Lecture 9 – Coorbit Spaces

David Walnut Department of Mathematical Sciences George Mason University Fairfax, VA USA

Chapman Lectures, Chapman University, Orange, CA 6-10 November 2017

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Recap

- Starting from the notion of time-frequency representations/distributions of signals, two distinct branches of inquiry have emerged: (1) Gabor theory and (2) Wavelet theory.
- (1) Gabor theory had its origins in communication theory and quantum mechanics.
- The initial idea was to understand the information content in a signal in terms of fundamental units of information represented by rectangles of area one in time-frequency space.
- The goal was to represent a signal in terms of a tiling of the time-frequency plane in terms of such rectangles.
- The difficulties encountered in trying to realize that program led to the development of a mathematically rich field of time-frequency analysis.
- Included in this tapestry are deep structure theorems for Gabor systems and the general theory of frames.

Wavelet theory

- (2) Wavelet theory arose from the analysis of operators arising from differential equations and function spaces through which those operators can be understood.
- The effort to understand and characterize the fine oscillatory structure of these spaces led to simpler atomic decompositions and ultimately to smooth orthonormal bases that captured this structure.
- These bases are seen to also correspond to a tiling of the time-frequency plane in terms of rectangles of unit area.
- An elegant mathematical theory has developed that lends itself to efficient numerical algorithms and a rich array of applications in signal and image processing.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Recall the definition of the Short Time Fourier Transform.

Definition

Given $g \in L^2(\mathbb{R}^d)$, we define the *short-time Fourier transform* (*STFT*) on $L^2(\mathbb{R}^d)$ by

$$V_g f(x,\gamma) = \int_{\mathbb{R}^d} f(t) \,\overline{g(t-x)} \, e^{-2\pi i (t\cdot\gamma)} \, dt = \langle f, M_\gamma T_x g \rangle.$$

- The "coherent states" consist of applying the operators *T_aM_b* with (*a*, *b*) ∈ ℝ × ℝ to a single window function function *g*.
- Is there a group structure underlying these transformations? Yes.

ヘロン 人間 とくほ とくほ とう

1

Definition (Heisenberg Group)

Let

$$\mathbb{H}=\mathbb{T}\times\mathbb{R}\times\mathbb{R}$$

denote the Heisenberg group with group operation

$$(t_1, a_1, b_1) \cdot (t_2, a_2, b_2) = (t_1 t_2 e^{2\pi i b_1 a_2}, a_1 + a_2, b_1 + b_2).$$

Haar measure on this group is $dt \, da \, db$. Define the *Schrödinger* representation of \mathbb{H} on $L^2(\mathbb{R})$ by

$$\pi(t,a,b)f(x) = t e^{2\pi i b(x-a)} f(x-a) = t T_a M_b f(x).$$

- V_gf can now be thought of as a function on the group ℍ, so we write V_g(t, a, b) instead of Vg(a, b).
- The introduction of the extra component *t* ∈ T is immaterial to any of the preceding discussions.

ヘロン 人間 とくほ とくほ とう

Recall the definition of the Continuous Wavelet Transform.

Definition

Given a function $g \in L^2(\mathbb{R})$, the *continuous wavelet transform* of a function $f \in L^2$ is defined by

$$W_g(f)(a,b) = \int_{-\infty}^{\infty} f(t) a^{1/2} \overline{g(at-b)} dt = \langle f, D_a T_b g \rangle_{L^2(\mathbb{R})}$$

for a > 0 and $b \in \mathbb{R}$.

- The "coherent states" consist of applying the operators D_aT_b with (a, b) ∈ ℝ₊ × ℝ to a single wavelet function g.
- Is there a group structure underlying these transformations? Yes.

Definition (Affine Group)

Let

$$\mathbb{A}=\mathbb{R}_+\times\mathbb{R}$$

denote the affine group with group operation

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, a_2 b_1 + b_2).$$

In this case, left-Haar measure on this group is $\frac{da}{a} db$.

• Define a representation, π of \mathbb{A} on $L^2(\mathbb{R})$ by

$$\pi(a,b)f(x) = a^{1/2} f(ax - b).$$

• $W_g f$ is now thought of as a function on the group \mathbb{A} .

