
Digital Support for Abductive Learning in Introductory
Computing Courses

Atanas Radenski
Chapman University

Orange, CA 92869, USA
1-714-744-7657

radenski@chapman.edu

ABSTRACT
Students who grew up browsing the Web are skilled in what is
usually referred to as abduction, a reasoning process that starts
with a set of specific observations and then generates the best
possible explanation of those observations. In order to exploit the
abduction skills of contemporary students, we have developed
digital CS1/2 study packs that promote and support active
learning through abduction, i.e., abductive learning. The study
packs integrate a variety of digital resources: online self-guided
labs, e-texts, tutorial links, sample programs, quizzes, and slides.
These online packs stimulate students to learn abductively by
browsing, searching, and performing self-guided lab experiments.
In two years of study pack use, the failure rate in the CS1/2
courses at Chapman University has been reduced from 14% to
5%. The study packs have been published online at
studypack.com and adopted in various institutions.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Information
Science Education - computer science education, curriculum;
Computer Uses in Education - distance learning

General Terms
Human Factors, Experimentation

Keywords
Active learning, abduction, CS1/2, laboratory, Python, Java

1. RATIONALE
A printed textbook is the principal learning resource required by a
computing course instructor. Yet, there are reports that textbook
popularity among teachers and students may be declining. A
recent survey - conducted in six European universities in
Germany, Iceland, Finland, Romania, and Latvia - reveals that
teachers rate programming textbooks as the least beneficial
learning resource [7]. According to the same survey, students also
rank textbooks low - together with lecture notes, exercises, still
pictures, and interactive visualizations. In contrast to textbooks,

sample programs are considered the most useful learning resource
by both students and teachers who participated in the survey [7].
In our own surveys conducted three times at Chapman University
in Southern California since 2004, CS1/2 students consistently
rate paper textbooks among the least helpful resources, together
with paper lab manuals [8]. Our students identify sample
programs as most beneficial, exactly as European students do [8].

In informal forums, various educators have expressed concerns
about the increasing unwillingness of students to systematically
read textbooks. The following message that was published by a
computer science professor and a department chair in the SIGSE
mailing list in April 2006 addresses this problem. "Alas, I find
that one of the biggest challenges is the increasing inability (or
willingness) of students to read. Witness my Alice lab this
semester where a student looked at a page in the textbook (only
half a page of text, since the top half was a picture, and large print
at that), sighed, and said 'I'm just going to muddle through with
the software because I don't have the patience to read these [ed: 4
or 5] sentences'." [1]

Along of the decreasing popularity of textbooks, the efficiency of
traditional classroom teaching may also be decreasing. Survey
results reveal that lectures are considered the least useful learning
activity by both students and teachers [7]. Our own experience is
that it is indeed becoming increasingly difficult to keep students'
attention during classroom presentations, especially when students
have Web surfing opportunities during class.

Low ratings of textbooks and lectures can possibly be attributed to
various reasons. We believe that such low ratings can be caused
by discrepancies between (a) the teaching preferences of textbook
authors and instructors on one end, and (b) the learning
preferences of students on the other. While textbooks happen to
focus extensively on general concepts and paradigms, entry-level
computing students normally prefer to learn by concrete examples
and experiments. For instance, many computing textbooks lead
instructors to lecture on abstraction early in their classes, whereas
beginning computing students often fail to connect to these
concepts. This issue is illustrated by the statement posted by an
educator in the SIGSE mailing list. "Increasingly I find [that]
student's [sic] ability to understand, let alone write, even slightly
abstract statements of any kind about programs is seriously
deficient. All that many can relate to is numerous examples of
program behavior." Some educators even question students'
willingness and ability to reason about the subject matter: "
…students today are looking for the quickest way to solve their
problem … -- 'just tell me how to solve it now as I do not want to
(nor do I know how to) think'" [1]. We believe that contemporary

© ACM, 2007. This is the author's version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version is published in SIGCSE'07, March 7–11, 2007,
Covington, Kentucky, USA, ISS# 1-59593-055-8/06/0006,
http://doi.acm.org/url-to-be-completed-after-March-2007.

computing students do reason as well as their professors do, but in
a different way, as advocated in the rest of this section.

