
1

Development and Utilization of Parallel Generic Algorithms for
Scientific Computations1

Atanas Radenski2 Andrew Vann3 Boyana Norris4

Abstract

We develop generic parallel algorithms as extensible modules that encapsulate related
classes and parallel methods. Extensible modules define common parallel structures,
such as meshes, pipelines, or master-server networks in problem-independent manner.
Such modules can be extended with sequential domain-specific code in order to derive
particular parallel applications. In this paper, we first outline the essence of extensible
modules. Then, we focus on a case study of the cellular automaton, a message-parallel
generic algorithm from which we derive diverse parallel scientific applications.

1 Introduction
In this paper, we introduce an object-oriented enhancement to modular languages called module
extension that facilitates the development and utilization of generic parallel algorithms. Module extension
is a form of inheritance that applies to modules and that utilizes class overriding in addition to method
overriding.

We have implemented module extension in a object-parallel language called Paradigm/SP. We
use Paradigm/SP to develop generic parallel algorithms as modules that encapsulate related classes and
parallel methods. Particular parallel applications are derived by extending such generic modules with
sequential code. We use the Paradigm/SP implementation to test the validity of the derived parallel
algorithms before finally converting them into efficient C code that runs in a cluster-computing
environment, such as PVM.

Our technical goal is to develop an object-oriented programming methodology for generic
scientific computations on clusters of workstations. In the paper, we focus on a case study of a generic
cellular automaton, a message-parallel algorithm that can be applied to a variety of scientific problems.
In section 2, we present the general properties of extensible modules, then define the cellular automaton
and discuss how the definition can be shaped as an extensible module.

We use the generic cellular automaton to derive a hierarchy of diverse parallel algorithms with
decreasing generality (Fig. 1). The derivation is achieved through module extension. In the first part of
section 3, we derive successive over-relaxation, an iterative method that can be used to find numeric

1 This work is partially supported by NSF grant CCR-9509223 and NASA grant NAG3-2011
2 Computer Science Department, Winston-Salem State University, Winston-Salem, NC
3 Computer Science Department, Clemson University, Clemson, SC
4 Computer Science Department, University of Illinois at Urbana-Champaign, IL

2

Figure 1. A hierarchy of diverse parallel algorithms can be derived from the generic
cellular automaton.

Parallel
Paradigm:

Cellular
Automaton

Generic
Algorithm:

Genetic
Algorithm

Generic
Algorithm:
Successive
Relaxation

Application:
Laplace

Heat Equation

Other
Applications of

Successive
Relaxation

Application:
Job Scheduling

With Constraints

Other
Applications of

the Genetic
Algorithm

Parallel
Code

Sequential
Code

Sequential
Code

Specific

Very
General

Less
General

solutions of partial differential equations. From this generic algorithm, we derive a parallel algorithm for
a specific problem - Laplace equation for stationary heat flow. In the second part of Section 3, we begin
again with the generic cellular automaton and derive a parallel genetic algorithm. The parallel genetic
algorithm is then extended to produce a parallel algorithm for approximate job scheduling.

Finally, we convert derived parallel algorithms into efficient C code that runs in a cluster
computing environment, such as PVM. Section 3 presents performance results obtained on an Ethernet
cluster on Sun Ultra-1 workstations. Section 4 is devoted to related work and conclusions.

2 Specification Of A Generic Parallel Algorithm As An Extensible Module

2.1 The Essence of Extensible Modules
An extensible module encapsulates (1) classes and other types, (2) procedure and function methods, (3)
global variables, and (4) statements for module initialization. Some of the declared entities are exported
by the module and can be used by client modules (technically, identifiers of exported entities are marked
with a ‘*’ sign). Exported entities are public, while non-exported entities remain private in the module.
An example of extensible module M0 is shown in Fig. 2.

Module extension is a code reuse mechanism that enables building of new modules from
existing ones. Module extension consists of module embedding, class overriding, and method
overriding.

2.1.1 Module Embedding. An existing module M0 can be embedded in a newly declared module M1
(Fig. 3 contains an example). The embedding module M1 inherits all components of its embedded
module M0. Only components that are exported by M0 are visible in the embedding module M1; such

3

components are re-exported by M1. The embedding module may declare new components in addition to
those inherited from its embedded modules.

module M0;
 type C* = class
 a*: integer; p: integer;
 end;
 var object*: C; private: C;
 procedure method*(var obj: C);
 begin { first version of method }
end;
begin { M0 } object.a := 0; end.