ヘロト ヘアト ヘビト ヘビト

Motivation

- Co-orbit Theory (Feichtinger-Gröchenig, 1989) presents a unified framework for understanding the generating atomic decompositions in terms of Gabor or wavelet systems.
- The unifying principle is that each of these decompositions are in terms of Banach frames generated by a single vector under the action of a group of unitary transformations.
- The basic idea is that one can study Banach spaces which can in principle be very abstract by looking at a corresponding function space on a group, which can in principle be much more concrete.
- In particular, one can get atomic decompositions and frame expansions in these Banach spaces, which include Gabor expansions of modulation spaces, and wavelet expansions of Besov-Triebel-Lizorkin spaces.

ヘロン ヘアン ヘビン ヘビン

ъ

Basic definitions

Definition

Let *G* be a locally compact group with left-invariant Haar measure $d\mu$, and \mathcal{H} a Hilbert space.

- (1) A representation π of G on \mathcal{H} is a mapping $\pi \colon G \to \mathcal{L}(\mathcal{H})$ such that $\pi(x \cdot y) = \pi(x)\pi(y)$ for every $x, y \in G$.
- (2) A vector $g \in \mathcal{H}$ is *admissible* if

$$\int_G |\langle g, \pi(x)g
angle|^2 \, d\mu(x) < \infty.$$

- (3) A vector $g \in \mathcal{H}$ is *cyclic* if $\overline{\text{span}}{\pi(x)g}_{x \in G} = \mathcal{H}$.
- (4) π is *unitary* if the map $\pi(x) \colon \mathcal{H} \to \mathcal{H}$ is unitary for each $x \in G$.
- (5) π is *irreducible* if every $g \in \mathcal{H} \setminus \{0\}$ is cyclic.
- (6) π is *square-integrable* if π is irreducible and there exists an admissible $g \in \mathcal{H} \setminus \{0\}$.

Definition

Let *G*, $d\mu$, and \mathcal{H} be as above. Assume that π a *unitary*, *square-integrable* group representation of *G* on \mathcal{H} . If $g \in \mathcal{H}$ is admissible, define the *voice transform* \mathcal{V}_g on \mathcal{H} by

 $\mathcal{V}_g(f)(x) = \langle f, \pi(x)g \rangle.$

• V_g is a linear mapping from H into the collection of bounded continuous functions on *G*, and moreover

 $\|\mathcal{V}_g(f)\|_{\infty} \leq \|f\|_{\mathcal{H}} \|g\|_{\mathcal{H}}.$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Theorem (Grossmann, Morlet, Paul, 1985)

There is a unique positive, self-adjoint, densely-defined operator A on ${\cal H}$ such that

(1) $g \in dom(A)$ if and only if g is admissible,

(2)
$$\int_{G} \mathcal{V}_{g_1}(f_1)(x) \overline{\mathcal{V}_{g_2}(f_2)(x)} d\mu(x) = \langle Ag_1, Ag_2 \rangle \langle f_1, f_2 \rangle \text{ for } g_1, g_2$$

admissible and $f_1, f_2 \in \mathcal{H}$.

• The operator *A* is also referred to as the *Dufflo-Moore* operator.

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

- In the case of the Schrödinger representation of H, the operator A is the identity. In this case, every g ∈ L²(ℝ) is admissible.
- For the affine group A, the operator A is given by

$$\widehat{Ag}(\gamma) = rac{\widehat{g}(\gamma)}{|\gamma|^{1/2}}.$$

• In this case, g is admissible if and only if

$$\int_{-\infty}^{\infty}rac{|\widehat{g}(\gamma)|^2}{|\gamma|}\,d\gamma<\infty.$$

(雪) (ヨ) (ヨ)

• Note that if g is admissible and ||Ag|| = 1, then

$$\int_G |\mathcal{V}_g(f)(x)|^2 \, d\mu(x) = \|f\|_{\mathcal{H}}^2.$$

- Then V_g maps H isometrically onto a closed linear subspace S ⊆ L²(G).
- Since V_gf(x) is also bounded and continuous, the subspace S will consist of "nice" functions that can be used to study the Hilbert space H that may well consist of more "wild" objects.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Reproducing formula

- One particularly nice property of *S* is that it satisfies a reproducing formula.
- In order to be precise about this we need to make an additional assumption about π, namely that it is *integrable*.
- This means there exists $g \in \mathcal{H} \setminus \{0\}$ such that

$$\int_G |\langle g, \pi(x)g
angle| \, d\mu(x) < \infty.$$

In other words, $\mathcal{V}_g(g) \in L^1(G)$.

 This assumption on π will be important later as it will allow us to extend beyond the Hilbert space setting into more general Banach spaces.

