. A record public part is a collection of variable declarations, including variables of procedure
types; a record public part may also contain constant procedure declarations. The public
components of the record type are traditionally called fields. As with regular records, the record
public part determines the name and the type of each field. A record body may include declarations

of constants, types, variables, and procedures, all called private components. A record body is also
allowed to contain statements for the purpose of assigning initial values to the record variables
(public and private).

By definition, the scope of an identifier which denotes a public component extends from the
point of its declaration to the end of the public part of the record, and includes the whole body, if
any. Such an identifier is also visible within component designators. An identifier of a private
component is not visible outside of the body. Besides, a variable identifier declared outside of a
record type is not visible in its body, unless it is explicitly imported by the body or by the record
public part.

Single and Multiple Inheritance as Type Extension. The concept of type extension, as
defined in [16], applies to record and pointer types and is used to implement what is known as
single class inheritance in standard OOP terminology. We have redefined record extension in terms
of regular record nesting and incomplete designators. Our approach to record extension is
syntactically simpler but supports multiple class inheritance.

By definition [13], a record type Rex directly extends a record type Ruse, if Rex has exactly

one component of type Rums. Further, Re« extends a type Rwse, if it equals Res, or if it directly

extends an extension of Rwse. As specified in [16], type extension applies to pointer types as well: a

pointer Pex to Rex is said to be an extension of a pointer Puse t0 Ruse.

Subclasses can be defined as extended types. Consider, for example, the declarations of a
subclass and its description in Figure 2. SubclassDesc directly extends ClassDesc with component
newData. ClassDesc is a direct base type of SubclassDesc. As specified below, nested
components of SubclassDesc can be referenced by incomplete designators that do not contain the
identifier parent.

Nested public components can be denoted by incomplete designators according to the
following rules [12]. (1) It is said that ¢ is a nested component of a record variable r, if ¢ is a
component of r, or c¢ is a nested component of some component of r. (2) If the record variable r
does not have a public component ¢, then r.c designates a nested component of r determined by a
unambiguous level-order search among all nested components of r. For example (see Figure 2),
the incomplete designators extObj.data and extObj.method are valid and stand for
extObj.parent.data and extObj.parent.method correspondingly.

When the body does not immediately follow the record type declaration, the type
declaration must be followed by a body stub, as shown on Figure 2.

Our proposed type extension mechanism provides easy-to-use multiple inheritance in the
same way it provides single inheritance. Consider, for instance, the declarations of Class0O, Classl
and Class2:

TYPE ClassO = RECORD x: INTEGER END;

Class] = RECORD parentO: ClassO; y: REAL END;
Class2 = RECORD parentO: ClassO; parentl: Class] END;

Class2 is an extension of both ClassO and ClassI. Class2 inherits x from ClassO, and parent0, y

from ClassI. Let r be a variable of Class2. The following are legal incomplete designators: r.x
(inherited from ClassO, same as r.parent0.x), r.parentl.x (inherited from ClassO through Classl,
same as r.parentl.parent0.x), r.y (inherited from ClassI, same as r.parentl.y). Note that conflicts
between inherited fields with the same name are easily resolved with the use of appropriate
designators, such as r.parentl .x.

Polymorphism. Extended types are defined to be assignment compatible with their base
types; variables of such base types are polymorphic. (Similar compatibility rules are valid for
classes and subclasses in most standard OOP languages.) For instance, extObj: Subclass (see
Figure 2) is assignment compatible with obj: Class. The assignment obj := extObj is valid and
variable obj is polymorphic because it can point to dynamic records of different types. A fype test
can be applied to determine if the actual value of a polymorphic variable belongs to a subclass, for
example obj IS Subclass. 1f it does, a component of the subclass can be referred to by means of a
type assertion, such as obj(Subclass).newData. The program execution is aborted if a type
assertion fails in run-time. The rules for type compatibility, tests and assertions are originally
formulated in [17] in the case of single type extension; versions of the same rules apply without
difficulties to our proposed concept of type extension.