Most academics, by virtue of their profession, are masters of
sound deduction, a reasoning process that involves the inference
of conclusions from general premises. Because most academics
are at their best when they derive the specific from the general,
they like to read and learn this way, and they often choose to write
textbooks and to teach this way.
Contemporary computing students grew up browsing and reading
on the Web rather than reading paper books alone. On the Web,
they have learned to surf rapidly from one piece of information to
another, to relate a variety of observations, to search useful facts
quickly, and to make relevant conclusions. Such students are
particularly capable of abduction, a reasoning process that starts
with a set of observations and then generates the best possible
explanation of those observations (see also the Abductive
reasoning Sidebar).
Abductive reasoning occurs naturally in most disciplines. For
example, abductive reasoning in a computing class may begin
with the study of a sample program then continue with some
experimental changes to the program, and finally generate
plausible explanations of various algorithmic and linguistic
program features. When a computing student says “I will figure it
out by myself”, he is likely to apply abductive reasoning – by first
browsing through concrete samples and then finding the best
possible explanation for what has been observed.
Serious difficulties can appear when computing textbooks and
instructors put the stress on deduction when computing students
are best at abduction. Such discrepancy between teaching styles
and learning habits can generate frustration for both educators and
students. The result can be poor retention and considerable
enrollment decline in beginning computing courses.

As educators, we do not have the ability to change the reasoning
and learning habits of entry-level computing students. A wise and
more efficient approach is to accept students' learning preferences
as a given and to adapt computing course contents and activities
accordingly. We believe that entry-level computing courses can be
adjusted to the learning preferences of contemporary students by
providing substantial support for abductive reasoning. Deductive
teaching methods can be beneficial if used cautiously.

We introduce the general term abductive learning to refer to any
method of active learning that targets abductive reasoning. More
specifically, abductive learning is based on activities that are
intended to trigger abduction. Recall that abductive reasoning
generates the best possible explanation of a set of observations.
Consequently, abductive reasoning is a learning process by itself
because students actually learn the generated explanations.
Active learning in general, and abductive learning in particular,
deviate from traditional lectures and reading and involve learning
by doing (physical action) and by thinking about what has been
done (mental action). Active learning techniques are well
supported by technology and are successfully applied in both core
and in advanced computing courses.
In order to exploit the abduction skills of entry-level computing
students, we have developed original CS1/2 online study packs
that support abductive learning through integrated digital
resources and activities. In the rest of this paper, we (1) describe

the implementation of the digital study packs, (2) depict several
abductive learning techniques as implemented by the study packs,
and (3) present evaluation of the digital study packs and the
positive effect of this teaching method on student enrollment.

Abductive Reasoning Sidebar

Since Aristotle, logic arguments have been commonly divided
into two subclasses: the class of deductive arguments
(necessary inferences) and the class of inductive arguments
(probable inferences). In the second half of the 19th century,
Charles Peirce was the first to distinguish between "two utterly
distinct classes of probable inferences, which he referred to as
inductive inferences and abductive inferences" [4].
Beginning with Pierce himself, researchers have assigned a
variety of interpretations of the terms induction and abduction.
Most often, induction is used to mean a logically unsound
inference that generates a likely conclusion about a population
- based on observation of a population sample. As originally
defined by Pierce, abduction is a formally unsound but
common inference mechanism that concludes the cause based
on the presence of its effect.
In the second half of the 20th century, philosophers and
artificial intelligence researchers have adopted a broader
interpretation of abduction as inference to the best explanation
[6]. What is the best explanation depends on the context.
Often, this is (1) the most powerful explanation - the one that
explains most observations, or (2) the simplest explanation, or
some combination of both.
Abduction and induction share common features and also have
differences. Both are undoubtedly recognized as ubiquitous
patterns of reasoning. Abduction and deduction intersect; for
example, smart (reasonable, valid, strong) inductive
generalizations are treated as instances of abduction [6]. While
induction is typically used to generate predictions, abduction
is used to generate explanations [3]. Pierce advocated that
abduction is the main method for generating new knowledge.

2. IMPLEMENTATION
2.1 Background
We taught deduction-based Java-based CS1 and CS2 courses
from 2002 to 2004 at Chapman University. Like many others, we
began the CS1 course with the top-level Java concept, the class,
and then systematically focused on important fundamental
principles throughout the CS1/2 sequence, such as abstraction,
encapsulation, and information hiding. We certainly enjoyed our
consistent logic explanations for the roots of everything during
the entire CS1/2 sequence. Our students hated it, but it took us a
while to notice.
Within a two year period, our CS1 enrollment declined by 34%.
We did not try to find an excuse in the fact that the enrollment
decline was in sync with a widespread enrollment decline in the
majority of undergraduate programs in the USA. We analyzed our
CS1/2 course experience and came to realize that the majority of
our computing students do not comprehend well when taught by
deduction, from the general to the concrete. Instead, they learn
best in the opposite way: from specific observations to
explanations and generalizations.