Figure 2. Extensible module M0.

module M1(M0);
 { C and object from M0
 are visible in M1}
 type C = class b*: integer; end;
 { C is extended with b: integer; }
 { C and object are now (a, p, b) }
 procedure method(var obj: C);
 begin { overriding method } end;
begin { M1 } object.b := 0; end.

Figure 3. Extended module M1.

2.1.2 Class Overriding. A class that is exported by an embedded module M0 can be re-declared in its
embedding module M1. A class definition in M1 extends the definition inherited from M0. The extended
class definition includes all components originally specified in M0 and, in addition, new components
specified in M1. The extended class definition overrides the class definition inherited from M0. Consider,
for example, a class C declared in M0 and extended in M1, and an object of class C that is exported by
M0. (Fig. 3). Although the object is originally declared in M0, when inherited by M1 it contains all
components that belong to the extended class C, (i.e. a, p, and b in the example from Fig. 3).

2.1.3 Method Overriding. A method that is exported by an embedded module M0 can be re-declared in
its embedding module M1, provided that the procedure heading in M1 is the same as in M0. The newly
declared method implementation overrides the method implementation inherited from the embedded
module. For example, the procedure method declared in M1 overrides the procedure method declared in
M0 (Fig. 3). Any reference to this method, including references from within the embedded module M0,
will invoke the method implementation declared in M1.

2.2 The Cellular Automaton Extensible Module
We outline module extension and demonstrate its applicability by focusing on a highly applicable generic
algorithm for parallel scientific applications, the cellular automaton. The state of the cellular automaton
is a square grid of n x n cells (Fig. 4). As a single step, the automaton updates the states of all individual
cells. The state transition of a cell depends only on its current state and on the states of the adjacent cells.
The automaton iterates over these steps in order to find a numeric solution for a given problem (such as
Laplace equation).

The cellular automaton implements an individual step by means of a q x q mesh of parallel
processes called nodes (Fig. 5). Each process node is assigned a sub-grid of m x m elements, where n =
m * q. Each node updates its own sub-grid sequentially but all nodes do this simultaneously. During each
step, nodes exchange boundary cells with their immediate neighbors through two-way communication
channels. At the end, all nodes send their final sub-grids to a special master process which composes a
final solution to the original problem.

The principal generic parameters of the parallel cellular automaton include the cell type and two
sequential methods:
• a method to generate an initial state of an individual cell;
• a method to determine the next state of a cell as a function of its current state and the states of the

adjacent cells.

4

The automaton provides its clients with a method to compute a solution of a specific problem. The
compute method incorporates the master and the node processes, but those are transparent to the clients
of the automaton.

module PCA;

 type cell* = ..;

 { definitions of grid and subgrid types as arrays of cells; definition of channel type;
 definition of a communication network as matrix of individual channels }

 procedure nextState*(var u: subgrid; i, j: integer); begin { virtual } end;
 procedure generate*(i, j: integer; var c: cell); begin { virtual } end;

 procedure compute*(steps: integer; var u: grid);
 begin { complete implementation that opens channels, spawns processes } end;

 procedure node(qi, qj, steps: integer; up, down, left, right, mast: channel);
 begin { complete implementation of a private node process } end;

 procedure master(c: network; var u: grid);
 begin { complete implementation of a private master process } end;

begin {… PCA…} end.

Figure 6. An outline of extensible module Parallel Cellular Automaton, PCA.

All constituents of the parallel cellular automaton (PCA) are encapsulated in an extensible
module (Fig. 6). The parallel processes that constitute the cellular automaton do not utilize any problem-
dependent information. Thus, the cell type is defined as an empty class. This empty class is extended
with specific components when particular algorithms are derived from the generic algorithm, as
demonstrated in the next section. Methods generate and nextState, which are supposed to initialize a cell
and perform a state transition correspondingly, contain no statements at all and serve, in fact, as virtual

Figure 4. The state of a cellular
automation is a square grid of cells.

Figure 5. Subgrids are allocated to
parallel nodes.

5

methods. Concrete versions of such virtual methods are provided for the derivation of particular
algorithms.

The generic parameters cell, generate, and nextState, are exported by module PCA, together
with a complete implementation of method compute. Clients of module PCA can (1) extend the cell class
with problem-specific components, (2) provide domain-specific versions of methods generate and
nextState, and (3) use method compute to solve particular problems.

