
Parallel Probabilistic Computations on a Cluster of Workstations*

A. Radenski (a), A. Vann (a), and B. Norris (b)

(a) Computer Science Department, Winston-Salem State University,
Winston-Salem, NC 27110, USA, radenski@ga.unc, lvann@aol.com

(b) Computer Science Department, University of Illinois at Urbana-Champaign,
1304 W. Springfield Ave., Urbana, Illinois 61801, USA, brnorris@uiuc.edu

Probabilistic algorithms are computationally intensive approximate methods for solving
intractable problems. Probabilistic algorithms are excellent candidates for cluster computations
because they require little communication and synchronization. It is possible to specify a
common parallel control structure as a generic algorithm for probabilistic cluster computations.
Such a generic parallel algorithm can be glued together with domain-specific sequential
algorithms in order to derive approximate parallel solutions for different intractable problems.

In this paper we propose a generic algorithm for probabilistic computations on a cluster of
workstations. We use this generic algorithm to derive specific parallel algorithms for two
discrete optimization problems: the knapsack problem and the traveling salesperson problem.
We implement the algorithms on clusters of Sun Ultra SPARC-1 workstations using PVM, the
parallel virtual machine software package. Finally, we measure the parallel efficiency of the
cluster implementation.

* ���� ���� �� �	

���� �� ���� ����� ��������� �� �� ��� ����� �����������

1. Introduction

Probabilistic algorithms, such as Monte-Carlo trials [3], genetic algorithms [9], hill-
climbing [9], and simulated annealing [1], are approximate methods for intractable problems,
i.e., problems for which no efficient exact algorithms are believed to exist. The knapsack
problem [8] and the traveling salesperson problem [7] are examples of intractable discrete
optimization problems for which probabilistic algorithms seem promising.

The knapsack problems comprise a well-known class of combinatorial optimization problems.
The 0/1 knapsack problem of size n can be formulated as follows: Given the capacity of the
knapsack, and the weights and the values of n objects, choose which objects to include in the
knapsack so that the cumulative value of the objects is maximized without exceeding the
capacity of the knapsack. Knapsack problems are hard to solve because of the vast number of
possible knapsack assignments. Exact computations are theoretically possible but are not
feasible because they have resource requirements that cannot be practically satisfied. For the
0/1 knapsack problem, a sub-optimal solution can be found by applying hill climbing and crossover

to a small set of possible solutions. In this paper, we demonstrate how such a solution can be
derived from a generic probabilistic parallel algorithm.

The traveling salesperson problem is another famous combinatorial optimization problem:
A salesperson must visit each of n cities and return to the initial city. The aim is to minimize
the length of the tour. With the exception of very small problems, exhaustive search cannot
deliver an optimal solution within reasonable time limits. A sub-optimal solution for the traveling
salesperson problem can be found by simulated annealing of a set of several tours. In this paper, we
demonstrate how such a solution for the traveling salesperson can be derived from the same generic
probabilistic parallel algorithm that we employ to solve the 0/1 knapsack problem.

A typical probabilistic algorithm tries to approximately solve a problem with a vast number of
potential solutions by first generating a smaller set of candidate solutions. Then, the algorithm tries
to improve the set of candidate solution by means of some probabilistic computations, such as
simulated annealing, hill-climbing, crossover, or Monte-Carlo trials. Such probabilistic computations
can be very intensive yet highly independent for the individual candidate solutions. As a
consequence, a cluster of workstations can efficiently perform probabilistic computations with little
necessary coordination between the processors.

It is possible to specify a common parallel control structure as a generic algorithm for
probabilistic cluster computations. Such a generic algorithm implements process control and
communication in a problem-independent manner. The generic parallel algorithm can be glued
together with domain-specific sequential algorithms in order to derive approximate parallel
solutions for different intractable problems.