Dynamic Binding. A subclass can override a method inherited from a parent class by
means of a simple procedure assignment. For this purpose, the overriding method must be defined
and properly installed in the body of the subclass description. Figure 3 implements this approach to
method overriding for the subclass defined in Figure 2.

Let extObj be a pointer variable of type Subclass. When extObj” is created by NEW

(extObj), the statements from the body of the nested record extObj.parent (of type Class) is

executed first. In particular, the Method defined in the body of Class is initially assigned into
extObj.parent.method. As a next step, the statement from the body of the outer record, extObj:
SubClass, is executed. The assignment parent.method := OverridingMethod replaces inherited

Method by OverridingMethod.

In our proposed parallel OOP framework, variables of procedure types implement what is
known as virtual methods in standard OOP terminology; such methods are overridden through
procedure assignments, as specified in the previous paragraph. Calls of procedure variables, such

as extObj.method(0), implements a easy-to-use version of what is referred to as dynamic binding in

common OOP languages. Alternatively, constant procedures are called by static binding and can
be only statically overridden in extended records.

Process creation and coordination. We assume that the programmer is interested in
specifying parallelism, and that a parallel OOP language should provide explicit constructs for
parallelism. Because OOP means programming by modelling, and because real-world objects may
exist and do things concurrently, OOP languages should provide explicit support to modelling
parallelism. Other researchers prefer to exclude parallelism from the language and use operating
system calls instead. A third group adheres to the idea that parallelism should be transparent to the
programmer, and that a parallelizing compiler should take the burden of finding and exploiting
potential parallelism. While it is possible to combine the three approaches in certain proportions,
our framework for parallel OOP supports parallelism explicitly. Parallelism is specified by means
of separate procedures and synchronization guards encapsulated in separate record types.

Our parallel OOP framework includes a mechanism for explicit lightweight process creation

based on the so called separate procedures. The statement part of a separate procedure consists of

a regular part, and a separate part, as shown on Figure 4. When the separate part is reached, the

execution is "forked": the control is returned to the caller, and the execution of the separate part
continues independently; unlike Unix, no memory copying occurs. The process defined by the
separate statement part is terminated implicitly at the end of the separate part, or explicitly by a call

of predefined procedure TERMINATE. The regular statement part is used by the caller and the
callee as a critical region for communication through parameters; parameters are inaccessible in the
separate statement part.

Conditional synchronization is achieved through synchronization guards. Synchronization

guards are boolean expressions attached to record components, including procedure components.
Any reference to a guarded component is suspended until the synchronization guard evaluates to

true. Suspended references are serviced in a non-deterministic fashion.

Consider, for example, the implementation of a Mailbox class on Figure 5, with defines two
methods, Put and Get. Put deposits a new message in the Maibox, while Get removes the oldest
one. Messages are kept in a box of a limited size and are accessed by means of two indexes, last
and first. Put deposits a new message at location last while Ger removes the item from location
first. Put and Get increment their corresponding indexes by / modulo the box size, and count the
number of messages available in the mailbox. Each of the procedures Put and Get communicates a
message with its caller first, then separates for independent execution. The guard count > 0
suspends any attempted invocations of Get when the mailbox is empty. Similarly, count < size
guards Put from attempts to leave a message in a full mailbox.

Separate procedures and synchronization guards generate and coordinate parallelism; they

are permitted only in record types which are explicitly declared as SEPARATE, such as
MailboxDesc in Figure 5. Separate records represent parallel objects and for them the compiler

generates some necessary run-time overhead, such as the transparent semaphore discussed in the

10

next paragraph. For non-separate records which represent serial records this run-time overhead is

not needed as is not generated.

A separate record (i.e., a parallel object) is busy if a procedure from the body of the same
record is running or suspended, otherwise the record is available. A reference to a busy record is
suspended until the record becomes available. This rule guarantees the atomicity of message
passing to parallel objects; besides, it supports the implementation of such traditional access
synchronization mechanisms as locks, semaphores and monitors. For its implementation, the
compiler associates a transparent semaphore with the body of each separate record. The activation
of a procedure defined in the body increments the semaphore, while the procedure termination
decrements it. For each reference to a separate record, the compiler generates extra-code which
eventually suspends the reference until the semaphore becomes zero.