<ロ> (四) (四) (三) (三) (三) (三)

Lemma

Suppose that $g \in \mathcal{H}$ satisfies $\mathcal{V}_g(g) \in L^1(G)$ and ||Ag|| = 1. Then for $f \in \mathcal{H}$,

$$\mathcal{V}_g(f) * \mathcal{V}_g(g) = \int_G \mathcal{V}_g(f)(x) \, \mathcal{V}_g(g)(x^{-1}y) \, d\mu(x) = \mathcal{V}_g(f).$$

From the orthogonality relations,

$$\int_{G} \langle f, \pi(x)g \rangle \langle g, \pi(x^{-1}y)g \rangle d\mu(x)$$

= $\int_{G} \langle f, \pi(x)g \rangle \overline{\langle \pi(y)g, \pi(x)g \rangle} d\mu(x)$
= $\langle Ag, Ag \rangle \langle f, \pi(y)g \rangle$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- $S = \text{range}(V_g)$ is a closed subspace of $L^2(G)$ and the above lemma identifies *S* as a *reproducing kernel Hilbert space*.
- Typically such RKHS are associated with *sampling theorems* based on the intuition that such spaces consist of smooth functions.
- How can such sampling theorems be obtained in general?
- The idea is to approximate the convolution integral (the identity) by a sum (like a Riemann sum) and arrive at a *discrete* representation of functions in L²(G) and H.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Discrete sets in G

Definition

- Let $X = \{x_i : i \in I\} \subseteq G$ be a countable family in *G*.
- (1) For a neighborhood U of the identity in G, X is U-dense if

$$\bigcup_{i\in I} x_i U = G.$$

(2) X is *relatively separated* if for any relatively compact set $W \subseteq G$ with non-empty interior,

$$\sup_{i\in I} \#\{k\in I\colon x_kW\cap x_iW\neq\emptyset\}<\infty.$$

(3) X is said to be *well-spread* if it is both *U*-dense for some *U* and relatively separated.

Definition

Let *U* be a compact neighborhood of the identity in *G*, a family of functions $\{\psi_i : i \in I\} \subseteq C_0(G)$ is a *bounded uniform partition of unity (BUPU)* provided that

(1) $0 \le \psi_i \le 1$ for all $i \in I$.

(2) There is a well-spread family $\{x_i : i \in I\} \subseteq G$ such that

 $\operatorname{supp} \psi_i \subseteq x_i U, \ \forall i \in I.$

(3)
$$\sum_{i\in I}\psi_i(x)\equiv 1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Returning now to our reproducing formula

$$\mathcal{V}_g(f) * \mathcal{V}_g(g) = \int_G \mathcal{V}_g(f)(x) \, \mathcal{V}_g(g)(x^{-1}y) \, d\mu(x) = \mathcal{V}_g(f)$$

we can write for some BUPU $\{\psi_i\}$

$$F * \mathcal{V}_g(g)(x) = \int_G F(x) \, \mathcal{V}_g(g)(x^{-1}y) \, d\mu(x)$$

=
$$\sum_{i \in I} \int_{x_i \cup I} F(x) \, \psi_i(x) \, \mathcal{V}_g(g)(x^{-1}y) \, d\mu(x)$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ъ

If *U* is small enough and since $V_g(g)$ is at least continuous,

$$V_g(g)(x^{-1}y) \approx V_g(g)(x_i^{-1}y)$$

on $x_i U$.

$$\sum_{i \in I} \int_{x_i U} F(x) \psi_i(x) \mathcal{V}_g(g)(x^{-1}y) d\mu(x)$$

$$\approx \sum_{i \in I} \left(\int_{x_i U} F(x) \psi_i(x) d\mu(x) \right) V_g(g)(x_i^{-1}y)$$

$$= \sum_{i \in I} \langle F, \psi_i \rangle V_g(g)(x_i^{-1}y)$$

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

A frame for S

• Define T_{Ψ} on $S = \operatorname{range}(\mathcal{V}_g)$ by

$$T_{\Psi}F(y) = \sum_{i \in I} \langle F, \psi_i \rangle \, \mathcal{V}_g(g)(x_i^{-1}y).$$

- For *U* small, $T_{\Psi} \approx Id$ so is a bounded isomorphism of *S*.
- We can write for $F \in S$,

$$F(\mathbf{y}) = \sum_{i \in I} \langle T_{\Psi}^{-1} F, \psi_i \rangle \, \mathcal{V}_g(g)(\mathbf{x}_i^{-1} \mathbf{y}).$$

It can be shown directly that for some A, B > 0, and all F ∈ S,

$$A\|F\|_{L^{2}(G)} \leq \|(\langle T_{\Psi}^{-1}F, \psi_{i}\rangle)\|_{\ell^{2}} \leq B\|F\|_{L^{2}(G)}.$$

• In other words, $\{\mathcal{V}_g(g)(x_i^{-1}y)\}$ is a frame for *S*.

