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Recap

Starting from the notion of time-frequency
representations/distributions of signals, two distinct
branches of inquiry have emerged: (1) Gabor theory and
(2) Wavelet theory.
(1) Gabor theory had its origins in communication theory
and quantum mechanics.
The initial idea was to understand the information content
in a signal in terms of fundamental units of information
represented by rectangles of area one in time-frequency
space.
The goal was to represent a signal in terms of a tiling of the
time-frequency plane in terms of such rectangles.
The difficulties encountered in trying to realize that
program led to the development of a mathematically rich
field of time-frequency analysis.
Included in this tapestry are deep structure theorems for
Gabor systems and the general theory of frames.
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Wavelet theory

(2) Wavelet theory arose from the analysis of operators
arising from differential equations and function spaces
through which those operators can be understood.
The effort to understand and characterize the fine
oscillatory structure of these spaces led to simpler atomic
decompositions and ultimately to smooth orthonormal
bases that captured this structure.
These bases are seen to also correspond to a tiling of the
time-frequency plane in terms of rectangles of unit area.
An elegant mathematical theory has developed that lends
itself to efficient numerical algorithms and a rich array of
applications in signal and image processing.
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Motivation

Recall the definition of the Short Time Fourier Transform.

Definition
Given g 2 L2(Rd), we define the short-time Fourier transform
(STFT) on L2(Rd) by

Vgf (x , �) =
Z

Rd
f (t) g(t � x) e�2⇡i(t ·�) dt = hf ,M�Txgi.

The “coherent states” consist of applying the operators
TaMb with (a, b) 2 R⇥ R to a single window function
function g.
Is there a group structure underlying these
transformations? Yes.
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Definition (Heisenberg Group)
Let

H = T⇥ R⇥ R

denote the Heisenberg group with group operation

(t1, a1, b1) · (t2, a2, b2) = (t1t2e2⇡ib1a2 , a1 + a2, b1 + b2).

Haar measure on this group is dt da db. Define the Schrödinger
representation of H on L2(R) by

⇡(t , a, b)f (x) = t e2⇡ib(x�a) f (x � a) = t TaMbf (x).

Vgf can now be thought of as a function on the group H, so
we write Vg(t , a, b) instead of Vg(a, b).
The introduction of the extra component t 2 T is immaterial
to any of the preceding discussions.
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Motivation

Recall the definition of the Continuous Wavelet Transform.

Definition
Given a function g 2 L2(R), the continuous wavelet transform of
a function f 2 L2 is defined by

Wg(f )(a, b) =
Z 1

�1
f (t) a1/2g(at � b) dt = hf ,DaTbgiL2(R)

for a > 0 and b 2 R.

The “coherent states” consist of applying the operators
DaTb with (a, b) 2 R+ ⇥ R to a single wavelet function g.
Is there a group structure underlying these
transformations? Yes.
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Definition (Affine Group)
Let

A = R+ ⇥ R

denote the affine group with group operation

(a1, b1) · (a2, b2) = (a1a2, a2b1 + b2).

In this case, left-Haar measure on this group is
da
a

db.

Define a representation, ⇡ of A on L2(R) by

⇡(a, b)f (x) = a1/2 f (ax � b).

Wgf is now thought of as a function on the group A.
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Motivation

Co-orbit Theory (Feichtinger-Gröchenig, 1989) presents a
unified framework for understanding the generating atomic
decompositions in terms of Gabor or wavelet systems.
The unifying principle is that each of these decompositions
are in terms of Banach frames generated by a single vector
under the action of a group of unitary transformations.
The basic idea is that one can study Banach spaces which
can in principle be very abstract by looking at a
corresponding function space on a group, which can in
principle be much more concrete.
In particular, one can get atomic decompositions and
frame expansions in these Banach spaces, which include
Gabor expansions of modulation spaces, and wavelet
expansions of Besov-Triebel-Lizorkin spaces.
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Basic definitions

Definition
Let G be a locally compact group with left-invariant Haar
measure dµ, and H a Hilbert space.
(1) A representation ⇡ of G on H is a mapping ⇡ : G ! L(H)

such that ⇡(x · y) = ⇡(x)⇡(y) for every x , y 2 G.
(2) A vector g 2 H is admissible if

Z

G
|hg,⇡(x)gi|2 dµ(x) < 1.

