
Derivation of Secure Parallel Applications by Means of
Module Embedding1

Atanas Radenski

Computer Science Department, Winston-Salem State University, P. O. Box 19479
Winston-Salem, North Carolina 27110, USA

radenski@computer.org

Abstract. An enhancement to modular languages called module embedding
facilitates the development and utilization of secure generic parallel
algorithms.

1 Introduction

We have designed and implemented a strictly typed modular language framework
that supports the specification of generic parallel algorithms and the derivation of
specific parallel applications from such generic algorithms. The focus of our
research is on message-passing parallelism and cluster computing applications.

A generic parallel algorithm encapsulates a common control structure, such as a
master-server network, a pipeline, a cellular automaton, or a divide-and-conquer
tree. Such a generic algorithm can be used to derive parallel solutions for a variety
of problems. The key idea is that the generic algorithm must provide complete
coordination and synchronization pattern in problem-independent manner, while its
clients must provide only problem-specific sequential code in order to derive
specific parallel applications.

In our language framework, generic parallel algorithms and their applications are
specified as modules. A particular application can be derived from a generic
algorithm by means of module embedding, a code reuse mechanism that enables the
building of new modules from existing ones through inheritance, overriding of
procedures, and overriding of types [11].

We have incorporated module embedding in the experimental language
Paradigm/SP. Our language is an enhancement of SuperPascal, a high-level parallel
programming language developed by Hansen [5]. In addition to embeddable modules,
the language provides standard message-passing parallel features, such as send, receive,
for-all, parallel statements, and channel types. We have developed a prototype compiler,
which generates abstract code, and an interpreter for this abstract code.

1 This work has been supported by NASA grant NAG3-2011.

We use Paradigm/SP to specify general parallel paradigms and to derive
particular parallel applications from such general paradigms. We use the
Paradigm/SP compiler and interpreter to test such paradigms and their derived
applications. Once we have established the validity of a Paradigm/SP program, we
convert it into efficient C code that runs on top of a cluster-computing library, such
as PVM.

We agree with others [3] that “…for a parallel programming language the most
important security measure is to check that processes access disjoint sets of variables only
and do not interfere with each other in time-dependent manner”. We have adopted in
Paradigm/SP an interference control scheme that allows secure module embedding in
above sense. The Paradigm/SP compiler guarantees that processes in derived parallel
applications do not interfere by accessing the same variable in time-dependent manner.

In this paper, we introduce the concept of embeddable module and show how a
generic parallel algorithm can be specified as an embeddable module. We
demonstrate how module embedding can be employed to derive specific parallel
applications from generic algorithms. We also explain how module embedding
guarantees that processes in derived applications do not interfere by reading and
updating the same variable.

2 Specification of Generic Parallel Algorithms as Embeddable
Modules

An embeddable module encapsulates types, procedures (and functions), and global
variables. Module embedding enables building of new modules from existing ones
through inheritance, and through overriding of inherited types and procedures. An
embedded module inherits entities that are exported by the embedded module and
further re-exports them. A principal difference between module embedding and
module import is that an embedded module is contained in the embedding module
and is not shared with other modules, while an imported module is shared between
its clients. Another difference is that a client module cannot override types or
procedures that belong to an imported module, while an embedding module can
override types and procedures that belong to an embedded module.

Type overriding allows a record type that is inherited from an embedded module
to be redefined by the embedding module by adding new components to existing
ones. Type overriding does not define a new type but effectively replaces an
inherited type in the embedded module (i.e., in the inherited code) itself. In contrast,
type extension, and similarly, sub-classing, define new types without modifying the
inherited ones. Further details on module embedding and type overriding can be
found in [11].

We demonstrate the applicability of module embedding to generic parallel
programming with a case study of a simplified master-server generic parallel algorithm.
The master-server generic algorithm (Fig. 1) finds a solution for a given problem by
means of one master and n server processes that interact through two-way

communication channels. The master generates a version of the original problem
that is easier to solve and sends it to each server. All servers solve their assigned
problems in parallel and then send the solutions back to the master. Finally, the
master summarizes the solutions provided by the servers in order to find a final
solution to the original problem.