A separate procedure defined in a record body may not call a separate procedure defined in
the same body, including itself. This rule limits the number of processes within a parallel object to
one - a restriction that has been adopted in the majority of parallel OOP languages for the purpose
of simplicity and efficiency.

Type extension applies without restriction to separate record types and provides single or
multiple inheritance for parallel objects. An example of a single-class inheritance is presented in
Figure 6 which demonstrates how the mailbox from Figure 5 can be extended with a new method,
GetAll. 'The extended Mailbox2 uses the inherited method Get in order to implement method
GetAll which reads all messages from the mailbox.

An Example of Multiple Inheritance from Parallel Classes. A uniform support for both
single and multiple inheritance is provided by the original concept of type extension defined earlier

in this section and illustrated by the definitions of Class and Subclass, Mailbox and Mailbox2

11

(single inheritance), and ClassO, Classi, Class2 (multiple inheritance). Our goal here is to specify
an example of multiple inheritance involving parallel classes.

Consider the problem of defining a persistent object such as, for example, a mailbox, a
tree, a graph, or a viewer, which can be saved into a specified file before the end of a program

execution and later loaded form the file for a subsequent program execution. Despite of how

different these objects are, they should be able to sfore/load their current state into/from a specified
file. 1Tt is convenient to factor out the common behavior of diverse persistent objects in a special
class, Persistence, shown in Figure 7. The virtual methods sfore and load are implemented in
Persistence as simple procedure variables which do not require a run-time method table.

Given the Persistence class (Figure 7) and a class of non-persistent objects, such as Mailbox
(Figure 5), multiple inheritance from both classes can be used to build a sub-class of persistent
objects, such as PersBox, also shown on Figure 7. Note that PersBox provides procedures Store
and Load which implement the virtual methods store and load inherited from Persistence. Each
class extended with Persistence should provide its own implementation of save and load because
objects of different classes are saved and loaded in different ways.

A persistent mailbox, persBox™, is created by means of the call NEW(persBox). As defined
earlier in this section, this call allocates memory for persBox™, then executes the body
MailboxDesc of its component mbox, and finally executes the outer body, PersBoxDesc. Both body
executions install Save, Load, Put, Get. The implementation does this by assigning pointers to
these procedures into the corresponding procedure variables. Furthermore, messages to object

persBox™ are calls of procedure variables, such as persBox.mbox.put(msg); ... persBox.pers.save;

... persBox.pers.load; all these calls are performed directly through the corresponding pointers,

12

without any references to a run-time method table. Finally, the same messages can be sent using
incomplete designators such as persBox.put(msg); ... persBox.save; ... persBox.load. These
designators conveniently resemble the notation used for inherited components in conventional OOP
languages.

The above example illustrates one significant advantage of our framework for parallel OOP:
since virtual methods are implemented as procedure variables, their calls are as simple as procedure
calls; such calls do not use a run-time method table. The inheritance mechanisms of known OOP
languages require run-time method tables which deteriorate the time and space efficiency of the

implementation of multiple inheritance, especially in a parallel environment.

3 Related Work and Advantages of our Approach

The main advantage of our framework for parallel OOP is that it provides easy-to-use and
efficient multiple inheritance for parallel objects, while most known proposals for parallel OOP fail
partially or completely to amalgamate multiple inheritance with parallelism. Although our model is
specified in terms of Oberon, it is applicable to any sequential language which supports record or
structure types.

The idea to use record types for the implementation of classes is adopted in Oberon[17],
Oberon-2[11] and Ada 9X [14]. These languages, however, provide only single-class inheritance,
while our framework supports easy-to-use multiple inheritance. As a language, Oberon does not
support concurrency. Parallel objects in Ada 9X can be implemented by means of either tasks, or
protected types. Task-based parallelism in Ada 9X seriously violates inheritance [9], while
protected types in the same language do not permit inheritance at all.