Figure 1. The Graphics chapter in the Java Second study pack

home page
We thus decided to exploit the abductive learning capabilities of
contemporary computing students. To achieve this goal, we wrote
and published online unique and novel CS1/2 digital study packs
that promote and support abductive learning. The study packs are
integrated collections of original digital resources, such as e-texts,
tutorial links, self-guided labs, sample programs, quizzes, and
slides.

2.2 Digital Study Packs
We are among those educators who advocate the use of two
different languages in the CS1/2 sequence [8]. Our specific
choices are Python for CS1 and Java for CS2. We have found
Python beneficial for CS1 because it offers a simple,
straightforward kernel that can easily be mastered by beginner
programmers. In addition, Python supports an easy-to-use
interactive mode that effectively promotes abductive learning. For
CS2, we prefer Java because it is a mainstream commercial
language that focuses on large scale OO software development.
Other language choices can be similarly beneficial. Scheme,
Visual Basic and Ruby, for example, are possible choices for CS1,
while C++ and C# are often used in both CS1 and CS2.
We use the nicknames Python First and Java Second for the CS1
and CS2 packs. Each study pack is a collection of online chapters,
referred to as topics. The home page of the pack contains a list of
all chapters, together with links to the main components of each
chapter (Fig. 1).
Python First and Java Second packs are designed in the same
style and use the same layout.

Figure 2. The lab assignment from the chapter on Strings,

Files, and the Web in the Python First study pack

With either pack, the study of each topic is commenced in
regularly scheduled classroom lectures. Lectures are supported by
730 slides in Python First and 600 slides in Java second.
After lectures, students work on lab assignments (Fig. 2). The
Python First pack comprises 62 self-guided labs and 58 sample
programs. The Java Second pack offers 41 self-guided labs and
56 sample programs.
Each Python First topic includes an e-text, which is essentially a
chapter from a digital textbook. Java Second does not include e-
texts but utilizes ready-to-use free online lessons from the popular
online Java Tutorials of Sun Microsystems, Inc. [9].
The study of each topic concludes with the student submission of
an online lab report and quiz.

2.3 Abductive Learning with Digital Study
Packs: An Overview
As already stated, abductive learning is based on activities that
trigger abductive reasoning in the learning process. Abductive
reasoning begins with a set of observations and results in their
plausible explanation. Thus, by eventually finding an explanation
the student learns that explanation. The abducted explanation may
be initially imprecise or incomplete. It is further refined and
corrected through various activities, such as consultations with the
instructor, reading e-texts and tutorials, and taking quizzes.
Python First and Java Second pack enforce abductive learning by
means of the following activities:

■ Self-guided labs and sample programs
o Interactive labs
o Non-Interactive labs

■ Instant reward online lab reports and quizzes
These activities are designed to trigger and stimulate abductive
reasoning in the learning process, as discussed in the next
sections.

2.4 Abductive Learning with Self-Guided
Labs and Sample Programs
2.4.1 Self-Guided Labs
A self-guided lab contains sufficient details to allow students to
work independently [8]. Self-guided labs incorporate (1)
necessary background information and (2) detailed sequences of
instructions that walk students step-by-step through program
exploration and development.
Students with little or no preliminary programming knowledge
can meticulously follow the detailed lab instructions. This
process is likely to bring such students to successful lab
completion. Students with some preliminary knowledge can try
the lab independently, while consulting the instructions when
needed, or even perform the lab without looking at instructions at
all. These choices also depend on student motivation and
confidence level.

2.4.2 Interactive Labs
By design, Python supports a highly interactive programming
style that gives our CS1 students a great opportunity to learn by
interactive experiments and exploration. In Python's interactive
mode, students can type various statements and immediately

Most labs (and lectures) are based on
instructive sample programs..

Each lab assignment consists of a
number of self-guided labs.