The complete implementation of module PCA utilizes well established parallel programming
language features, such as channel types and variables, messages, parallel and forall statements; we have
adopted these features from [1]. For example, a channel capable of transmitting cell and integer values
between two processes can be declared and utilized as shown on the left side of Fig. 7. The master and
the node processes are implemented as private sequential methods that communicate by means of send
and receive statements. All processes are generated by methods compute by means of familiar parallel
and forall statements, as illustrated on the right side of Fig. 7.

type channel = *(cell, integer);
var
 chan: channel; c: cell; i: integer;
…
 open(chan);
 send(chan, i); receive(chan, c);

parallel
 master(…master parameters…) |
 forall i := 1 to q do
 forall j := 1 to q do
 node(…node parameters…);
end;

Figure 7. Sample parallel programming language features.

The actual complete implementation of the generic cellular automaton, PCA, uses the problem
domain as an additional generic parameter. This parameter is used similarly to the cell class and is not
discussed in this paper for the sake of simplicity and shorter examples.

We use the generic cellular automaton to derive a hierarchy of more specific parallel algorithms,
such as (1) successive over-relaxation, (2) Laplace heat equation, (3) genetic, and (4) job scheduling
algorithms (see Fig.1). We achieve this by defining the cell class for each specific problem and by
defining concrete sequential versions of methods generate and nextState. The derived algorithms are
implemented as extensions of the parallel cellular module, PCA, as described in the next section.

3 Derivation And Implementation Of A Hierarchy Of Algorithms

3.1 Successive Over-Relaxation And Laplace Equation Algorithms
From the generic parallel cellular automaton we derive a successive over-relaxation algorithm, an
iterative method that can be used to find numeric solutions of partial differential equations (Fig. 1). We
restrict ourselves to equations for two-dimensional square regions. The square grid of cells is a discrete
representation of such a region, with each cell representing a single point of the region. Technically, the
algorithm is represented as a module SOR (an abbreviation for successive over-relaxation) which is an
extension of module PCA (Fig. 8). The extended module redefines cell as a class with one real
component, t, that represents a function value in the center of the cell, (2) defines fopt, a relaxation factor
utilized by method nextState, (3) introduces a new generic parameter, a method called residual that is
equation dependent, and (4) defines method nextState to perform successive over-relaxation in terms of
method residual. We further extend module SOR into module Laplace by defining concrete versions of
methods residual and generate that are specific for the heat equation (Fig. 8). The compute method,
inherited unchanged from module PCA, uses these specific functions to represent a parallel algorithm for
Laplace equation for stationary heat flow.

6

module SOR(PCA);
…
type cell* = class t*: real; end;
var fopt*: real;

function residual*(
 u: subgrid; i, j: integer): real;
begin { virtual } end;

procedure nextState*(
 var u: subgrid; i, j: integer);
 { 1 <= i <= m, 1 <= j <= m }
 var res: real;
begin res := residual(u, i, j) - u[i,j].t;
 u[i,j].t := u[i,j].t + fopt * res;
end; {nextState}

{ supportive methods, such as display
and initDomain }

begin { SOR } fopt := 2 - 2*pi / n;
end.

module Laplace(SOR);
…
function residual*(
 u: subgrid; i, j: integer): real;
begin
 residual := (u[i-1,j].t + u[i+1,j].t +
 u[i,j+1].t + u[i,j-1].t) / 4.0;
end;

procedure generate*
 (i, j: integer; var c: cell);
begin
 { initialize boundary or internal cell }
end;
…
begin { Laplace }
 …
 compute(steps, u);
 …
end.

Figure 8. Derivation of successive over-relaxation and Laplace equation algorithms.

3.2 Genetic And Job Scheduling Algorithms
Starting again with the generic parallel cellular automaton, we derive a parallel genetic algorithm, a
method that can be used to find approximate solutions of intractable problems (Fig. 1). Our algorithm is
based on the fine-grain (or neighborhood) model [9]. The algorithm is represented as a module GA (an
abbreviation for genetic algorithm) which is an extension of the generic parallel cellular automaton
module, PCA (Fig. 9). The extended module GA defines several new generic parameters: an empty class
gene, virtual methods mutate, crossover, and others. Furthermore, GA defines a type chromosome as an
array of genes and redefines cell as a class that incorporates one chromosome together with that
chromosome’s fitness. We then derive a distributed algorithm for job scheduling with penalties [8] by
extending module GA into module Jobs. The extended module redefines gene as a concrete class with
one boolean component and supplies concrete definitions of the crossover and mutate genetic operations
that are specific for job scheduling with penalties (Fig. 9). Clients of module Jobs execute the algorithm
by invoking method compute that is inherited form module PCA.