The generic parameters of the master-server algorithm (Fig. 2) include the type of
the problem to be solved, the type of its solution, and three sequential procedures:

- a procedure to generate an instance of the problem that is to be solved by server
i;

- a procedure to solve a particular instance of the problem;
- a procedure to summarize the set of solutions provided by the servers into a final

solution.
The generic master-server algorithm provides its clients with a procedure to

compute a solution of a specific problem. The compute procedure incorporates the
master and server processes, but those are not visible to the clients of the generic
algorithm.

In Figure 3, all components of the master-server generic algorithm are encapsulated in
an embeddable module, MS. The export mark ‘*’ [3] designates public entities that are
visible to clients of module MS. Unmarked entities, such as master and server, are
referred to as private. The types of the problem and the solutions are defined as empty
record type (designated as double-dot, “ .. “). Clients of module MS can (1) extend such
inherited record types with problem-specific components, (2) provide domain-specific
versions of procedures generate, solve and summarize, and (3) use procedure compute to
find particular solutions.

Fig. 1. Generic master-server algorithm Fig. 2. Generic parameters

problem solution Master

generate
summarize

Server 1
solve

Server n
solve

type problem = ..;
 solution = ..;
 set = array[1..n] of solution;
procedure generate(i: integer;
 p: problem; var p0: problem);
procedure solve(
 p0: problem; var s: solution);
procedure summarize(
 p: problem;
 b: set; var s: solution);

 module MS;
const n = 10; {number of servers}
type
 problem* = ..; solution* = ..;
 set* = array[1..n] of solution;
 channel = *(problem, solution);
 net = array [1..n] of channel;

procedure solve*(
 p0: problem; var s: solution);
begin end;

procedure generate*(i: integer;
 p: problem; var p0: problem);
begin { default: } p0 := p; end;

procedure summarize*(
 p: problem;
 b: set; var s: solution);
begin end;

procedure server(c: channel);
var p0: problem; s0: solution;
begin receive(c, p0);
 solve(p0, s0);
 send(c, s0);
end;

procedure master(c: net;
 p: problem; var s: solution);
var i: integer;
 p0: problem; b: set;
begin
 for i := 1 to n do begin
 generate(i, p, p0);
 send(c[i], p0);
 end;
 for i := 1 to n do
 receive(c[i], b[i]);
 summarize(p, b, s);
end;

procedure compute*(
 p: problem; var s: solution);
var c: net; i: integer;
begin
 for i := 1 to n do open(c[i]);
 parallel
 master(c, p, s) |
 forall i := 1 to n do
 server(c[i])
 end;
end;

begin end. {MS}

Fig. 3. Embeddable module master-server, MS. Public entities are marked by ‘*’.

3 Derivation of Specific Parallel Algorithms By Means Of Module
Embedding

A parallel generic algorithm is a common parallel control structure (such as master-
server) in which process communication and synchronization are specified in a
problem-independent manner. Clients of the generic algorithm can derive particular
applications from the generic algorithm by extending it with domain specific
sequential algorithms. When the generic algorithm is specified as a module, the
derivation of specific applications can be achieved by means of module embedding.
An application module can embed the generic master-server module and override
relevant entities that are inherited from the embedded module, giving them more
specialized meaning. This is explained in details in the next section.

3.1 Derivation of Parallel Integration Application

Consider, for example, the problem of deriving a simple parallel integration
algorithm based on the trapezoidal method. This can be achieved by extending
module MS into a module TI (Fig. 4). The embedding module, TI, inherits the
components of the base module, MS and re-exports all inherited public entities.
Besides, module TI introduces a new generic parameter f, the function to be
integrated that should be supplied by clients of TI.

The embedding module, TI, overrides the inherited type problem, so that the new
problem definition incorporates the lower and upper limits a, b of the integral to be
calculated. Similarly, TI overrides the inherited type solution, so that the new
solution definition incorporates the integral value v. Note that problem and solution
were originally defined in module MS as empty record types. Overriding of non-
empty record types is also permitted, as illustrated in the next section.