Labs work is
submitted

online.

observe and analyze the results from the execution (Fig. 3, left).
By design, Java is less interactive than Python. Yet, many Java
IDEs support interactive exploration. Our preferred CS2 choice is
DrJava, because its interactive mode is very similar, visually and
functionally, to the interactive mode of Python (Fig3, right). This
similarity contributes to a smooth transition from the CS1's
Python to the CS2's Java.
The self-guided interactive labs are designed to walk students,
independently from the instructor, through interactive
experiments. Interactive labs trigger abduction in a
straightforward way. Students observe each statement as they
type it and then analyze the result of its execution (Fig. 3). When
necessary, students browse and search various digital resources,
such as e-texts, tutorials, slides, and the Web. In the process,
students generate plausible explanations of the form, meaning,
and purpose of each interactive statement.

Figure 3. Interactive exploration of Python's string methods

(left) and Java's exceptions (right)
For example, a Python First interactive lab triggers abduction to
teach students that the count method does not count overlapping
substring occurrences (Fig3, left). As another example, a Java
Second interactive lab triggers abduction to teach students that an
exception object carries its own message, and that the object does
not propagate when created, but when thrown (Fig3, right).

2.4.3 Non-Interactive Labs and Sample Programs
A non-interactive sample program is intended to demonstrate a
new concept or technique. For example, the Transform Sequence
sample program demonstrates the Java 2D Graphics translation
transform by drawing a sequence of rectangles (Fig. 4, top left).

Figure 4. 2D graphics from the Java Second study pack

The non-interactive self-guided labs are based on sample
programs. A typical self-guided lab instructs the student to
explore and experiment with the sample program. After that, the
lab calls for a transformation of the sample program into a target
program. Then the lab provides detailed step-by-step guidance for
a successful target program implementation. Students are free to
follow the detailed instructions or to try the lab independently.
For example, the Ring of Ellipses self-guided lab is targeted at a
program that paints a ring of randomly colored ellipses (Fig. 4,
bottom left) by means of translation and rotation transforms. This
self-guided lab is based on the Transform Sequence sample
program. The Ring of Ellipses lab explicitly draws a parallel
between the sample and the target programs: the sample program
uses repeated translations to paint a sequence of rectangles while
the target program should use repeated rotations to paint a flower-
like ring of ellipses (Fig. 5). The lab then guides the student, step
by step, towards a successful and complete solution.

Figure 5. A self-guided graphics lab triggers abductive

reasoning by drawing a parallel between a sample program
(top) and the lab's target program (bottom)

Non-interactive self-guided labs trigger abductive reasoning by
drawing parallels between sample programs and target programs.
The study of programs in transition, from samples to targets, is a
powerful abductive learning method. In order to understand
sample programs and their transformations into target programs,
students are motivated to browse and search various digital
resources, such as online slides, e-texts, and tutorials. By
performing self-guided labs, students generate plausible
explanations of the form, meaning, and purpose of various
program structures. Last but not least, students obtain sound
intuition of step-wise program development.
For example, the Transform Sequence self-guided lab, as
discussed earlier, triggers abduction by drawing a parallel
between translation and rotation (Fig. 5). When students follow
this lab, they spontaneously and naturally generalize concrete
properties of translation and rotation as properties of the more
abstract transform concept. Thus, students generalize that
transforms in general, not just translation, have cumulative effect
on rendering. In addition, students naturally affirm their
knowledge of step-wise program development by simply
following the recommended lab steps.
Abductive learning through self-guided labs can be very
stimulating. Our experience is that students often choose to go
beyond what is required by the lab. For example, one of our
students in the Spring of 2006 went beyond the required course
activities to study constructive area geometry, in order to produce
the stem and the leaves of his dancing flower (Fig. 4, right). This
student started Python First as a dance major and ended Java
Second as a computer science major.

2.5 Instant Reward Online Activities
In addition to self-guided labs and sample programs, the digital
study packs stimulate learning through various online activities,
such as lab reports and quizzes. The study packs assign
provisional credit instantly, upon completion of lab reports and
quizzes. The assigned credit, in terms of scores or grades, is the
main measurable recompense, or reward, that students receive for
their completed work. Students appreciate receiving their scores
and grades as soon as possible.
Note that in the study packs, labs and quizzes are intended to help
students learn and prepare well for exams, rather than serve as
principal evaluation tools. We prefer offline exams conducted in
the classroom as the main evaluation mechanism.