A frame for \mathcal{H}

If $f \in \mathcal{H}$, we can write

$$\begin{array}{lll} \langle f, \pi(\mathbf{y}) \mathbf{g} \rangle &= \mathcal{V}_{\mathbf{g}}(f)(\mathbf{y}) \\ &= T_{\Psi}(T_{\Psi}^{-1}\mathcal{V}_{\mathbf{g}}(f))(\mathbf{y}) \\ &= \sum_{i \in I} \langle T_{\Psi}^{-1}\mathcal{V}_{\mathbf{g}}(f), \psi_i \rangle \, \mathcal{V}_{\mathbf{g}}(\mathbf{g})(\mathbf{x}_i^{-1}\mathbf{y}) \\ &= \sum_{i \in I} \langle T_{\Psi}^{-1}\mathcal{V}_{\mathbf{g}}(f), \psi_i \rangle \, \langle \pi(\mathbf{x}_i) \mathbf{g}, \pi(\mathbf{y}) \mathbf{g} \rangle \\ &= \left\langle \sum_{i \in I} \langle T_{\Psi}^{-1}\mathcal{V}_{\mathbf{g}}(f)\psi_i, \, \rangle \pi(\mathbf{x}_i) \mathbf{g}, \pi(\mathbf{y}) \mathbf{g} \right\rangle \end{array}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Hence

$$f = \sum_{i} \lambda_i(f) \pi(x_i) g$$
 where $\lambda_i(f) = \langle T_{\Psi}^{-1} V_g(f), \psi_i \rangle$

• Because we have a frame for $L^2(G)$, there are constants A_0 , $B_0 > 0$ such that

$$A_0 \|f\|_{\mathcal{H}} \leq \|(\lambda_i(f))\|_2 \leq B_0 \|f\|_{\mathcal{H}}$$

for all $f \in \mathcal{H}$.

• In other words, $\{\pi(x_i)g : i \in I\}$ is a frame for \mathcal{H} .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ - - 国 - -

- How can we go outside the Hilbert space setting to more general Banach spaces?
- The key is our assumption that π is integrable, that is, that there exists g ∈ H \ {0} such that

$$\int_G |\langle m{g}, \pi(m{x})m{g}
angle|\, d\mu(m{x}) < \infty.$$

In other words, $\mathcal{V}_g(g) \in L^1(G)$.

- Since always V_g(g) ∈ L[∞](G), if g satisfies the above then g is admissible.
- Define $\mathcal{H}_0 = \{g \in \mathcal{H} \colon \mathcal{V}_g(g) \in L^1(G)\}$, and note that if $g \in \mathcal{H}_0$ then the natural domain for the operator \mathcal{V}_g is $(\mathcal{H}_0)'$, the dual space of \mathcal{H}_0 .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 Recall that the voice transform V_g generated by the Schrödinger representation of ℍ on L²(ℝ) is

 $\mathcal{V}_{g}f(t, a, b) = \langle f, \pi(t, a, b)g \rangle = t \langle f, T_{a}M_{b}g \rangle = t V_{g}(f)(a, b)$

where here V_g is the usual short-time Fourier transform.

- Then π is clearly integrable since for any $g \in S_0$, $t V_g(g) \in L^1(\mathbb{H})$.
- Hence the natural domain for V_g with $g \in S_0$ is the dual Feichtinger algebra $S'_0 = M^{\infty,\infty}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- The representation π of the affine group A on L²(R) is also integrable.
- It turns out that the space of g for which V_g(g) ∈ L¹(A) is the so-called *minimal Besov space* B₁^{0,1} defined to be those distributions in S₀' such that

$$\|f\|=\int_0^\infty \|\varphi_t*f\|_1\,\frac{dt}{t}<\infty.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Co-orbit spaces

Let Y be a Banach space of functions on G with the property of *solidity*, i.e., if f ∈ Y and g satisfies |g(x)| ≤ |f(x)| for all x ∈ G then g ∈ Y and ||g||_Y ≤ ||f||_Y.