In Section 2 we propose a generic algorithm for parallel probabilistic computations on
clusters of workstations. In Sections 3 and 4 we use this generic algorithm to derive specific
parallel algorithms for two discrete optimization problems: the knapsack problem and the
traveling salesperson problem. In Section 5 we describe implementations of the algorithms on
homogeneous clusters of workstations using PVM, the parallel virtual machine software
package. In the same section, we present performance measurements on Sun Ultra SPARC-1
clusters of workstations. The last section relates our contributions to work performed by
others and draws some conclusions.

2. A Generic Parallel Probabilistic Algorithm

We assume that a problem is defined by the type of its solution and by three sequential
methods:

• a method to improve individual candidate solutions;
• a method to test if a set of candidate solutions contain an acceptable approximation;
• a method to generate a new set of candidate solutions for further improvements.
The algorithm maintains a set s of n candidate solutions and tries to improve them by

means of one master and p server processes (Fig. 1). The master is connected to each server
with a two-way communication channel. The master process sends q = n/p candidate solutions
to each server. The servers probabilistically improve their assigned candidate solutions in
parallel and then send the improved versions back to the master. The master tests the set of
current solutions and, if no more improvements are needed, terminates the servers and itself.
Alternatively, if further improvements are needed, the master generates a new set of candidate
solutions and again sends them to the servers.

const n = ..; {candidate solutions}
 p = ..; {servers , n mod p = 0}
type solution = …;

set = array[1..n] of solution;
procedure improve(

var s: set; left, rght: integer); …
procedure generate(var s: set); …
procedure test

(var s: set; var done: boolean); …

Figure 2. Parameters of the algorithm.

We specify and test this generic master-server algorithm using the publication language
SuperPascal* [5]. Procedures improve, test, generate, and the type of the problem solution, are
parameters of the generic algorithm (Fig. 2). Procedure improve operates on a subset
s[first..last] of the set s of candidate solutions. Procedure test signals through its parameter
done whether the current solution s is acceptable, i.e. if the current solution does not need
more improvements. In case further improvements are needed, procedure generate can be
invoked to restructure the current set s of candidate solutions; after this restructuring, the
candidate solutions can be sent again to the servers for further improvements. The type of the
solution and procedures improve, test, and generate are left unspecified in the generic
algorithm because they vary significantly from one problem to another.

A net c of channels capable of transmitting messages of types solution, boolean, and
integer is declared and opened as shown below:

type channel = *(solution, boolean, integer); type net = array [1..p] of channel;
var c: net; for i := 1 to p do open(c[i]);
The master distributes the n candidate solutions among the p servers by assigning q = n/p

of them to each server. As shown in Fig. 3, procedure master repeatedly sends q candidate
solutions to each server and receives them back improved. The master then tests if the
improved candidate solutions are satisfactory, and if they are not, the master generates a new
set for further improvements. The result from the test is broadcast to the servers so that they
terminate when the problem is solved, or, alternatively, receive a new subset of q candidate
solutions.

* Once it has been tested, a SuperPascal algorithm can be easily implemented in any practical parallel
environment, e.g. C and PVM.

The master communicates q candidate solutions to and from server i as specified by
procedures sendToServer and receiveFromServer (see Fig. 3).

Repeatedly, each server (1) receives from the master a subset of q candidate solutions, (2)
applies procedure improve to that subset, (3) sends the improved candidate solutions back to

 Figure 1. Master and Server processes.

Master
test

generate

Improve

Server 2

Improve

Server 1

Improve

Server p

the master, and (4), receives a notification from the master if more improvements are needed.
A specification of the server algorithm is presented in Fig. 4.

procedure master(var s: set; c: net);
var i: integer; done: boolean;
begin

repeat
for i := 1 to p do

sendToServer(i);
for i := 1 to p do

receiveFromServer(i);
test(s, done);
for i:= 1 to p do

send(c[i], done);
if not done then generate(s);

until done
end;

procedure sendToServer(i: integer);
var k, first, last: integer;
begin

first := (i - 1)*q + 1; last := i*q;
for k := first to last do send(c[i], s[k]);

end;

procedure receiveFromServer
(i:integer);

var k, first, last: integer;
begin first := (i - 1)*q + 1; last := i*q;

for k := first to last do
receive(c[i], s[k]);

end;

Figure 3. Master algorithm.