2.5.1 Instant Reward Lab Reports
After having submitted their programs online, students file an
online lab report. On the basis of the report, the digital study pack
automatically grants provisional credit for the lab assignment.
Instructors may audit student submissions and possibly adjust
provisional credits. Except for occasional audits, the instructor
can choose not to grade programs.
Online lab reports stimulate abductive learning because they
provide instant rewards, in the form of provisional credit to
students who have completed their lab work. Instant rewards give
students a feeling of success and an incentive to try more labs, to
experiment and see what happens. An instant reward from any
completed lab gives students an incentive to enthusiastically
engage in the next one.

2.5.2 Instant Reward Quizzes that Drive Reading
With digital study packs, the study of each topic is completed with
an online quiz (Fig. 1). All quizzes allow multiple submissions.
The opportunity to submit the same quiz multiple times for higher
score is a powerful learning stimulator. Students are motivated to
make as many submissions as it takes to receive the highest
possible score. To improve their scores with additional quiz
submissions, students search, browse, and read e-texts, tutorials,
and slides. Furthermore, students experiment interactively,
observe experimental results and try to find the best possible
explanation for what they see. In short, multiple-attempt quizzes
drive reading, experimentation, and abductive reasoning.
Online quizzes stimulate learning by providing instant feedback
and instant rewards.

2.5.3 Instant Accessibility
In addition to instant rewards, the online study packs stimulate
learning though instant accessibility. Students do not need to wait
for a scheduled class in order to engage in an abductive learning
process. With online study packs, students engage themselves in
learning at any convenient time and from any convenient location.

3. CONCLUSIONS
This paper introduces abductive learning - a form of active
learning that is targeted at abductive reasoning. Many others have
already explored a variety of active learning methods that can
benefit computing courses (see [2, 5] for examples). Our original
contribution is the comprehensive digital study packs that trigger
and promote abductive learning by means of novel self-guided
labs and a variety of integrated digital resources and activities.

In the 2004/5 academic year, we adopted draft versions of Python
First and Java Second digital study packs in the CS1/2 courses at
Chapman University. In two years, the failure rate in the CS1/2
courses fell from 14% to 5% (Table 1).
Table 1. Cumulative CS1/2 enrollment data and failure rates

Academic year 2003/4 2004/5 2005/6

Total enrollment 44 45 74
Passing grades 38 39 70

Non-passing grades 6 6 4

Failure Rate 14% 13% 5%

In surveys conducted at Chapman University in 2005/06, students
give high ratings to the CS1/2 digital study packs and to their
components (Table 2, 1-to-5 scale).

Table 2. Student rating of digital resources and activities

Study pack resources / activities CS1-Python CS2-Java
Sample programs 4.7 4.1
The entire online study pack 4.5 4.5
Online lab assignments 4.3 4.5
Online quizzes 3.8 3.5
Printed textbooks (if available) 1.8 2.9

In early Summer of 2006, the first full editions of the packs were
published at http://studypack.com. In just a few months, several
instructors at four institutions have already adopted pack instances
for their courses, teaching about 280 students in Fall 2006.

4. REFERENCES
[1] ACM SIGCSE. SIGCSE-MEMBERS archives, April 2006, week

2. http://listserv.acm.org/scripts/wa.exe?A0=sigcse-members
[2] Bailey, T., J. Forbes. Just-in-time teaching for CS0. SIGCSE'05

(St. Louis, Missouri), 366 - 370.
[3] Bell, J. Inductive, abductive, and pragmatic reasoning. JCAI'97

workshop on abduction and induction in AI (Nagoya, Japan), 7-
12. http://www.cs.bris.ac.uk/~flach/IJCAI97/papers.html

[4] Burch, R. Charles Sanders Peirce. Stanford Encyclopedia of
Philosophy. http://plato.stanford.edu/entries/peirce/#dia

[5] Gonzalez, G. A systematic approach to active and cooperative
learning in CS1 and its effects on CS2. SIGCSE'06 (Houston,
Texas), 133-137.

[6] Josephson, J. Smart inductive generalizations are abductions. In:
Abduction and Induction, Essays on their Relation and
Integration, Edited by Flach P. and Kakas A. Springer (New
York), 2000.

[7] Lahtinen E., Ala-Mutka K., Järvinen H-M. A study of the
difficulties of novice programmers. ITiCSE'05 (Caparica,
Portugal), 14-18.

[8] Radenski, A. Python First: A lab-based digital introduction to
computer science. ITiCSE'06 (Bologna, Italy), 197-201.

[9] Sun Microsystems, Inc. The Java Tutorial.
http://java.sun.com/docs/books/tutorial/