Dynamic binding in our framework for parallel OOP is as efficient as a procedure

invocation and does not involve run-time method tables. In contrast, dynamic binding in most

13

known OOP languages is based on run-time method tables and may cause considerable run-time
overhead when multiple inheritance is involved. For example, the multiple inheritance scheme in
C++ has caused 50% increase of the method table compared to the older single inheritance
implementation [15]. Implementing efficient run-time method tables in a distributed environment is
a complex task.

Dynamic binding through direct procedure invocation, without method tables, was proposed
originally by Wirth and implemented in Oberon. In the framework developed by Wirth, a method
can be overridden by changing the procedure assigned to a field in an extended record.
Unfortunately, the overriding method must have the same type as the overridden one. Thus, the
overriding method cannot operate (directly) on the extended components and may apply only to the
inherited ones [12]. In order to solve this problem, Moessenbock expanded Oberon with special
type-bound procedures that can be connected to a data type explicitly [11]. Type-bound procedures
can be overridden for extended types; however, they are called indirectly through method tables
which slows down the execution. Encapsulation is seriously violated by type-bound procedures,
because they can be declared at arbitrary places in the scope of that type [13]. Information hiding
is somewhat violated, since data fields of a record type are always visible in the whole module
containing the record type. Similar problematic points are observed in other known OOP
languages, such as C++ for example. In contrast, our record types enhanced with bodies offer
time-efficient dynamic binding, excellent encapsulation and information hiding. Objects
represented by extensible records do not require run-time method tables, which facilitates their
implementation and migration in distributed environment.

Many researchers expand existing serial strictly-typed OOP languages with parallelism.
The best known language extensions of C+ +, such as COOL [4] and Parmacs [1], do not furnish

inheritance for parallel objects. Several comprehensive parallel enhancements of Eiffel, such as

14

CEiffel [8], Eiffel// [3], and the concurrent extension of Eiffel based on method guards [10], ensure
inheritance for parallel objects but do not provide satisfactory reusability of synchronization code,
particularly in the case of multiple inheritance. In contrast, parallel objects in our OOP framework
inherit through type extension as successfully as serial ones. Even synchronization guards can be
inherited and reused, because they can be specified as methods in their defining classes and
inherited in subclasses.

Some researchers add parallelism to existing serial languages by means of external libraries
that manage and synchronize processes; the underlying serial languages remain more or less
unchanged. For example, Presto [2] extends C++ with a library of parallel programming
primitives but does not furnish inheritance for parallel objects. Another project of a similar type
extends Eifell with a special CONCURRENCY class [6]; likewise, Concurrent Oberon [7] expands
the Oberon operating system with a set of procedures for thread programming. The main
component of Charm++ [5], a recent parallel enhancement of C++ that claims to support
multiple inheritance for parallel objects, is a library of functions which provides support for parallel
execution. Charm++ messages to parallel objects are implemented as packets of data (C++
structures), rather than as method invocations; the latter would have the advantage to be more
efficient and reliable if they were available.

The chief advantage of the external parallel programming library primitives discussed in the
above paragraph is that they provide very flexible access to low level data and hardware resources.
The disadvantage of this approach is that such access cannot be controlled by the compiler and may
result in unreliable programs. The undisciplined and unstructured use of low-level parallelism
primitives leads to unstructured parallel programs; such programs are hard to debug, maintain and
modify. Therefore, low-level library primitives can be as harmful for parallel programs as is the

goto statement for sequential ones. In contrast, our proposed higher-level linguistic constructs such

15

as separate procedures and synchronization guards are intended to stimulate disciplined, well-
structured and more reliable parallel programming.

Finally, some earlier proposals for completely new languages for parallel OOP can be
found in [19]. Such proposals are skipped from our overview for brevity and because our effort is

aimed at adding parallelism to existing languages rather than designing new ones.

