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@ Starting from the notion of time-frequency
representations/distributions of signals, two distinct
branches of inquiry have emerged: (1) Gabor theory and
(2) Wavelet theory.

@ (1) Gabor theory had its origins in communication theory
and quantum mechanics.

@ The initial idea was to understand the information content
in a signal in terms of fundamental units of information
represented by rectangles of area one in time-frequency
space.

@ The goal was to represent a signal in terms of a tiling of the
time-frequency plane in terms of such rectangles.

@ The difficulties encountered in trying to realize that
program led to the development of a mathematically rich
field of time-frequency analysis.

@ Included in this tapestry are deep structure theorems for

Gabor systems and the general theory of frames.
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Wavelet theory

@ (2) Wavelet theory arose from the analysis of operators
arising from differential equations and function spaces
through which those operators can be understood.

@ The effort to understand and characterize the fine
oscillatory structure of these spaces led to simpler atomic
decompositions and ultimately to smooth orthonormal
bases that captured this structure.

@ These bases are seen to also correspond to a tiling of the
time-frequency plane in terms of rectangles of unit area.

@ An elegant mathematical theory has developed that lends
itself to efficient numerical algorithms and a rich array of
applications in signal and image processing.
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Recall the definition of the Short Time Fourier Transform.

Definition

Given g € L?(RY), we define the short-time Fourier transform
(STFT) on L2(RY) by

Vof(x.7) = | 0)a(t=x) ) ot = (1. M, Tog).

@ The “coherent states” consist of applying the operators
TaMp, with (a, b) € R x R to a single window function
function g.

@ Is there a group structure underlying these
transformations? Yes.
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Definition (Heisenberg Group)
Let

H=TxRxR

denote the Heisenberg group with group operation
(tr, a1, b1) - (o, @, bo) = (t11,€%™P1% ay + ap, by + by).

Haar measure on this group is dt dadb. Define the Schrddinger
representation of H on L2(R) by

7(t, a, b)f(x) = te®™PX=3) f(x — a) = t TaMpf(x).

@ Vyf can now be thought of as a function on the group H, so
we write Vy(t, a, b) instead of Vg(a, b).

@ The introduction of the extra component t € T is immaterial
to any of the preceding discussions.
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Motivation

Recall the definition of the Continuous Wavelet Transform.

Definition
Given a function g € L2(R), the continuous wavelet transform of
a function f € L2 is defined by

Wy(f)(a. ) = [ #(t)a"/2g(at=B)dt = (1. DaTog)uzge

—0o0

fora>0and b e R.

@ The “coherent states” consist of applying the operators
D, Ty with (a, b) € R4 x R to a single wavelet function g.

@ Is there a group structure underlying these
transformations? Yes.
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Definition (Affine Group)
Let

A:R+XR

denote the affine group with group operation

(a1,b1) - (@2, b2) = (@1az, @by + bo).

: : . da
In this case, left-Haar measure on this group is - ab.

@ Define a representation, 7 of A on L2(R) by
w(a, b)f(x) = a'/? f(ax — b).

@ W,f is now thought of as a function on the group A.
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@ Co-orbit Theory (Feichtinger-Gréchenig, 1989) presents a
unified framework for understanding the generating atomic
decompositions in terms of Gabor or wavelet systems.

@ The unifying principle is that each of these decompositions
are in terms of Banach frames generated by a single vector
under the action of a group of unitary transformations.

@ The basic idea is that one can study Banach spaces which
can in principle be very abstract by looking at a
corresponding function space on a group, which can in
principle be much more concrete.

@ In particular, one can get atomic decompositions and
frame expansions in these Banach spaces, which include
Gabor expansions of modulation spaces, and wavelet
expansions of Besov-Triebel-Lizorkin spaces.
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Basic definitions

Let G be a locally compact group with left-invariant Haar
measure du, and H a Hilbert space.