Finally, the algorithm from Fig. 5 creates the network displayed on Fig. 1 by (1) opening p
channels and by (2) running in parallel one master and p server processes.

procedure server(c: channel; i: integer);
var s: set; first, last, k: integer;

done: boolean;
begin first := (i - 1)*q + 1; last := i*q;

repeat
for k := first to last do

receive(c, s[k]);
improve(s, first, last);
for k := first to last do

send(c, s[k]);
receive(c, done)

until done;
end;

Figure 4. Server algorithm.

procedure compute(var s: set);
var c: net; i: integer;
begin

for i := 1 to p do
open(c[i]);

parallel
master(s, c) |
forall i := 1 to p do

server(c[i], i)
end

end;

Figure 5. Master-server network

Given this generic parallel algorithm, one can derive a parallel algorithm for a particular
problem by specifying the particular type of its solution and the problem-specific, sequential
procedures improve, test, and generate. (One has to also specify two less significant
procedures, initialize and summarize which are not discussed in this paper.) Finally, procedure
compute can be invoked to solve concrete problem instances.

We use the generic master-server algorithm to derive parallel algorithms for two different
discrete optimization problems: the knapsack problem and the traveling salesperson problem.
We achieve this by defining the type of the solution for the each specific problem, and by
defining concrete sequential versions of procedures improve, test, and generate.

3. Deriving a Parallel Evolutionary Algorithm for the Knapsack Problem

We consider a 0/1 knapsack problem of size m: Choose, which objects to include in a
knapsack so that the cumulative value of the objects is maximized without exceeding the
knapsack capacity [8].

We derive a parallel evolutionary algorithm for the knapsack problem from the generic
master-server algorithm as follows. We represent the candidate solutions as binary
chromosomes, so that true in position k means that object k is chosen and false means it is not:

type bitArray = array[1..m {problem size}] of boolean;
solution {chromosome} = record

bit: bitArray;
fitness: real;

end;
The fitness of the chromosome is measured by the cumulative values of the chosen objects.

Procedure improve is defined to perform extensive hill-climbing on a number of replicas of
each chromosome s[i], i = first, first+1, …, last. The most fitted chromosome, which results
from the hill-climbing, becomes the improved version of s[i], as specified below:

procedure improve(var s: set; first, last: integer);
vari: integer;
begin for i := first to last do

{generate a temporary population consisting of a number of clones of s[i] and
perform hill-climbing on each member of that population; replace s[i] with the
best fitted chromosome obtained by hill-climbing}

end;
Procedure generate(var s: set) is defined to modify the set s of chromosomes by applying

the genetic crossover operator [9]. Finally, procedure test(var s: set; var done: boolean) is
defined to accept the current fittest chromosome after a predefined number of generations.
Procedure test also maintains a copy of the best candidate solution currently found by this
algorithm. A complete specification of the knapsack algorithm is available in [10].

4. Deriving a Parallel Simulated Annealing Algorithm for the Traveling Salesperson
Problem

We consider the popular traveling salesperson problem: Find the shortest tour to visit each
of m cities once and return to the initial city. We derive a parallel simulated annealing
algorithm for the traveling salesperson problem from the generic master-server algorithm as
follows. Similarly to [4, Ch.11], a city is represented by its real coordinates in the plane. A
candidate solution is an array of different cities, also called a tour, and the length of the tour is
the sum of the distances of successive cities:

type city = record x, y: real end;
solution {tour} = array [1..m {problem size}] of city;

Procedure improve(var s: set; first, last: integer) is defined to improve tours s[first],
s[first+1], …,s[last] by simulated annealing, as specified below:

procedure improve(var s: set; left, right: integer);
var i: integer;
begin for i := first to last do {apply simulated annealing to tour s[i]} end;
Procedure generate(var s: set) is null, i.e., specifies no actions. Finally, procedure test(s:

set; var done: boolean) is defined to always return done = true and, therefore, terminate the
master and the server. Thus, in this algorithm each server improves only one subset of q = n/p
candidate solutions. A complete specification of the traveling salesperson algorithm is available
in [10].