The embedding module also overrides the inherited default version of procedure
generate and the inherited ‘null’ versions of procedures solve and summarize. The
newly declared version of generate divides the integration range into n equal parts,
one for each server. Procedure solve is defined in TI to be trapezoidal integration.
Procedure summarize sums-up the partial integrals provided by the n servers.

module TI(MS);
type problem* =
 record a*, b*: real; end;
 solution* = record v*: real; end;

function f*(x: real): real;
begin end;

procedure solve*(p0: problem;
 var s: solution);
begin s.v := ((p0.b - p0.a) / 2) *
 (f(p0.a) + f(p0.b));
end;

…complete implementations of
procedures generate and
summarize…
…
end. {module T1}

module IA(TI);
var p: problem; s: solution;

function f*(x: real): real;
begin f := x * sin(sqrt(x)); end;

begin compute(p, s) end. {LA}

Fig. 4. Derived modules trapezoidal integration, TI, and integration application, IA.

Module TI can be embedded on its turn into a specific integration application
module, IA, that defines a particular function f to be integrated. Module IA serves as
a main program by invoking procedure compute that is provided by the generic MS
module (Fig. 4).

3.2 Derivation of Parallel Simulated Annealing and Traveling Salesperson
Algorithms

A variety of specific parallel algorithms can be derived from the same general
parallel generic algorithm. For example, we have derived a generic algorithm for
approximate optimization that is based on simulated annealing, organized as module
SA (Fig. 5). Note that the definition of type annealingPoint contains a component,
dE, that is needed for all possible application of simulated annealing..

The generic simulated annealing algorithm can be used to derive approximate
algorithms for different intractable optimization problems. For instance, we have
derived a parallel algorithm for a particular traveling salesperson problem (module
TSP in Fig. 5). Note that the inherited definition of type annealingPoint is
overridden in TSP by adding two new problem-specific components, i, j, to the
inherited component dE.

module SA(MS);
type
 problem* = record
 …annealing parameters…
 end;
 annealingPoint* = record
 dE*: real;
 end;

…procedures select and change
declared as generic parameters…

procedure solve*(
 p0: problem; var s: solution);
…complete implementation that
performs simulated annealing
using the generic parameters
select and change…
end. {SA}

module TSP(SA);
…
type
 city = record x, y: real end;
 tour = array [1..m] of city;
 solution* = record t: tour; end;
 annealingPoint* = record
 …field dE inherited from SA…
 i, j: integer;
 end;

var p: problem; s: solution;

…complete implementations of
procedures select, change,
summarize…

begin compute(p, s) end. {TSP}

Fig. 5. Derived modules simulated annealing, SA, and traveling salesperson, TSP.

4 Interference Control For Embeddable Modules

When a parallel application is executed repeatedly with the same input, the relative
speeds of its constituent parallel processes may vary from one execution to another.
If one parallel process updates a variable and another process updates or reads that

same variable, the order in which those processes access the variable may vary from
one execution to another, even when the input for the parallel application do not
change. Such parallel processes are said to interfere with each other in a time
dependent manner due to a variable conflict. Interfering parallel processes may
update and possibly read the same variable at unpredictable times. The output of an
application that contains interfering parallel processes may vary in an unpredictable
manner when the application is executed repeatedly with the same input. Such an
application is said to be insecure due to a time-dependent error. A secure parallel
programming language should allow detection and reporting of as many time-
dependent errors as possible. The implementation may efficiently detect time-
dependent errors through process interference control at compile time and, less
efficiently, at run time.

Hansen [4] advocated the benefits from interference control and developed an
interference control scheme for the parallel programming language SuperPascal.
The SuperPascal language is subject to several restrictions that allow effective
syntactic detection of variable conflicts, i.e., detection at compile time. These
restrictions apply to a variety of language constructs and assure that a variable that
is updated by a parallel process may be read only by that process. Note that parallel
processes are allowed to read-only shared variables.

For each statement belonging to a SuperPascal program, the compiler determines
the target variable set and the expression variable set of that statement. The target
variable set consists of all variables that may be updated during the execution of the
statement, while the expression variable set consists of all variables that may be
read during that statement’s execution. In SuperPascal, processes are created by
parallel and forall statements. A parallel statement parallel S1

 | S2
 | … Sn

 end
incorporates n process statements S1

, S2, … Sn such that the target variable set of Si
 is

disjoint with the target and expression variable sets of S1, … Si-1, Si+1, … Sn, i = 1, 2,
… n. A forall statement forall i := m to n do S incorporates a single element
statement S which generates n-m+1 processes and, for this reason, is required to
have an empty target variable set.