(3) A vector g 2 H is cyclic if span{⇡(x)g}x2G = H.
(4) ⇡ is unitary if the map ⇡(x) : H ! H is unitary for each

x 2 G.
(5) ⇡ is irreducible if every g 2 H \ {0} is cyclic.
(6) ⇡ is square-integrable if ⇡ is irreducible and there exists an

admissible g 2 H \ {0}.
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The Voice Transform

Definition
Let G, dµ, and H be as above. Assume that ⇡ a unitary,
square-integrable group representation of G on H. If g 2 H is
admissible, define the voice transform Vg on H by

Vg(f )(x) = hf ,⇡(x)gi.

Vg is a linear mapping from H into the collection of
bounded continuous functions on G, and moreover

kVg(f )k1  kfkHkgkH.
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Admissibility

Theorem (Grossmann, Morlet, Paul, 1985)
There is a unique positive, self-adjoint, densely-defined
operator A on H such that
(1) g 2 dom(A) if and only if g is admissible,

(2)
Z

G
Vg1(f1)(x)Vg2(f2)(x) dµ(x) = hAg1,Ag2i hf1, f2i for g1, g2

admissible and f1, f2 2 H.

The operator A is also referred to as the Dufflo-Moore
operator.
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Admissibility

In the case of the Schrödinger representation of H, the
operator A is the identity. In this case, every g 2 L2(R) is
admissible.
For the affine group A, the operator A is given by

cAg(�) =
bg(�)
|�|1/2 .

In this case, g is admissible if and only if
Z 1

�1
|bg(�)|2
|�| d� < 1.
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Note that if g is admissible and kAgk = 1, then
Z

G
|Vg(f )(x)|2 dµ(x) = kfk2

H.

Then Vg maps H isometrically onto a closed linear
subspace S ✓ L2(G).
Since Vgf (x) is also bounded and continuous, the
subspace S will consist of “nice” functions that can be used
to study the Hilbert space H that may well consist of more
“wild” objects.
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Reproducing formula

One particularly nice property of S is that it satisfies a
reproducing formula.
In order to be precise about this we need to make an
additional assumption about ⇡, namely that it is integrable.
This means there exists g 2 H \ {0} such that

Z

G
|hg,⇡(x)gi| dµ(x) < 1.

In other words, Vg(g) 2 L1(G).
This assumption on ⇡ will be important later as it will allow
us to extend beyond the Hilbert space setting into more
general Banach spaces.
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Lemma
Suppose that g 2 H satisfies Vg(g) 2 L1(G) and kAgk = 1.
Then for f 2 H,

Vg(f ) ⇤ Vg(g) =
Z

G
Vg(f )(x)Vg(g)(x�1y) dµ(x) = Vg(f ).

From the orthogonality relations,
Z

G
hf ,⇡(x)gi hg,⇡(x�1y)gi dµ(x)

=

Z

G
hf ,⇡(x)gi h⇡(y)g,⇡(x)gi dµ(x)

= hAg,Agi hf ,⇡(y)gi
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Discretization

S = range (Vg) is a closed subspace of L2(G) and the
above lemma identifies S as a reproducing kernel Hilbert
space.
Typically such RKHS are associated with sampling
theorems based on the intuition that such spaces consist
of smooth functions.
How can such sampling theorems be obtained in general?
The idea is to approximate the convolution integral (the
identity) by a sum (like a Riemann sum) and arrive at a
discrete representation of functions in L2(G) and H.
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Discrete sets in G

Definition
Let X = {xi : i 2 I} ✓ G be a countable family in G.
(1) For a neighborhood U of the identity in G, X is U-dense if

[

i2I

xi U = G.

(2) X is relatively separated if for any relatively compact set
W ✓ G with non-empty interior,

sup
i2I

#{k 2 I : xkW \ xiW 6= ;} < 1.

(3) X is said to be well-spread if it is both U-dense for some U
and relatively separated.
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BUPUs

Definition
Let U be a compact neighborhood of the identity in G, a family
of functions { i : i 2 I} ✓ C0(G) is a bounded uniform partition
of unity (BUPU) provided that
(1) 0   i  1 for all i 2 I.
(2) There is a well-spread family {xi : i 2 I} ✓ G such that

supp i ✓ xiU, 8i 2 I.