4 Conclusions

This paper defines a minimal enhancement of the imperative programming paradigm which
supports the principal features of (1) the OOP paradigm, such as inheritance, dynamic binding,
polymorphism, information hiding and encapsulation, and (2) the parallel programming paradigm,
such as process creation and coordination. Our proposed enhancement is based on the following
main features: generalized records with bodies, record extension through record nesting and
incomplete designators, access guards, and separate procedures. The enhancement is minimal
because none of its components is redundant. Indeed, removing record bodies from our framework
would seriously violate information hiding and encapsulation; removing record extension would
invalidate inheritance and polymorphism, removing separate procedures would make the language
serial, and removing access guards would practically eliminate synchronization.

From the programming language user perspective, our approach combines (1) the extensive
experience with the imperative programming paradigm, and its traditional popularity, with (2) the
power of the OOP paradigm, and with (3) the flexibility and efficiency of parallelism. From the
language designer perspective, the main advantage of our framework for parallel OOP is that it
provides easy-to-use and efficient multiple inheritance for parallel objects, as advocated in the

previous sections.

16

References

1.

Beck B. Shared Memory Parallel Programming in C+ +, IEEE Software, 7, No 4 (July),
1990, 38-48.

Bershad B., E. Lazowska, H. Levi. Presto: A System for Object-Oriented Parallel
Programming, Software - Practice and Experience, 18, No 8 (Aug.), 1988, 713-732.
Caromel D. Toward a Method of Object-Oriented Concurrent Programming,
Communications of the ACM, 36, No 9 (Sep.), 1993, 90-10.

Chandra R., A. Gupta, J. Hennessy. COOL: An Object-Based Language for Parallel
Programming, IEEE Computer, 27, No 8 (Aug.), 1994, 13-26.

Kale L., S. Krishnan. CHARM+ +: A Portable Concurrent Object Oriented System Based
on C++, OOPSLA'93, ACM Sigplan Notices, 28, No 10 (Oct.), 1993, 91-108.
Karaorman M., J. Bruno. Introducing Concurrency to a Sequential Lamguage,
Communications of the ACM, 36, No 9 (Sep.), 1993, 103-116.

Lalis S., B. Sanders. Adding Concurrency to the Oberon System, Proc. Intern. Conf. on
Programming Languages and Comp. Architectures, Zurich. Springer-Verlag, 1994, 328-
344.

Lohr K. P. Concurrency Annotations for Reusable Software, Communications of the ACM,
36, No 9 (Sep.), 1993, 81-89.

Matsuoka S., A. Yonezawa. Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages, Research Directions in Concurrent Object-Oriented

Programming, B. Sriver, P. Wegner (editors), The MIT Press, 1993, 107-150.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Meyer B. Systematic Concurrent Object-Oriented Programming, Communications of the
ACM, 36, No 9 (Sep.), 1993, 56-80.

Mossenbock H. Object-Oriented Programming in Oberon-2, ACM Press, 1993.

Radenski A. Is Oberon as Simple as Possible? A Smaller Language Based on the Concept
of Module Type, Proc. Intern. Conf. on Programming Languages and Computer
Architectures, Zurich. Springer-Verlag, 1994, 298-312.

Radenski A. Type Extensions, and Their Support for Object-Oriented Programming With
Multiple Inheritance, Proc. 32nd Annual ACM Southeast Conf., Tuscaloosa, Alabama,
ACM Press, 1994, 241-246.

Taft S. T. Ada 9X: A Technical Summary, Communications of the ACM, 35, No 11
(Nov.), 1992, 77-84.

Stroustrup B. The Evolution of C++: 1985 to 1989, The Evolution of C++: Language
Design in the Marketplace of Ideas, Waldo J. (ed.), The MIT Press, 1993, 13-52.

Wirth N. Type Extensions, ACM Transactions on Programming Languages and Systems,
10, 1987, 204-214.

Wirth N. The Programming Language Oberon, Software - Practice and Experience, 18
(July), 1988, 671-690.