It should be noted that the above restrictions on target and expression variable
sets are very natural for parallel applications running in a cluster computing
environment. Processes that are generated by a forall statement will run on separate
cluster nodes. If such processes were to share a target variable, it could be quite hard
and inefficient to synchronize that shared access over a network. At the same time,
it is easy to make these processes efficiently share read-only variables by
broadcasting those variables values just once to all processes. Similar considerations
apply to processes that are generated by a parallel statement.

A SuperPascal parallel application consists of a single main program, exactly as
in the standard Pascal language. The interference control scheme of SuperPascal [4]
guarantees that single-module parallel applications do not contain time-dependent
errors, i.e., they are secure in this sense. The Paradigm/SP language has been
designed as an extension to SuperPascal that introduces separately compiled
embeddable modules [11]. We have extended the single-module interference control
scheme of SuperPascal to serve the specific requirements of Paradigm/SP.

In SuperPascal, procedures are never overridden. Therefore, the target and
expression variable sets for procedure statements can be determined during the
compilation of SuperPascal’s single module parallel applications. This is not the
case in a language with embeddable modules, such as Paradigm/SP: procedures that
are defined in an embeddable module M0 can be overridden in an embedding
module M1. The overriding procedures that are defined in M1 may have different
target and expression variable sets from those in M0. Therefore, procedure
statements in the embedded module M0, a module that has already been separately
compiled, may have their target and expression variable sets changed by procedure
overriding in M1. Thus, restrictions on target and expression variables sets that have
been validated during the compilation of M0 may be violated later, when M0 is
embedded in M1.

module M0;
 procedure p*(j: integer);
 begin end;
begin
 forall i := 1 to 10 do p(i);
end. {M0}

module M1(M0);
 var k: integer;
 procedure p*(j: integer);
 begin k := j end;
begin k := 0 end. {M1}

Fig. 6. Modules M0 and M1.

Consider, for example, module M0 from Fig. 6 that defines and exports procedure
p. Module M0 contains a statement forall i := 1 to 10 do p(i) that generates
processes by executing the procedure statement p(i). The procedure statement p(i)
has an empty target variable set; therefore, its generated processes do not interfere
due to variable conflicts.

Assume now that module M0 is embedded in module M1 and that M1 overrides
the inherited procedure p, as illustrated in Fig. 6. The overriding body of p may have
access to a global variable, k. Therefore, the target variable set of the procedure
statement p(i) in the separately compiled module M0 will now actually contain the
variable k, and will, therefore, be non-empty.

The main difficulty to interference control in a language framework with module
embedding comes from the possibility to change, through procedure overriding, the
target and expression variable sets in embedded modules that have been already
separately compiled. We remedy this problem by introducing additional restrictions
that make it impossible to modify variable sets during procedure overriding. More
precisely, we exclude the so-called unrestricted procedures (and functions) from
parallel and forall statements, as explained below.

A procedure that is declared in a module can be marked for export with either a
restricted mark "*" or an unrestricted mark "-". A procedure exported by a module
M0 can be overridden in an embedding module M1, provided that the procedure
heading in M1 is the same as in M0 (in particular, the export mark, "*" or "-", must
be the same).

A restricted procedure is a procedure exported with a restricted mark, "*".
An unrestricted procedure is:
- a procedure that is exported with an unrestricted mark, "-", or
- a private procedure that invokes an unrestricted procedure.
A restricted procedure is not permitted to use global variables (directly or

indirectly), and invoke unrestricted procedures. In contrast, an unrestricted
procedure can use global variables and invoke unrestricted procedures.

Overriding an unrestricted procedure p in an embedding module M1 may change
target and expression variable sets in a separately compiled embedded module M0,
because the overriding procedure is allowed to access global variables. This is why
parallel statements and forall statements are not permitted to invoke unrestricted
procedures. This requirement is in addition to the limitations on target and
expression variable sets in parallel and forall statements, as defined earlier in this
section. Restricted procedures are not excluded from parallel and forall statements
because, in contrast to unrestricted procedures, they cannot modify target or
expression variable sets in separately compiled embedded modules,

There are also procedures that are neither restricted nor unrestricted, such as, for
example, private procedures that use global variables but do not invoke unrestricted
procedures. This category of procedures may participate in parallel and forall
statements as well, as far as they comply with the limitations on target and expression
variable sets, as discussed earlier in this section.