(3)
X

i2I

 i(x) ⌘ 1.
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Approximating convolution

Returning now to our reproducing formula

Vg(f ) ⇤ Vg(g) =
Z

G
Vg(f )(x)Vg(g)(x�1y) dµ(x) = Vg(f )

we can write for some BUPU { i}

F ⇤ Vg(g)(x) =

Z

G
F (x)Vg(g)(x�1y) dµ(x)

=
X

i2I

Z

xi U
F (x) i(x)Vg(g)(x�1y) dµ(x)
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If U is small enough and since Vg(g) is at least continuous,

Vg(g)(x�1y) ⇡ Vg(g)(x�1
i y)

on xiU.

X

i2I

Z

xi U
F (x) i(x)Vg(g)(x�1y) dµ(x)

⇡
X

i2I

✓Z

xi U
F (x) i(x) dµ(x)

◆
Vg(g)(x�1

i y)

=
X

i2I

hF , iiVg(g)(x�1
i y)
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A frame for S

Define T on S = range (Vg) by

T F (y) =
X

i2I

hF , iiVg(g)(x�1
i y).

For U small, T ⇡ Id so is a bounded isomorphism of S.
We can write for F 2 S,

F (y) =
X

i2I

hT�1
 F , iiVg(g)(x�1

i y).

It can be shown directly that for some A, B > 0, and all
F 2 S,

AkFkL2(G)  k(hT�1
 F , ii)k`2  BkFkL2(G).

In other words, {Vg(g)(x�1
i y)} is a frame for S.
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A frame for H

If f 2 H, we can write

hf ,⇡(y)gi = Vg(f )(y)

= T (T�1
 Vg(f ))(y)

=
X

i2I

hT�1
 Vg(f ), iiVg(g)(x�1

i y)

=
X

i2I

hT�1
 Vg(f ), ii h⇡(xi)g,⇡(y)gi

=

⌧X

i2I

hT�1
 Vg(f ) i , i⇡(xi)g,⇡(y)g

�
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Hence

f =
X

i

�i(f )⇡(xi)g where �i(f ) = hT�1
 Vg(f ), ii

Because we have a frame for L2(G), there are constants
A0, B0 > 0 such that

A0kfkH  k(�i(f ))k2  B0kfkH
for all f 2 H.
In other words, {⇡(xi)g : i 2 I} is a frame for H.
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Banach spaces

How can we go outside the Hilbert space setting to more
general Banach spaces?
The key is our assumption that ⇡ is integrable, that is, that
there exists g 2 H \ {0} such that

Z

G
|hg,⇡(x)gi| dµ(x) < 1.

In other words, Vg(g) 2 L1(G).
Since always Vg(g) 2 L1(G), if g satisfies the above then
g is admissible.
Define H0 = {g 2 H : Vg(g) 2 L1(G)}, and note that if
g 2 H0 then the natural domain for the operator Vg is
(H0)

0, the dual space of H0.
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Heisenberg group

Recall that the voice transform Vg generated by the
Schrödinger representation of H on L2(R) is

Vgf (t , a, b) = hf ,⇡(t , a, b)gi = t hf ,TaMbgi = t Vg(f )(a, b)

where here Vg is the usual short-time Fourier transform.
Then ⇡ is clearly integrable since for any g 2 S0,
t Vg(g) 2 L1(H).
Hence the natural domain for Vg with g 2 S0 is the dual
Feichtinger algebra S0

0 = M1,1.
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Affine group

The representation ⇡ of the affine group A on L2(R) is also
integrable.
It turns out that the space of g for which Vg(g) 2 L1(A) is
the so-called minimal Besov space B0,1

1 defined to be
those distributions in S 0

0 such that

kfk =

Z 1

0
k't ⇤ fk1

dt
t

< 1.
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Co-orbit spaces

Let Y be a Banach space of functions on G with the
property of solidity, i.e., if f 2 Y and g satisfies
|g(x)|  |f (x)| for all x 2 G then g 2 Y and kgkY  kfkY .

Definition (Co-orbit space)
Given a solid Banach function space Y , and g 2 H0, we define
the co-orbit space Co(Y ) by

Co(Y ) = {f 2 (H0)
0 : Vg(f ) 2 Y}

with norm given by kfkCo(Y ) = kVgfkY . Co(Y ) is a Banach
space under this norm.

Co(Y ) is independent of the choice of g 2 H0 with
equivalent norms being generated by different g.
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Co-orbit spaces on H

For our space Y we choose the mixed-norm space Lp,q(H)
given by

Lp,q(H) = {F (t , a, b) : kFkLp,q

=

✓Z

R

✓Z

R

Z

T
|F (t , a, b) dt |p da

◆q/p

db
◆1/q

< 1
)
.