5. Cluster Implementation and Performance Evaluation

We reprogram the generic probabilistic algorithm for a 10Mbps Ethernet cluster of Sun
Ultra SPARC-1 workstations using the programming language C and the software package
PVM [13]. From the generic implementation, we derive implementations of the evolutionary
and the simulated annealing parallel algorithms. For this purpose we reprogram from
SuperPascal to C the serial code for procedures improve, test, and generate, which we then
compile with the C/PVM implementation of the generic algorithm. A more detailed description
of the derivation of a C/PVM implementation can be found in [10].

Table 1. Knapsack.
p T(p) E(p)
1 337 1.00
2 178 0.95
4 98 0.86
8 61 0.69
16 47 0.45

Table 2. Traveling Salesperson.
p T(p) E(p)
1 1153 1.000
2 578 0.997
4 291 0.991
8 146 0.987
16 74 0.974

Table 1 shows the average run time T(p) in seconds for parallel solution of a randomly
generated knapsack problem of size 400 on 1, 2, 4, 8, and 16 workstations, with a set of 16
candidate solutions. The processor efficiency, E(p) = T(1)/(p*T(p)) is high for a small number
of processors.

Table 2 shows the average run time T(p) in seconds for parallel computation of an optimal
tour of 400 cities on 1, 2, 4, 8, and 16 workstations, with a set of 16 candidate solutions. The
processor efficiency E(p) is higher than 97%.

Figures 6 and 7 graphically represent the wall-clock execution time and speedup of the
algorithms. Both algorithms are expected to scale well on the set of candidate solutions. The
traveling salesperson algorithm scales well for large number of processors on the problem size
as well, while the knapsack algorithm has more limited scalability due to the communication
patterns inherent to the algorithm.

Figure 6. Wall-clock execution time. Figure 7. Speedup.

6. Conclusions

In this paper, we have proposed a generic probabilistic algorithm for probabilistic cluster
computations. From the generic algorithm, we have derived an evolutionary algorithm for the
knapsack problem and a simulated annealing algorithm for the traveling salesperson problem.
The derivation consists in gluing together the parallel generic algorithm with sequential
problem-oriented code. We have implemented these algorithms on a homogeneous cluster of
Sun Ultra SPARC-1 workstations using C and PVM. The processor efficiency of the
implementations is over than 97% for the traveling salesperson implementation and fairly high
for the knapsack implementation. We have received compatible results from experiments with
a DEC Alpha 3000 cluster.

Our work is inspired by Brinch Hansen [4] who first described a generic Monte-Carlo
parallel algorithm for multi-computers, then used it to develop a simulated annealing algorithm
for the traveling salesperson problem and a primality testing algorithm. The Monte-Carlo
algorithm is targeted to multi-computers and builds a pipeline of processes - a structure that
exploits existing direct processor connections. A pipeline cannot be mapped efficiently on
clusters of workstations, because the connections may have diverse topology, or could even be
inaccessible to the programmer. Our proposed master-server process configuration eliminates
this problem by leaving the control of the physical connections to the run-time system, e.g.
PVM in our implementations. Our master-server algorithm is more general than the pipelined
Monte-Carlo algorithm because the former provides multiple interactions between the master
and the server processes, while the latter sends work to the pipelined processes only once.
Therefore, the Monte-Carlo algorithm cannot be used to derive evolutionary algorithms, which
require multiple interactions between a master process on the one end, and server processes
that perform the actual computations on the other.