Consider again the example modules in Fig. 6. Procedure p is declared with a
restricted mark, “*”. Therefore, accessing a global variable such as k in M1 is a
syntax error. Procedure p would be allowed to access a global variable if p was
declared with an unrestricted mark, “-“. In such a case, however, the use of p in a
forall statement like as the one in M0 would be a syntax error..

The exclusion of unrestricted procedures from parallel and forall statements
permits syntactic detection of variable conflicts in separately compiled modular
parallel applications. The Paradigm/SP compiler guarantees that a variable that is
updated by a process cannot be used by another process, while sharing read-only
variables is permitted. Paradigm/SP parallel applications may not be insecure due to
variable conflicts.

Is the exclusion of unrestricted procedures form parallel and forall statements a
serious practical limitation? Technically, it means that if an exported procedure is
used to generate a process, and if it needs to access global variables, it must do so
through explicit send/receive statements or through parameters, rather than directly.
We are convinced that this restriction is quite natural in the domain of message
passing cluster algorithms, because parallel access to global variables from different
processes must be implemented through send/receive, anyway. Programmers who
are forced to implement access to global variables through explicit send/receive
statements are more likely to be aware of the underlying inefficiency of such access,
in contrast to programmers for whom implicit message passing is generated by the
implementation. Our experiments with four generic algorithms and several
derivatives from each of them make us believe that the exclusion of unrestricted
procedures form parallelism is not a serious practical limitation.

5. Conclusions

This paper outlines module embedding, a form of inheritance that applies to
modules and that permits overriding of inherited types. Embeddable modules have
been incorporated in a parallel programming language called Paradigm/SP. A
prototype implementation of Paradigm/SP has been developed and documented
[12]. Paradigm/SP has been used to specify generic parallel algorithms and to derive
concrete parallel applications from them by means of module embedding.
Paradigm/SP has been used as a higher-level prototyping language in order to
conveniently test the validity of derived parallel applications before finally
converting them into efficient C code that runs in a cluster-computing environment,
such as PVM.

We have specified several generic parallel algorithms as embeddable modules,
such as a probabilistic master-server [10], a cellular automaton [9], and an all-pairs
pipeline [8]. Though module embedding, we have derived diverse parallel
applications from such generic algorithms. Despite of the use of generic parallelism,
most of the derived applications have demonstrated very good performance in
cluster-computing environments, and a couple of derived applications have achieved
super linear speed-up [8].

We have adopted interference control scheme for embeddable modules. This
scheme guarantees that processes in derived applications do not interfere by reading
and updating the same variable. That derived algorithms are secure in this sense is
what makes module embedding unique in comparison to traditional object-oriented
techniques supported by C++, Java, Corba, etc., where no static control helps
programmers to avoid time-dependent errors in derived algorithms. For example, it
has been recognized that Java multithreaded applications are inherently insecure
because nothing prevents different threads from invoking unsynchronized methods
[3]. A related insecure feature of Java is that data members are by default protected
and that protected data members can be accessed from all classes that belong to the
same package. For these reasons, it easy to gain access from different threads to
protected data members by adding new classes to a package and to create
applications that are insecure due to time-dependent errors.

Others have proposed dynamic load-time class overriding through byte-code
editing [6]. This technique is justified by the so-called adaptation and evolution
problems that appear when sub-classing is used to build software components. Our
approach has the merit of integrating type overriding within the programming
language and its compiler.

In traditional modular object-oriented languages, such as Oberon-2, Ada-95 and
Modula-3, modules are not embeddable, while classes are represented by means of
extensible record types [15]. What is different in our approach to classes is that
record type extension overrides an existing type (both in the new embedding module
and in the existing embedded module) and does not introduce a new type. A
disadvantage of embeddable modules as compared to classes is that modules do not
introduce types, and therefore cannot be used to create multiple instances.
Furthermore, inherited type overriding imposes additional run-time overhead on the

implementation. It has been recognized [7], [13] that both modules and classes
support necessary abstractions, which should be used as a complementary techniques.