(1) A representation = of G on H is a mapping 7: G — L(H)
such that 7(x - y) = n(x)w(y) for every x,y € G.

(2) A vector g € H is admissible if

[ tg. 7)) du(x) < .

(3) A vector g € H is cyclic if span{n(x)g}xecg = H
(4) 7 is unitary if the map =(x): ‘H — H is unitary for each
x e G.

(5) mis irreducible if every g € H \ {0} is cyclic.
(6) 7 is square-integrable if v is irreducible and there exists an
admissible g € H \ {0}.
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The Voice Transform

Definition

Let G, du, and H be as above. Assume that 7 a unitary,
square-integrable group representation of Gon H. If g € H is
admissible, define the voice transform Vg4 on H by

Vg(£)(x) = (f, m(x)g)-

@ V), is a linear mapping from # into the collection of
bounded continuous functions on G, and moreover

Vo(Nlloo < Ifl3/lgll3-
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Admissibility

Theorem (Grossmann, Morlet, Paul, 1985)

There is a unique positive, self-adjoint, densely-defined
operator A on ‘H such that

(1) g € dom(A) if and only if g is admissible,

(2) /G Vg, (f1)(X) Vg, (2)(x) dpu(x) = (Agi, Age) (f1, I2) for gu, 92
admissible and f;, > € H.

v

@ The operator A s also referred to as the Dufflo-Moore
operator.
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Admissibility

@ In the case of the Schrédinger representation of H, the
operator A is the identity. In this case, every g € L?(R) is
admissible.

@ For the affine group A, the operator A is given by

Ag(7) = \i\(y/)Z

@ In this case, g is admissible if and only if

> AN 2
[0k,

oo ]
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@ Note that if g is admissible and ||Ag|| = 1, then

/ Ve(N ()R du(x) = [1FI2.

@ Then V4 maps H isometrically onto a closed linear
subspace S C L?(G).

@ Since Vyf(x) is also bounded and continuous, the
subspace S will consist of “nice” functions that can be used
to study the Hilbert space # that may well consist of more
“wild” objects.
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Reproducing formula

@ One particularly nice property of S is that it satisfies a
reproducing formula.

@ In order to be precise about this we need to make an
additional assumption about 7, namely that it is integrable.

@ This means there exists g € # \ {0} such that

/G (g, 7(x)9)| du(x) < .

In other words, Vy(g) € L'(G).

@ This assumption on 7 will be important later as it will allow
us to extend beyond the Hilbert space setting into more
general Banach spaces.
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Suppose that g € H satisfies V4(g) € L'(G) and | Ag|| = 1.
Then for f € H,

Vg(f)*Vg(g)Z/GVg(f)(X)Vg(g)(X_W) dp(x) = Vg(f).

From the orthogonality relations,
[L:7(x)9) tg.7(x”"y)g) du(x)

- /G (F,7(x)g) (7(y)g, 7(x)g) Au(x)
= (Ag,Ag) (f,7(y)9)

Walnut (GMU) Lecture 9 — Coorbit Spaces



@ S =range (V) is a closed subspace of L2(G) and the
above lemma identifies S as a reproducing kernel Hilbert
space.

@ Typically such RKHS are associated with sampling
theorems based on the intuition that such spaces consist
of smooth functions.

@ How can such sampling theorems be obtained in general?

@ The idea is to approximate the convolution integral (the
identity) by a sum (like a Riemann sum) and arrive at a
discrete representation of functions in L2(G) and .
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Discrete sets in G

Let X = {x;: i € I} C G be a countable family in G.
(1) For a neighborhood U of the identity in G, X is U-dense if
UX,' U=aG.
iel
(2) X is relatively separated if for any relatively compact set
W C G with non-empty interior,
sup#{k e l: xk W x;W # 0} < cc.
iel

(8) X is said to be well-spread if it is both U-dense for some U
and relatively separated.
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BUPUs