3.3 Performance Evaluation Of A Cluster Implementation
We use the object-parallel language Paradigm/SP to specify the generic cellular automaton and to
derive more specific algorithms through module extension. We use the Paradigm/SP compiler to test
these specifications as concurrent programs on a single-processor platform. After having validated a
concrete algorithm, we convert it into efficient C code that runs in the PVM cluster computing

7

environment [10]. We have obtained performance results for the heat equation and for the job scheduling
problem on a 10Mbps Ethernet cluster of Sun Ultra-1 workstations.

module GA(PCA);
…
type gene* = ..;
 chromosome* =
 array[1..chromoSize] of gene;
 cell* =
 class
 gene*: chromosome;
 fitness*: integer;
 end;
procedure mutate*(var c: cell);
begin { virtual } end;
procedure crossover*
 (p1, p2: cell; var c1, c2: cell);
begin { virtual } end;
{… some supplementary methods…}
procedure nextState*
 (var u : subgrid; i, j: integer);
begin { complete implementation
 using crossover and mutate }
end;
…
begin { GA } end.

module Jobs(GA);
…
type gene* =
 class
 g*: boolean;
 end;
…
procedure crossover*
 (p1, p2: cell; var c1, c2: cell);
begin { complete implementation of
the crossover genetic operator that
works well for job scheduling } end;

procedure mutate*(var c: cell);
begin { complete implementation of
the mutate genetic operator that is
relevant for job scheduling } end;

{ … some supporting methods … }

begin { Jobs }
… compute(steps, u); …
end.

Figure 9. Derivation of genetic and job scheduling algorithms

We have experimented with Laplace equation for temperature equilibrium in a square region
with fixed temperatures at the boundaries. For multi-processor heat equation experiments, a single
processor implements a subgrid of 500 x 500 cells. For varying number of processors, the subgrid
dimension of m = 500 remains unchanged, i.e., the CPU load on each processor remains approximately
the same. Furthermore, depending on the dimension of the q x q mesh of processors, the dimension of the
global grid of n x n cells is n = qm. Table 1 shows the execution time T(n, p) in seconds on a q x q mesh
of p processors, p = q * q. The table also contains the processor efficiency E(n, p) = T(n, 1)/(p*T(n, p))
and the speedup S(n, p) = p * E(n, p). The processor efficiency and speedup are higher for smaller
number of processors.

Note that when the processor efficiency for 16 processors and a large grid of 2000 x 2000 cells
is calculated using the equation E(n, p) = T(n, 1)/(p*T(n, p)), then E(2000, 16) = 1.03, i.e., it is greater
than 1; the corresponding speedup of 16.6 is greater than the number of processors. This result occurred
because a single workstation was not capable of holding a whole 2000 x 2000 grid in memory (64MB in
this case). The workstation had to swap pages between memory and disk during computations which
resulted in poor single processor wall-clock time. We circumvented this difficulty by calculating the so
called scaled efficiency [1] using the equation E(n, p) = sqrt(p) * T(m, 1) / T(n, p), where m = 500 is the
fixed subgrid dimension. The scaled efficiency E(2000, 16) = 0.52 is also shown in Table 1, together
with the corresponding scaled speedup of 8.3. Note that for smaller processor meshes (p = 1, 4, 9) and,
correspondingly, smaller grids, both equations for E(n, p) give the same values.

8

Table 1. Laplace equation.
p n T(n,1) T(n,p) E(n,p) S(n,p)
1 500 85 85 1.00 1.0
4 1000 676 236 0.72 2.9
9 1500 2338 411 0.62 5.6
16 2000 10795 654 1.03; 0.52 16.6; 8.3

A state transition for the job scheduling problem is more computationally demanding than a
state transition for the heat equation. In addition, job scheduling is based on a distributed genetic
algorithm which requires a coarse grid, in contrast to Laplace equation solver which needs a finer grid.
Thus, we implement a smaller subgrid of 24 x 24 cells on each processor when running multi-processor
job scheduling experiments. As with the heat equation, the dimension of the global grid of n x n cells is n
= qm, where q is the dimension of the mesh of processors. Table 2 shows the execution time T(n, p) in
seconds on a q x q mesh of p processors, p = q * q, the processor efficiency E(n, p) = T(n, 1)/(p*T(n,
p)) and the speedup S(n, p) = p * E(n, p). The processor efficiency is higher than 0.92.

