
A GENERIC ALL-PAIRS CLUSTER-COMPUTING PIPELINE AND ITS
APPLICATIONS

A. RADENSKI

Computer Science Dept. Winston-Salem State University, Winston-Salem, NC 27110, USA
E-mail:radenski@computer.org

B. NORRIS

Computer Science Dept., University of Illinois at Urbana-Champaign, 1304 W. Springfield
Ave., Urbana, Illinois 61801, USA

W. CHEN

Computer Science Dept. Winston-Salem State University, Winston-Salem, NC 27110, USA

In this paper we propose a generic pipeline for all-pairs computations on a cluster of
workstations. We use this generic pipeline to derive specific cluster algorithms for three different
all-pairs problems: n-body simulation, bubble sort, and Gaussian elimination. We implement the
generic pipeline and its derivatives on a cluster of Intel Pentium II workstations using C and the
PVM cluster computing environment. We measure and evaluate the performance of the derived
algorithms. The n-body and bubble sort algorithms achieve super-linear speedup for large
problems.

1 Introduction

An all-pairs computation performs the same operation on every possible set of two
elements chosen from a system of n elements [7, 4]. The operation changes a pair
of elements independently of the remaining elements and is called for this reason
interaction between the two elements. Examples of all-pairs computations include
n-body simulation [4, 3], bubble sort [2], Gaussian elimination [1], and
Householder reduction [4]. An all-pair sequential computation over a large
number of elements may become prohibitively complex. Interactions between pairs
of elements happen in the order specified by a precedence graph [4]; fortunately,
some of the interactions between pairs of elements are independent of each other
and can, therefore, be executed in parallel.

 It is possible to specify an all-pairs computation as a generic parallel
algorithm that implements process control and communication in a problem-
independent manner. Such a generic algorithm can be glued together with domain-
specific sequential code in order to derive particular all-pairs parallel
computations. This methodology is facilitated by a concurrent message-passing
language, Paradigm/SP, and by a compiler. Paradigm/SP [5, 6] is a high-level

object-oriented language that allows the validation of parallel algorithms before
they are converted into efficient cluster computing applications.

In Section 2 we propose a generic all-pairs pipeline algorithm for parallel
computations on clusters of workstations. In Sections 3 we use this generic
algorithm to derive specific parallel algorithms for three different problems: n-body
simulation, bubble sort, and Gaussian elimination. In Section 4 we describe
implementations of the algorithms on a homogeneous cluster of workstations using
PVM, the parallel virtual machine software package. In the same section, we
present performance measurements on an Intel Pentium II cluster of workstations.
Concluding remarks are presented in Section 5.

2 A Generic All-Pairs Pipeline

We assume that an all-pairs computation in a system of n elements is defined by
the type of the elements and by two sequential methods:
• a method interact to make two arbitrary elements exchange information and

eventually update their states;
• a method to integrate the system of updated elements into a new system.

Figure 1. An all-pairs pipeline in progress.

An all-pairs computation on a system of n elements can be parallelized by
means of a master and several pipelined nodes. The master sends all elements to
travel left-to-right through the pipeline. Each node first retains its own subsystem
of elements and makes them interact with each other, thus performing a sequential
all-pairs computation on its retained elements. After that, the node continues to
receive elements from its left neighbor, makes them interact with its own retained
elements, and then sends them to its right neighbor. By traveling left-to-right
through the pipeline, all elements finally become evenly distributed among the

Master
e10 e11

integrate

interact
.. e8 ..

e4 e5 e6

Node 2

interact

e7

Node 3

interact
.. e9 ..

e1 e2 e3

Node 1

pipelined nodes. Then the master integrates the system of received elements by
eventually performing additional problem-specific modifications on the elements.
After that, the master may send the whole system through the pipeline again; the
whole process is repeated a predefined number of steps. This type of computation
can be efficient on a cluster of workstations provided the interaction between pairs
of elements is computationally intensive and the individual elements are not very
large.

We specify and test this generic all-pairs pipeline using the concurrent
message-passing language Paradigm/SP [5, 6]. Procedures interact and integrate,
and the element type are the principal parameters of the algorithm, together with
the total number of elements n and the number of pipeline nodes p:

const n = ..; {number of elements} p = ..; {number of nodes}
type element = ..; system = array[1..n] of element;
procedure interact(var ei, ej: element); procedure integrate(var s:system);

Procedures interact and integrate are left unspecified in the generic algorithm
because they vary significantly from one problem to another. The only assumption
made in the generic algorithm is that procedure interact can operate and eventually
update two individual elements, ei and ej, while procedure integrate can update the
state of the whole system, s. The generic algorithm allows any desirable domain-
specific element type without restrictions.