Our parallel evolutionary algorithm for the 0/1 knapsack problem uses extensive parallel
hill-climbing and limited serial crossover. This is in contrast to typical genetic algorithms,
which employ extensive crossover and limited mutations. This difference is essential for
parallel execution because hill-climbing is independent for individual chromosomes, while
crossover requires coordination of the whole population [2]. Besides, experiments with an

0

5

10

15

20

1 2 4 8 16

Number of Processors

S
p

ee
d

u
p

Traveling
Salesperson
Knapsack

0

200

400

600

800

1000

1200

1400

1 2 4 8 16

Number of Processors

T
im

e
(s

ec
o

n
d

s)

Traveling
Salesperson
Knapsack

earlier version of the knapsack evolutionary algorithm have demonstrated significantly better
optimization performance than genetic algorithms.

Parallel probabilistic algorithms have found diverse applications in computational biology
[14], inference [6], simulation [16], sorting [15], prefix computation [11]. Research in theory
of probabilistic algorithms [12, Ch. VII] has been concentrated on algorithms that solve
problems exactly for poly-logarithmic expected running time. Probabilistic algorithms from this
class have been proposed for a variety of problems, such as parallel prefixes, sorting, maximal
matching and maximal independent sets of vertices in undirected graphs, matrix rank and
normal form computations. The disadvantage of this class of algorithms is that their running
time is indeterminate and, therefore, their worst cases can be very bad.

7. References

1. Aarts E. and J. Korst. Simulated Annealing and Boltzmann Machines, John Wiley, Chichester,
1989.

2. Dorigo M. et al. Parallel genetic algorithms: Introduction and overview of current research, In:
Parallel Genetic Algorithms, J. Stender, editor, IOS Press, Amsterdam, 1993, 5-42.

3. Fishman G. S.. Monte Carlo: Concepts, Algorithms, and Applications, Springer Verlag, New
York, 1996.

4. Hansen B. Studies in Computational Science: Parallel Programming Paradigms, Prentice
Hall, Inc., Englewood Cliffs, NJ, 1995.

5. Hansen B. SuperPascal - a publication language for parallel scientific computing, Concurrency -
Practice and Experience, 6, No 5, 1994, 461-483.

6. Kozlov A. et al. Parallel Implementation of Probabilistic Inference, Computer, 29, No 12, 1996,
33-40.

7. Lawler E. et al. The Traveling Salesperson Problem: A Guided Tour of Combinatorial
Optimization, John Wiley, Chichester, 1985.

8. Martello S. and P. Toth. Knapsack Problems, John Wiley, Chichester, 1990.
9. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed.,

Springer-Verlag, Berlin, 1994.
10. Probabilistic Master-Server Algorithms, ftp://saturn.cs.wssu.edu, directory

pub/paradigms/mastserv/, 1997.
11. Reif J. H. Probabilistic Parallel Prefix Computation, Computers and Mathematics with

Applications, 26, No 1, 1993, 101-110.
12. Smith J. R.. The design and Analysis of Parallel Algorithms, Oxford University Press, New

York, 1993.
13. Sunderam V. PVM: A Framework for Parallel Distributed Computing, Concurrency: Practice

and Experience, 2, No 4, 1990, 315-339.
14. Thompson E. et al. The Gibbs Sampler On Extended Pedigrees: Monte Carlo Methods For The

Genetic Analysis Of Complex Traits, Tech. Report 193, Department of Statistics, University of
Washington, 1990.

15. Vitter J.S. et al. Algorithms for Parallel Memory II: Hierarchical Multilevel Memories, Tech.
Report CS-92-05, Department of Computer Science, Brown University, 1992.

16. Yoshimura S. et al. Life Extension Simulation Of Aged Reactor Pressure Vessel Material Using
Probabilistic Fracture Mechanics Analysis On A Massively Parallel Computer, Nuclear
Engineering and Design, 158, No 2-3, 1996, 341-350.