Definition

Let U be a compact neighborhood of the identity in G, a family
of functions {v;: i € I} C Cy(G) is a bounded uniform partition
of unity (BUPU) provided that

(1) 0<ypj<tforalliel
(2) There is a well-spread family {x;: i € I} C G such that

supp ¥ C x;U, Vi € I.
() > wi(x)=1.

iel
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Approximating convolution

Returning now to our reproducing formula
)+ Va(a) = [ Vo) Vo(@)(x"y) () = Vo(1
we can write for some BUPU {4}
F«Ve(9)(x) = / F(x) Vg(9)(x~"y) dp(x)

-y X) Va(@)(x™"¥) diu(x)

icl /XU
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If U is small enough and since Vy(g) is at least continuous,

Ve(@)(x71y) = Ve(9)(xy)

on x;U.

D[ FO) i) Ve(@)(xTy) dp(x)

icl /XU
N . ~1
D> (/ FL0u dux) ) Va(a)x; ')

= > (F.ui) V()% ')

iel
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A frame for S

@ Define Ty on S = range (Vy) by
TuF(y) = (F, 40 V(@) (X' y).
iel
@ For U small, Ty ~ Id so is a bounded isomorphism of S.
@ We can write for F ¢ S,

Fy) =D (T 'F.ui) Va(9)(%y).

i€l

@ It can be shown directly that for some A, B > 0, and all
FesS,

AllF N2y < 1Ty ' Foi)) e < BlIFlliz(q)-

@ In other words, {Vg(g)(x,.‘1y)} is a frame for S.
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A frame for H

If f € H, we can write

(f,r(y)g) = Ve(F)(y)
= Tu(Ty V()
= S (T V()4 Va(9)(x 1Y)
iel
= N (T, WVg(f), i) (m(x)g, 7(¥)g)

iel

— < D (T WV, )m(x)g, w(y)g>

iel
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@ Hence

f_Z)\ m(x;)g where \i(f) = (T Vg(F), ¥i)

@ Because we have a frame for L2(G), there are constants
Ap, By > 0 such that

Aollfll# < (A2 < Bollflln

forall f € H.
@ In other words, {7(x;)g: i € I} is a frame for H.
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Banach spaces

@ How can we go outside the Hilbert space setting to more
general Banach spaces?

@ The key is our assumption that = is integrable, that is, that
there exists g € H \ {0} such that

/G (g, 7(x)9)| du(x) < .

In other words, Vy(g) € L'(G).

@ Since always Vy(g) € L*°(G), if g satisfies the above then
g is admissible.

e Define Ho = {g € H: V4(g) € L'(G)}, and note that if
g € Ho then the natural domain for the operator Vy is
(Ho)', the dual space of Hy.
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Heisenberg group

@ Recall that the voice transform V,; generated by the
Schrédinger representation of H on L?(R) is

Vyf(t,a,b) = (f,n(t,a b)g) = t(f, TaMyg) = t Vy(f)(a, b)

where here Vj is the usual short-time Fourier transform.
@ Then = is clearly integrable since for any g € Sy,
t Vg(g) € L'(H).
@ Hence the natural domain for V4 with g € Sy is the dual
Feichtinger algebra Sj = M>>°°.
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Affine group

@ The representation « of the affine group A on L2(R) is also
integrable.

@ It turns out that the space of g for which Vg(g) € L'(A) is

the so-called minimal Besov space BY"' defined to be
those distributions in S; such that

0 dt
1= [ lees s < oc.
0
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Co-orbit spaces

@ Let Y be a Banach space of functions on G with the
property of solidity, i.e., if f € Y and g satisfies
lg(x)| < [f(x)| forall x € Gthen g e Y and || g|y < |/flly.

Definition (Co-orbit space)
Given a solid Banach function space Y, and g € H,, we define
the co-orbit space Co(Y) by

Co(Y) = {f € (Ho)': Vy(f) € Y}

with norm given by ||f||co(yy = [[Vgflly. Co(Y) is a Banach
space under this norm.