Definition (Co-orbit space)

Given a solid Banach function space *Y*, and $g \in \mathcal{H}_0$, we define the *co-orbit space Co*(*Y*) by

$$Co(Y) = \{f \in (\mathcal{H}_0)' \colon \mathcal{V}_g(f) \in Y\}$$

with norm given by $||f||_{Co(Y)} = ||\mathcal{V}_g f||_Y$. Co(Y) is a Banach space under this norm.

 Co(Y) is independent of the choice of g ∈ H₀ with equivalent norms being generated by different g. For our space Y we choose the mixed-norm space L^{p,q}(ℍ) given by

$$L^{p,q}(\mathbb{H}) = \{F(t,a,b) \colon ||F||_{L^{p,q}} \\ = \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \int_{\mathbb{T}} |F(t,a,b) dt|^{p} da \right)^{q/p} db \right)^{1/q} < \infty \right\}$$

 In this case the co-orbit space Co(L^{p,q}) is the modulation space M^{p,q}, i.e.

$$Co(L^{p,q}) = \{f \in (S_0)'(\mathbb{R}) \colon t \, \mathcal{V}_g(f)(a,b) \in L^{p,q}\}.$$

• $Co(L^1)$ recovers the Feichtinger algebra S_0 .

▲□ > ▲ □ > ▲ □ > …

 In this case we again take for Y the mixed-norm spaces and in this case,

$$L^{p,q}(\mathbb{A}) = \{F(a,b) \colon ||F||_{L^{p,q}} \\ = \left(\int_0^\infty \left(\int_{-\infty}^\infty |F(a,b)|^q \, db\right)^{p/q} \frac{da}{a}\right)^{1/p} < \infty\right\}.$$

 In this case, the co-orbit space Co(L^{p,q}) is the Besov space B^{0,q}_p.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Lemma

Suppose that $g \in \mathcal{H}_0$, with $\|Ag\| = 1$, and $f \in (\mathcal{H}_0)'$. Then

$$V_g(f) * V_g(g) = \int_G V_g(f)(x) V_g(g)(x^{-1}y) d\mu(x) = V_g(f).$$

- Our goal is to define Banach frames for spaces *Y* and *Co*(*Y*).
- The idea is to discretize the reproducing formula as before utilizing BUPUs.
- In order to have a Banach frame we must specify a sequence space associated to Y and Co(Y).

ヘロト 不得 とうき とうとう

Definition

Given a well-spread family $X = \{x_i : i \in I\} \subseteq G$ and a solid, translation-invariant Banach space *Y* of functions on *G*, we define the *sequence space* $Y_d(X)$ by

$$Y_d(X) = \{(\lambda_i)_{i \in I} \colon \sum_{i \in I} \lambda_i \mathbf{1}_{x_i W} \in Y\}$$

where *W* is a compact subset of *G* with non-empty interior. The norm on $Y_d(X)$ is given by

$$\|(\lambda_i)\|_{Y_d} = \left\|\sum_{i\in I}\lambda_i\mathbf{1}_{x_iW}\right\|_{Y}.$$

ヘロン 人間 とくほ とくほ とう

ъ

- Y_d(X) does not depend on W as different W will generate equivalent norms on Y_d(X).
- *Y_d(X)* also does not necessarily depend on *X*. For example, if *Y* = *L^p(G)*, then *Y_d(X)* ≈ ℓ^{*p*}(*I*) for any well-spread family *X*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A Banach frame for S

• Define T_{Ψ} on $S = \operatorname{range}(V_g)$ (a closed subspace of Y) by

$$T_{\Psi}F(\mathbf{y}) = \sum_{i \in I} \langle F, \psi_i \rangle \, \mathcal{V}_g(g)(\mathbf{x}_i^{-1}\mathbf{y}).$$

- For *U* small, $T_{\Psi} \approx Id$ is a bounded isomorphism of *S*.
- We can write for $F \in S$,

$$F(\mathbf{y}) = \sum_{i \in I} \langle T_{\Psi}^{-1} F, \psi_i \rangle \ T_{\Psi}^{-1} \mathcal{V}_g(g)(\mathbf{x}_i^{-1} \mathbf{y}).$$

• For some A, B > 0, and all $F \in S$,

$$\boldsymbol{A} \|\boldsymbol{F}\|_{\boldsymbol{Y}} \leq \| (\langle T_{\boldsymbol{\Psi}}^{-1} \boldsymbol{F}, \psi_i \rangle) \|_{\boldsymbol{Y}_d} \leq \boldsymbol{B} \|\boldsymbol{F}\|_{\boldsymbol{Y}}.$$

• In other words, $\{\mathcal{V}_g(g)(x_i^{-1}y)\}$ is a Banach frame for *S*.