Wirth N. From Modula to Oberon, Software - Practice and Experience, 18, No 7 (July),

1988, 671-670.

Wyatt B., K. Kavi, S. Hufnagel. Parallelism in Object-Oriented Languages: A Survey,

IEEE Software, 9, No 6 (Nov.), 1992, 56-66.

18

TYPE Class = POINTER TO ClassDesc; BODY ClassDesc;

ClassDesc= RECORD hiddenData: INTEGER;
data: INTEGER; PROCEDURE Method(v: INTEGER);
method: PROCEDURE (v: INTEGER); BEGIN data := v END Method;
END (*ClassDesc”); BEGIN
method := Method; hiddenData := 0
VAR oby: Class; END ClassDesc;

Figure 1 Class, Object, and Method Implementation

TYPE Subclass = POINTER TO SubclassDesc;
SubclassDesc = RECORD

parent: ClassDesc; SEPARATE PROCEDURE Name Parameters;
newData: INTEGER BEGIN
END (*SubclassDesc”); reqular statement part
BODY SubclassDesc; (*stub®) SEPARATE
separate statement part
VAR extObj: Subclass; END Name;
Figure 2 Subclass Implementation Figure 4 Form of Separate Procedures

TYPE Mailbox2 = POINTER TO MboxDesc2;
MboxDesc2 = SEPARATE RECORD
parent: MailboxDesc;
getAll PROCEDURE (VAR msg: ARRAY OF MsgType; VAR num: INTEGER)
WHEN parent.count > 0;
END; (* MboxDesc2 *)

BODY MboxDesc2;
PROCEDURE GetAll (VAR msg: ARRAY OF MsgType; VAR num: INTEGER);
BEGIN num := 0;
REPEAT parent. Get(msg[num]); INC(num) UNTIL parent.count = 0
END GetAll;
BEGIN getAll := GetAll END MboxDesc2;

Figure 6 Inheritance From parallel Objects as Type Extension: MboxDesc2 Extends MailboxDesc

19

TYPE Mailbox = POINTER TO MailboxDesc;
MailboxDesc = SEPARATE RECORD
count: INTEGER;
put. SEPARATE PROCEDURE (msg: MsgType) WHEN count < size;
get SEPARATE PROCEDURE (VAR msg: MsgType) WHEN count > 0;
END; (* MailboxDesc *)

BODY MailboxDesc;
VAR box: ARRAY size OF MsgType; last, first: INTEGER;

PROCEDURE Put (msg: MsgType); BEGIN store[last] := msg;
SEPARATE last := (last + 1) MOD size; INC(count); END Put;

PROCEDURE Get (VAR msg: MsgType); BEGIN msg := store[first];
SEPARATE first := (first + 1) MOD size; DEC(count); END Get;

BEGIN count :=0; last :=0; first :=0; put := Put; get := Get;
END MailboxDesc;

Figure 5 Implementation of Parallel Mailbox

TYPE Persistence = POINTER TO PersistenceDesc;
PersistenceDesc = SEPARATE RECORD

file: STRING; (* file name *)

save, load: SEPARATE PROCEDURE;
END; (* PersistenceDesc *)

TYPE PersBox = POINTER TO PersBoxDesc;
PersBoxDesc = SEPARATE RECORD
pers: PersistenceDesc;
mbox: MailboxDesc;
END; (* PersBoxDesc *)
VAR persBox : PersBox;

BODY PersBoxDesc;
PROCEDURE Save;
BEGIN SEPARATE (*...save mbox into file *) END Save;
PROCEDURE Load:
BEGIN SEPARATE (*...load mbox from file *) END Load:
BEGIN pers.save := Save; pers.load := Load; END PersBoxDesc;

Figure 7 Class Persistence, and Its Use in the Implementation of Persistent Mailbox

20

BODY SubclassDesc;

PROCEDURE OverridingMethod (v: INTEGER);

BEGIN parent.data := v; newData := v
END OverridingMethod;
BEGIN parent.method := OverridingMethod
END SubclassDesc;

Figure 3 Method overriding

21