In this case the co-orbit space Co(Lp,q) is the modulation
space Mp,q, i.e.

Co(Lp,q) = {f 2 (S0)
0(R) : t Vg(f )(a, b) 2 Lp,q}.

Co(L1) recovers the Feichtinger algebra S0.
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Affine group

In this case we again take for Y the mixed-norm spaces
and in this case,

Lp,q(A) = {F (a, b) : kFkLp,q

=

✓Z 1

0

✓Z 1

�1
|F (a, b)|q db

◆p/q da
a

◆1/p

< 1
)
.

In this case, the co-orbit space Co(Lp,q) is the Besov
space Ḃ0,q

p .
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Reproducing formula

Lemma
Suppose that g 2 H0, with kAgk = 1, and f 2 (H0)

0. Then

Vg(f ) ⇤ Vg(g) =
Z

G
Vg(f )(x)Vg(g)(x�1y) dµ(x) = Vg(f ).

Our goal is to define Banach frames for spaces Y and
Co(Y ).
The idea is to discretize the reproducing formula as before
utilizing BUPUs.
In order to have a Banach frame we must specify a
sequence space associated to Y and Co(Y ).
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The Sequence Space Yd(X )

Definition
Given a well-spread family X = {xi : i 2 I} ✓ G and a solid,
translation-invariant Banach space Y of functions on G, we
define the sequence space Yd(X ) by

Yd(X ) = {(�i)i2I :
X

i2I

�i1xi W 2 Y}

where W is a compact subset of G with non-empty interior. The
norm on Yd(X ) is given by

k(�i)kYd =

����
X

i2I

�i1xi W

����
Y
.
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Yd(X ) does not depend on W as different W will generate
equivalent norms on Yd(X ).
Yd(X ) also does not necessarily depend on X . For
example, if Y = Lp(G), then Yd(X ) ⇡ `p(I) for any
well-spread family X .
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A Banach frame for S

Define T on S = range (Vg) (a closed subspace of Y ) by

T F (y) =
X

i2I

hF , iiVg(g)(x�1
i y).

For U small, T ⇡ Id is a bounded isomorphism of S.
We can write for F 2 S,

F (y) =
X

i2I

hT�1
 F , iiT�1

 Vg(g)(x�1
i y).

For some A, B > 0, and all F 2 S,

AkFkY  k(hT�1
 F , ii)kYd  BkFkY .

In other words, {Vg(g)(x�1
i y)} is a Banach frame for S.
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A Banach frame for Co(Y )

If f 2 Co(Y ), we can write

hf ,⇡(y)gi = Vg(f )(y)

= T (T�1
 Vg(f ))(y)

=
X

i2I

hT�1
 Vg(f ), iiVg(g)(x�1

i y)

=
X

i2I

hT�1
 Vg(f ), ii h⇡(xi)g,⇡(y)gi

=

⌧X

i2I

hT�1
 Vg(f ), ii⇡(xi)g,⇡(y)g

�
.
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Hence

f =
X

i

�i(f )⇡(xi)g where �i(f ) = hT�1
 Vg(f ), ii

Because we have a Banach frame for Y , there are
constants A0, B0 > 0 such that

A0kfkCo(Y )  k(�i(f ))kYd  B0kfkCo(Y )

for all f 2 Co(Y ).
In other words, {⇡(xi)g : i 2 I} is a Banach frame for
Co(Y ).
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Shearlets

Definition
The Shearlet group S is given by

S = R \ {0}⇥ R⇥ R2.

Define

Aa =

✓
a 0
0 sgn(a)

p|a|
◆

and Ss =

✓
1 s
0 1

◆

and let Tt f (x) = f (x � t) and DMf (x) = | det(M)|�1/2f (M�1x)
for M an invertible 2 ⇥ 2 matrix. Then S becomes a group under
the operation

(a, s, t) · (a0, s0, t 0) = (aa0, s + s0p|a|, t + SsAat 0).

Also dµS =
da
|a|3 ds dt defined Haar measure on S.
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We define a representation ⇡ on L2(R2) by

⇡(a, s, t) (x) = TtDSsAa (x).

Under these assuptions, the full co-orbit theory of
Frichtinger and Gröchenig is applicable.

Walnut (GMU) Lecture 9 – Coorbit Spaces



Walnut (GMU) Lecture 9 – Coorbit Spaces



Walnut (GMU) Lecture 9 – Coorbit Spaces