A net c of channels capable of transmitting messages of type element is
declared and opened as shown below:

type channel = *(element); type net = array [0..p] of channel;
var c: net; for k := 0 to p do open(c[i]);

The master sends all n elements of the system through its left channel to the
leftmost node of the pipeline (see Fig. 1). As shown in Fig. 2, procedure node first
retains a block of n/p elements in a local array, e. After that, the node continues to
receive transient elements through its left channel. The node performs an
application-dependent interaction between each transient element, ej, with every
retained element, e[j], eventually changing the states of the interacting elements.
After the transient element interacts with all of the node’s retained elements, the
node sends it through its right channel and receives another transient element
through its left channel. After handling all transient elements, the node sends,
through its top channel, all retained elements to the master.

As shown in Fig. 3, procedure master repeatedly sends the whole system of
elements to the pipeline through its left channel, so that each node can retain a
block of elements and make these retained elements interact with transient

elements. After these interactions, the master receives back all retained elements.
Through a bottom net of channels that connect each pipeline node to the master. In
order to make this communication more efficient, the master employs a whole net
of bottom channels, one for each individual pipeline node. At the end of each cycle,
the master performs an application-dependent integration of the whole system (see
Fig. 3).

 procedure node(
 steps, first, last: integer;
 left, right, top: channel);
 const
 max = n div p;
 type
 block = array
 [0..max] of element;
 var
 e: block; ej: element;
 i, j: integer;
 begin
 repeat
 for i := 0 to last-first do
 begin
 receive(left, e[i]);

 for j := 0 to i-1 do
 interact(e[i], e[j]);
 end;
 for j := last+1 to n do

 begin
 receive(left, ej);
 for i := 0 to last-first do
 interact(ej, e[i]);
 send(right, ej);
 end;
 for i := 0 to last-first do
 send(top, e[i]);
 steps := steps - 1;
 until steps = 0;
 end; {node}

Figure 2. Pipeline node.

 procedure master(
 steps: integer; var s: system;
 left: channel; bottom: net);
 begin
 repeat
 sendSystem(left, s);
 receiveSystem(bottom, s);
 integrate(s);
 steps := steps - 1;
 until steps = 0;
 end; {master}

Figure 3. Master node.

 procedure compute(
 steps: integer; var s: system);
 var
 c, b: net;
 begin
 openChannels(c, b);
 parallel
 master(steps, s, c[0], b) |
 spawnNodes(steps, c, b);
 end;
 end; {compute}

Figure 4. All-pairs pipeline.

Finally, the algorithm from Fig. 4 creates the pipeline displayed on Fig. 1 by
first opening all channels and then running in parallel one master and p pipeline
nodes.

Given this generic parallel algorithm, one can derive a parallel algorithm for a
particular problem by specifying the particular type of its elements and the
problem-specific, sequential procedures interact and integrate. Finally, procedure
compute is invoked in the master to solve concrete problem instances.

A complete specification of the all-pairs pipeline algorithm in the form of a
Paradigm/SP generic module can be found in [9].

3 Deriving Specific Cluster-Computing Algorithms

We use the generic all-pairs pipeline to derive specific cluster algorithms for three
different all-pairs problems: n-body simulation, bubble sort, and Gaussian
elimination. We achieve this by defining the type of the elements for each specific
problem, and by defining concrete sequential versions of methods interact and
integrate. The sequential versions of interact and integrate are linked together
with the generic parallel algorithm in order to obtain a specific parallel algorithm.
Complete specifications of all derived algorithms can be found in [9].