@ Co(Y) is independent of the choice of g € H with
equivalent norms being generated by different g.
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Co-orbit spaces on H

@ For our space Y we choose the mixed-norm space LP9(H)
given by

LP9(H) {F(t,a,b): |[Flpa

(/R (/R/T]F(t,a,b)d”pda)q/de)ﬂq< OO}'

@ In this case the co-orbit space Co(LP9) is the modulation
space MP9 i.e.

Co(LP9) = {f € (So)(R): tVy(f)(a, b) € LP9}.

@ Co(L") recovers the Feichtinger algebra S,.
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Affine group

@ In this case we again take for Y the mixed-norm spaces
and in this case,

LP9(A) = {F(a b): [IFllna

([ ([meara) )" s}

@ In this case, the co-orbit space Co(LP-9) is the Besov
space Bg’q.
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Reproducing formula

Suppose that g € Ho, with ||Ag|| = 1, and f € (Hy)'. Then

Vo(f) * Vg(9) = /G Vo(£)(x) Va(g)(x"y) du(x) = Vg(f).

@ Our goal is to define Banach frames for spaces Y and
Co(Y).

@ The idea is to discretize the reproducing formula as before
utilizing BUPUs.

@ In order to have a Banach frame we must specify a
sequence space associated to Y and Co(Y).
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The Sequence Space Yy(X)

Definition

Given a well-spread family X = {x;: i € I} C G and a solid,
translation-invariant Banach space Y of functions on G, we
define the sequence space Y4(X) by

Ya(X) = {(Mier: D Ailyw € Y}

i€l

where W is a compact subset of G with non-empty interior. The
norm on Yy(X) is given by

”Yd

> Aitw H :

iel
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@ Y,4(X) does not depend on W as different W will generate
equivalent norms on Yy(X).

@ Yy(X) also does not necessarily depend on X. For
example, if Y = LP(G), then Yq(X) =~ ¢P(I) for any
well-spread family X.
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A Banach frame for S

@ Define Ty on S = range (V4) (a closed subspace of Y) by

TuF(y) =D (F, 1) Vg(9)(x ).
iel
@ For U small, Ty ~ Id is a bounded isomorphism of S.
@ We can write for F € S,

Fly) =) (Ty'F.ui) Ty Ve(@) (X y).

icl
@ Forsome A, B> 0,andall F € S,

AlFlly < (Tg " Foo)lly, < BIIF]ly.

@ In other words, {Vg(g)(x,._1y)} is a Banach frame for S.
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A Banach frame for Co(Y)

If f € Co(Y), we can write

(f,r(y)g) = Vo()(y)
= Tu(Ty Ve(H)))
= S (T, V(). i) Va(9)(x 1Y)
i€l
= > Ty V() i) (m(x))9. 7(¥)9)

iel

= (T el ) n()g. 7))

iel
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@ Hence

f_Z)\ m(x;)g where \i(f) = (T Vg(F), ¥4)

@ Because we have a Banach frame for Y, there are
constants Ag, By > 0 such that

Aollfllcocyy < I vy < Bollfllco(y)

forall f € Co(Y).

@ In other words, {w(x;)g: i € I} is a Banach frame for
Co(Y).
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Shearlets
The Shearlet group S is given by
S=R\ {0} x R x R2.

Define

= (5 sonaya ) o= (0 7)

and let Tyf(x) = f(x — t) and Dyf(x) = | det(M)|~"/2f(M~x)
for M an invertible 2 x 2 matrix. Then S becomes a group under
the operation

(a,s,t)-(d,s,t')=(ad,s+ s'\/|al|,t + SsAat').

da

e ds dt defined Haar measure on S.

Also dug =
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@ We define a representation 7 on L2(R?) by

m(a, s, t)y(x) = TiDs a1 (X).

@ Under these assuptions, the full co-orbit theory of
Frichtinger and Gréchenig is applicable.
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