A collection of object-oriented language features that support the development of
parallel applications can be found in [1], [2]. Parallel programming enhancements of
a mainstream language, C++, are presented in [14]. A survey of earlier object-
parallel languages is contained in [16]. An example of template-based genericity is
contained in [17]. We do not know of a traditional object-oriented language that
performs static analysis in order to guarantee that parallel applications are free of
time-dependent errors. The main benefit of module embedding is that it guarantees
at compile time the lack of such errors and that its static interference analysis
scheme eliminates the overhead of run-time synchronization.

Paradigm/SP is a specification and prototyping language and as such is simpler
than production languages and environments. Algorithm developers may focus on
what is essential in their developed parallel control structures and application
methods without being burdened by the complex details that are required for
efficient practical programming. Simplicity and ease of use are advantages of
Paradigm/SP as an algorithm development and validation language in comparison to
production languages and environments.

As a continuation of this project in the future, we envision that it would be
possible and beneficial to develop an interference control scheme for multithreaded
Java applications. A Java source code analyzer may be used to discover variable
conflicts between threads and to help eliminated time-depending errors due to such
conflicts.

If algorithms are to be published on the web, they can be shaped as multimedia
web-pages. A separately compiled module can be shaped as a source html file that
can be fed into a compiler in order to produce executable code. Module import and
embedding can be designated by means of hyper-links. Source modules that
comprise an application can reside on different servers. These same servers can host
corresponding distributed executable objects. The design of adequate language and
compiler support is another possible continuation of this project in the future.

References

1. G. Agha, P. Wegner, and A. Yonezawa, editors. Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

2. J.-P. Briot, J.-M.Geib, and A. Yonezawa. Object-Based Parallel and Distributed
Computation. Lecture Notes in Computer Science 1107, Springer, 1996.

3. P. B. Hansen. Java’s Insecure Parallelism. ACM SIGPLAN Notices, Vol. 34, No 4, April
1999, pp.38-45.

4. P. B. Hansen. Studies in Computational Science: Parallel Programming Paradigms.
Prentice Hall, 1995.

5. P. B. Hansen. SuperPascal - A Publication Language For Parallel Scientific Computing.
Concurrency - Practice and Experience, 6, No 5, 1994, 461-483.

6. R. Keller, U. Holzle. Binary Component Adaptation. ECOOP’98 Conference Proceedings
(E. Jul, editor), Lecture Notes in Computer Science 1445, Springer, 1998, pp.307-329.

7. H. Moessenboeck. Object-Oriented Programming in Oberon-2. Springer, 1993.
8. A. Radenski, B. Norris, W. Chen. A Generic All-Pairs Cluster-Computing Pipeline and Its

Applications. Proceedings of ParCo99, International Conference on Parallel Computing,
August 17-20, 1999, Delft, The Netherlands, Imperial College Press (under print).

9. A. Radenski, A. Vann, B. Norris. Development and Utilization of Generic Algorithms for
Scientific Cluster Computations. Object Oriented Methods for Interoperable Scientific and
Engineering Computing (M. Henderson, C. Anderson, and S. Lyons, editors), SIAM, 1999,
97-105.

10. A. Radenski, A. Vann, B. Norris. Parallel Probabilistic Computations on a Cluster of
Workstations. Parallel Computing: Fundamentals, Applications and New Directions
(edited by E. D’Hollander et al.), Elsevier Science B.V., 1998, 105-112.

11. A. Radenski. Module Embedding. Intl. Journal Software - Concepts and Tools, Vol. 19,
Issue 3, 1998, 122-129.

12. A. Radenski. Prototype Implementation of Paradigm/SP,
http://www.rtpnet.org/~radenski/research/, 1998.

13. C. Szyperski. Why We Need Both: Modules And Classes. OOPSLA’99 Conference
Proceedings, ACM, 1992, pp.19-32.

14. G. Wilson and P. Lu, editors. Parallel Programming using C++. MIT Press, 1996.
15. N. Wirth. Type Extensions. ACM Transactions on Programming Languages and Systems,

10, 1987, 204-214.
16. B. Wyatt, K. Kavi, and S. Hufnagel, 1992. Parallelism in Object-Oriented Languages: A

Survey. IEEE Software, 9, No 6 (Nov.), 1992, 56-66.
17. L.-Q. Lee, J. Siek, and A. Lumsdaine, 1999. The Generic Graph Component Library.

OOPSLA’99 Conference Proceedings, ACM, 1999, pp.399-414.