3.1 N-Body Simulation

We consider a discrete n-body simulation problem: compute the positions of n
bodies in space at equal discrete time intervals, assuming that the bodies interact
through gravitational forces only. From the generic all-pairs pipeline, we derive a
parallel n-body simulation algorithm that is similar to the one presented in [4,
Chapter 6]. The generic element from the all-pairs pipeline is specialized in the n-
body simulation algorithm to represent a body with a particular mass m, relative
distance r from the origin, velocity v, and cumulative force f acting upon the body:

element = class m: real; r, v, f: vector; end;

At each simulation step, procedure interact models force interaction between
two particular bodies by (1) calculating the gravitational force between the two
bodies at their current positions and (2), by correspondingly updating the
cumulative forces acting upon each of the bodies:

procedure interact(var ei, ej: body);
var fij: vector;
begin fij := force(ei, ej); ei.f := sum(ei.f, fij); ej.f := difference(ej.f, fij); end;

Procedure integrate simulates body moves as a result of body interactions by
calculating the velocity and position increments at the end of each time interval.

3.2 Bubble Sort

We consider a standard internal sort problem: given an array of n elements, sort
them in ascending or descending order. Starting again with the generic all-pairs
pipeline, we derive a parallel bubble sort algorithm. For the derivation of bubble
sort, we introduce a new generic parameter, a relation less that is capable of
comparing any two generic elements. Then we define interact to swap elements ei
and ej if less(ei, ej) is true:

procedure interact(var ei, ej: element);
begin if less(ei, ej) then swap(ei, ej); end;

This version of interact makes smaller elements move towards the end of the
pipeline while large elements are kept closer to the beginning of the pipeline. As a
result, the whole system becomes sorted in descending order.

The derived bubble sort algorithm is specialized yet generic version of the all-
pairs pipeline because it can be used to sort any type of elements. As an example,
we derive an integer bubble sort algorithm by defining an element to consist of a
simple integer component:

element = class v: integer; end;
function less(ei, ej: element): boolean; begin less := ei.v < ej.v end;

3.3 Gaussian Elimination

Finally, we consider a standard numerical problem: find a solution for a system of
n linear equations with n unknowns. Starting again with the generic all-pairs
pipeline, we derive a parallel Gaussian elimination algorithm for solving such a
system. We combine the system’s n by n matrix and the right-hand side vector into
a n by n+1 matrix. Then, the original all-pairs elements are specified to represent
rows of the extended matrix:

Given two rows ei and ej, method interact eliminates xj from ei by multiplying
and subtracting ej from ei. We have enhanced procedure interact with partial
pivoting in order to reduce the numerical instability of Gaussian elimination:

row = array[1..n] of real;
element = class a: row; b: real;
 no: integer; {original row number} pos: integer; {current row position} end;

procedure interact(var ei, ej: element);
begin { pivot ei, and ej, then eliminate xj from equation i } end;

The LU factorization step of Gaussian elimination is done in parallel, and the
final solution is obtained sequentially by back substitution, which is implemented
in the method integrate. This sequential post-processing does not affect the
parallel performance significantly. Like bubble sort, Gaussian elimination requires
a single pipeline step.

4 Cluster Implementation and Performance Evaluation

We first derive and validate parallel algorithms in Paradigm/SP, then we convert
them into efficient C code that runs in the PVM cluster computing environment
[8]. We believe that this approach simplifies the development and debugging of
cluster computing applications. Note that the cluster implementations of n-body
simulation, Gaussian elimination, and bubble sort all use the same generic parallel
implementation of the all-pairs pipeline. Each specific cluster algorithm defines its
domain-specific sequential components: element type, functions interact, integrate,
and functions to initialize and finalize the system of elements.

The number of operations per node is inversely proportional to its position in
the pipeline, e.g., the first node performs the most work while the last performs the
least. If nodes are mapped to processors in a one-to-one fashion, the parallel
execution of the pipeline algorithm suffers from load imbalance. To remedy this
problem, our cluster implementation of the generic pipeline algorithm maps nodes
onto processors using reflected cyclic mapping, which corresponds to “folding” the
pipeline. This ensures that work is divided more evenly among the processors
throughout the computation.

We have obtained performance results on a dedicated 100Mbps Ethernet
cluster of 400Mhz Intel Pentium II dual-processor workstations with 1GB RAM
per workstation. Experiments were performed on p = 1, 2, 4, 8, 16, 32 processors
with pipelines consisting of (f + 1) *p folded nodes for different values of the
folding factor f. Problems with larger number of elements can usually benefit from
a larger folding factor. Table 1 shows the run time T(p) and processor efficiency
E(p) = T(1)/(p*T(p)) for the following randomly generated problems:
• n-body simulation of systems of size n = 10,000 with a fold factor f = 7;
• bubble sort of integer arrays of size n = 30,000 with a fold factor f = 7;
• Gaussian elimination of systems of n = 6,000 equations with a fold factor f =3;

The speedup for the same experiments is illustrated in Fig. 5. Speedup is
defined as T(1)/T(p).