Table 2. Job scheduling.
p n T(n,1) T(n,p) E(n,p) S(n,p)
1 24 1950 1950 1.00 1.0
4 48 7802 1961 0.99 3.98
9 72 17559 2048 0.95 8.6
16 96 31218 2113 0.92 14.8

Figures 10 and 11 graphically represent the processor efficiency and speedup of the algorithms
respectively. The job scheduling algorithm scales well on the grid dimension, n. The heat equation
algorithm has more limited scalability due to its unfavorable proportion between communication and
computation requirements.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 4 9 16

Processors

E
ff

iic
en

cy

Laplace Equation

Job Sceduling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 4 9 16

Processors

S
p

ee
d

u
p

Laplace Equation

Job Sceduling

Figure 10. Processor Efficiency Figure 11. Speedup.

4 Conclusions
A parallel cellular automaton for multi-computers was first developed by Hansen [1] and applied to
forest fire simulation and to the heat equation. We have adapted the cellular automaton to a cluster
computing environment, in which message passing is generally slower than in a multi-computer. We
have also derived a hierarchy of algorithms rather than isolated applications. Our derivation process is

9

supported by special linguistic constructs, module extension, and by a compiler. Module extension can
be valuable when modules and classes are used in conjunction, and, therefore, should be extended
together. Furthermore, module extension can be applied to define and implement extensible typeless
entities, such as abstract data structures or libraries of functions.

We have adopted most of the algorithms for the generic parallel cellular automaton from [1],
except for the global output algorithm which is suitable for a multi-computer but not for a cluster of
workstation. Our node processes send their final states to the master through designated direct channels
rather than through channels that connect adjacent nodes [1]. Furthermore, our relaxation algorithm is an
adaptation of the algorithm proposed in [1], while the parallel genetic algorithms and the job scheduling
algorithm are our contribution.

We have demonstrated that extending a generic parallel algorithm with sequential domain-
specific code results in relatively good parallel performance in a cluster-computing environment. The
introduction of a hierarchy of algorithms leads to cleaner implementation of a variety of scientific
problems. In addition to providing good processor performance, our framework improves programming
efficiency, allowing the application developer to focus on the sequential implementation of domain-
specific details, rather than on the more difficult parallel code development.

In traditional modular object-oriented languages, such as Oberon-2, Ada-95, and Modula-3,
modules are not extensible, while classes are represented by means of extensible record types [3]. The
difference in our approach to classes is that class extension overrides an existing class and does not
introduce a new type. The Cecil language [4] supports a form of module import called module extension.
In Cecil extended modules are shared and are, in fact, similar to imported modules. Cecil modules allow
standard subtyping while our extensible modules allow type redefinition.

It has been recognized [2] that both modules and classes support necessary abstractions, which
should be used as complementary techniques. Overview of object-parallel language features can be
found in [5, 6].

5 References

[1] P.B Hansen, Studies in Computational Science: Parallel Programming Paradigms, Prentice Hall,
1995.

[2] C. Szyperski, Why we need both: Modules and classes, in Proceedings of OOPSLA, ACM Press,
1992.

[3] N. Wirth, Type extensions, ACM Transactions on Programming Languages and Systems, 10
(1987), 204-214.

[4] C. Chambers and G. Leavens, Type checking and Modules for Multimethods, ACM Transactions
on Programming Languages and Systems, 17 (1995), 805-843.

[5] G. Wilson and P. Lu, editors, Parallel Programming using C++, MIT Press, 1996.
[6] J.-P. Briot, J.-M.Geib, and A. Yonezawa, Object-based parallel and distributed computation, in

Lecture Notes in Computer Science 1107, Springer, 1996.
[7] A. Radenski, A. Vann, and B. Norris, Parallel Probabilistic Computations on a Cluster of

Workstations, in Parallel Computing: Fundamentals, Applications and New Directions, Elsevier,
1998.

[8] S. Baase, Computer Algorithms: Introduction to Design and Analysis, second edition, Addison-
Wesley, 1988.

[9] E. CantuPaz, A Summary of Research on Parallel Genetic Algorithms, IlliGAL Report No.95007,
July 1995.

[10] V. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency: Practice and
Experience, 2 (1990), 315-339.