(★ 医) ★ 医) … 医

A Banach frame for Co(Y)

If $f \in Co(Y)$, we can write

$$\begin{array}{lll} f,\pi(y)g\rangle &=& V_g(f)(y)\\ &=& T_{\Psi}(T_{\Psi}^{-1}V_g(f))(y)\\ &=& \sum_{i\in I}\,\langle T_{\Psi}^{-1}\mathcal{V}_g(f),\psi_i\rangle\,\mathcal{V}_g(g)(x_i^{-1}y)\\ &=& \sum_{i\in I}\,\langle T_{\Psi}^{-1}\mathcal{V}_g(f),\psi_i\rangle\,\langle \pi(x_i)g,\pi(y)g\rangle\\ &=& \left\langle \sum_{i\in I}\,\langle T_{\Psi}^{-1}\mathcal{V}_g(f),\psi_i\rangle\,\pi(x_i)g,\pi(y)g\right\rangle. \end{array}$$

<ロト < 四ト < 臣 ト < 臣 ト 三臣

Hence

$$f = \sum_{i} \lambda_i(f) \pi(x_i) g$$
 where $\lambda_i(f) = \langle T_{\Psi}^{-1} V_g(f), \psi_i \rangle$

Because we have a Banach frame for *Y*, there are constants *A*₀, *B*₀ > 0 such that

$$A_0 \|f\|_{Co(Y)} \le \|(\lambda_i(f))\|_{Y_d} \le B_0 \|f\|_{Co(Y)}$$

for all $f \in Co(Y)$.

In other words, {π(x_i)g: i ∈ l} is a Banach frame for Co(Y).

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Shearlets

Definition

The *Shearlet group* S is given by

 $\mathbb{S} = \mathbb{R} \setminus \{\mathbf{0}\} \times \mathbb{R} \times \mathbb{R}^2.$

Define

$$A_a = \left(egin{array}{cc} a & 0 \ 0 & sgn(a)\sqrt{|a|} \end{array}
ight)$$
 and $S_s = \left(egin{array}{cc} 1 & s \ 0 & 1 \end{array}
ight)$

and let $T_t f(x) = f(x - t)$ and $D_M f(x) = |\det(M)|^{-1/2} f(M^{-1}x)$ for *M* an invertible 2×2 matrix. Then \mathbb{S} becomes a group under the operation

$$(a, s, t) \cdot (a', s', t') = (aa', s + s'\sqrt{|a|}, t + S_sA_at').$$

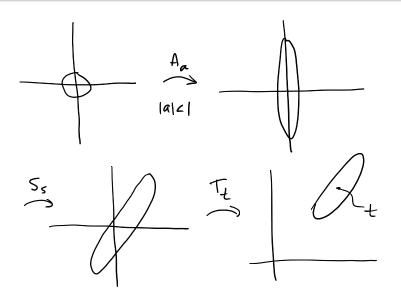
Also $d\mu_{\mathbb{S}} = \frac{da}{|a|^3} ds dt$ defined Haar measure on \mathbb{S} . Walnut (GMU) • We define a representation π on $L^2(\mathbb{R}^2)$ by

$$\pi(\boldsymbol{a},\boldsymbol{s},t)\psi(\boldsymbol{x})=T_t D_{\mathcal{S}_{\mathcal{S}}\mathcal{A}_{\boldsymbol{a}}}\psi(\boldsymbol{x}).$$

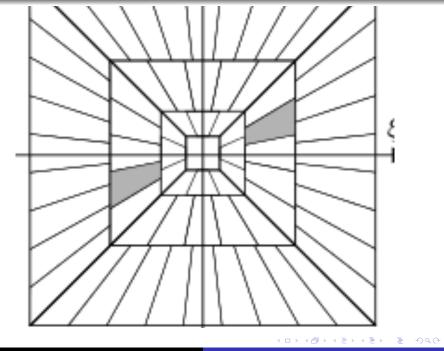
 Under these assuptions, the full co-orbit theory of Frichtinger and Gröchenig is applicable.

(雪) (ヨ) (ヨ)

3



くりょう 小田 マイボット 山下 シックション



Walnut (GMU)

Lecture 9 – Coorbit Spaces