Table 1. Wall-clock time in seconds and processor efficiency.

p N-Body Simulation Bubble Sort Gaussian Elimination
T(p) E(p) T(p) E(p) T(p) E(p)

1 114 1.00 23 1.00 1525 1.00
2 42 1.36 7 1.64 815 0.94
4 22 1.30 4 1.44 486 0.78
8 12 1.19 2 1.44 295 0.65

16 7 1.29 2 0.72 199 0.48
32 4 0.89 1 0.72 186 0.26

0

5

10

15

20

25

30

1 2 4 8 16 32

Number of Processors

Sp
ee

du
p

N-Body Simulation
Bubble Sort
Gaussian Elimination

Figure 5. Speedup.

N-body simulation and bubble sort achieve super-linear efficiency because the
total amount of available cache grows with the total number of processors.
Gaussian elimination does not benefit much from a larger cache because its
elements are considerably larger. Thus, only a small fraction of the node’s
retained elements can be retained in cache. The larger element size also leads to
greater communication costs.

5 Conclusions

We believe that extending a generic parallel algorithm with sequential domain-
specific code can result in good parallel performance in a cluster-computing
environment. This parallel programming methodology leads to clean parallel
solutions of a variety of problems that share the same parallel control structure. In
ddition to providing good processor performance, genericity improves
programming efficiency, allowing the application developer to focus on the

sequential implementation of domain-specific details, rather than on the more
difficult parallel code development. These conclusions are founded on our
experience with several generic parallel algorithms: the all-pairs generic algorithm
(described in the present paper), a generic master-server probabilistic algorithm, a
cellular automaton generic algorithm, and a generic branch and bound algorithm
[9].

The work presented in this paper is similar but not identical to earlier results
in parallel raster image processing[10]. The dependency graph of an all-pairs
computation is analogous to a raster image processing dependency graph. The two
kinds of algorithms are implemented by means of similar pipelines. Parallel raster
image processing does not involve interactions as those found in an all-pairs
computation. The all-pairs algorithm proposed in this paper is a rather generic
solution that may be applied to a large variety of problems.

This work has been supported by NASA grant NAG3-2011 and NSF Grant
CCR-9509223.

References

 1. Amoura A., E. Bampis, J.-C. König. Scheduling Algorithms for Parallel
Gaussian Elimination With Communication Costs, IEEE Transactions on
Parallel and Distributed Systems, 9(7), July 1998, 679-686.

 2. Arpaci-Dusseau A., R. Arpaci-Dusseau, D. Culler, J. Hellerstein, D. Patterson.
High-Performance Sorting on Networks of Workstations, Proc. 1997 ACM
SIGMOD Conference, ACM Press, 1997, 243—254.

 3. Baiardi F., P. Becuzzi, P. Mori, M. Paoli. Load Balancing and Locality in
Hierarchical N-Body Algorithms on Distributed Memory Architectures,
Lecture Notes in Computer Science, 1401, Sringer, 1998, 284-294.

 4. Hansen B. Studies in Computational Science: Parallel Programming Paradigms,
Prentice Hall, Inc., Englewood Cliffs, NJ, 1995.

 5. Radenski A. Module Embedding. Intl. Journal Software - Concepts and Tools,
19(3), 1998, 122-129.

 6. Radenski A. Prototype Implementation of Paradigm/SP,
www.rtpnet.org/~radenski/research/language.html, 1998.

 7. Shih Z., G. Chen, R. Lee. Systolic Algorithms to Examine All Pairs of Elements,
Communications of the ACM, 30, 1987, 161-167.

 8. Sunderam V. PVM: A Framework for Parallel Distributed Computing,
Concurrency: Practice and Experience, 2, No 4, 1990, 315-339.

 9. Radenski A. Generic Parallel Message-Passing Algorithms and Their
Applications, www.rtpnet.org/~radenski/research/algorithms.html, 1999.

 10. Van Campenhout, J.M., Lasure, R., Kawahara, Y. PRIP - A Parallel Raster
Image Processor, Computer Graphics Forum, 12, 1993, 95-104.

