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@ Modulation spaces

@ The Feichtinger Algebra Sy(R)

@ Pseudodifferential operators and Gabor frames

@ Wavelets as unconditional bases for Banach spaces
@ Wavelets and operators
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Suppose we are given a function f(x).

@ How can we measure the time-frequency concentration of
f?
@ Given g, a, § > 0, what do the Gabor coefficients

Ck,n = (f, TakMpng)
tell us about the smoothness and decay properties of ?
@ If we can write

f= Z<f7 TakMﬁng> TakMﬁn’Y
k,n

for some analysis window g and synthesis window ~, what
sort of smoothness and decay properties can g and ~
share?
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Modulation Spaces

Definition (Short Time Fourier Transform)

Given g € L?(RY), we define the short-time Fourier transform
(STFT) on L2(RY) by

Vol(x,) = [ (TT=3) e ot = (1, M, Tyg).

Definition (Modulation Space)

Let g € S(R) \ {0}, and 1 < p, g < co. The modulation spaace
MP-4(R) consists of all f € S'(R) such that

1llme.a = </R</R|V9(X7W)’pdx>q/pdw>1/q

and the obvious changes being made when p = oo or g = .
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@ fc MPY9if and only if Vyfis in a so-called mixed-norm
space, where for all w,

Vo(-,w) € LP(R)

and
IVg(,w)llp € LAR).
@ Intuitively, p measures the decay of f at infinity since
[ Vgf(x,w)| < (If] = |g[)(x)

so that if f € LP, |Vyf(-,w)| € LP for all w.
@ g measures the smoothness of f in the sense that

Vof(x,w) = (f'/al)(w)

will on average be in L9 for each x.
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@ For1 < p < oo, MP9(R) is a Banach space.

@ For 1 < p < oo, the dual space of MP9(R) is identified with
the modulation space MP-9' (R) where

p+1/p=1/q+1/qd =1.

@ MP4(R) is independent of the window g € S(R) in the
sense that if another such window is used, the norms
generated are equivalent.

@ MPA(R) is invariant under time and frequency shifts, and
f € MPA(R) if and only if f € M3P(R).
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Feichtinger Algebra

@ The modulation space M''(R) = Sy(R) is called the
Feichtinger Algebra (Feichtinger, 1981).

@ Sy(R) is the smallest Banach space invariant under time
frequency shifts and under the Fourier transform.

@ This makes Sy = M"! and its dual (Sp)* = M>> ideal
substitutes for the Schwartz functions S(R) and the
tempered distributions S’(R) in many instances.

@ Sy(R) is a Banach algebra under pointwise multiplication
and convolution.

@ S5y(R) is the largest Banach space on which the Poisson
Summation Formula holds pointwise.
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So and Banach frames

Definition
Given g € L?(R) and «, 3 > 0, the Gabor frame operator Sg,g i
defined by

Sgaf = > (f, TakMsng) TakMsng.

KEZ neZ

We denote the collection { T,xMgng: k,n € Z} by G(g, o, 3).
Recall that Sy 4 is an isomorphism of L2(R) if and only if the
collection G(g, o, B) is a frame for L2(R).

Choosing g from M''(R) turns out to be the right choice of
window class for Gabor frames.
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If g € So(R), then the following are equivalent.
(1) Sgg is invertible on M1 (R).

(2) Sg.g is invertible on all of the modulation spaces MP-9(R),
1<p< oo

In this case, G(g, a, () is a frame for L?(R) and the dual window
7° € M 1(R) as well.

v

@ This theorem allows us to move toward the notion of a
Banach frame for MP-9

@ The idea is to characterize membership of f € MP:9 by
some condition on the Gabor coefficients

{{f, TakM3ng) }

where the window g € M"-1,
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Banach frames
Definition (Gréchenig, 1991)

A sequence {e,: n € N} in a Banach space B is called a
Banach frame if there exists an associated sequence space
B4(N), a constant C > 0, and a continuous operator

R: By — B such that for all f € B,

y
(D) &liflle < [If, én)lls, < ClIf]ls, and
(2) R({f,en)) ="T.

Definition (Discrete mixed-norm spaces)

For 1 < p < oo, define /P9 to be the space of sequences
a = (@ n)k,nez, for which

lallea = (3 (3 lacal) q/,,)m,

nezZ “KEZ
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Theorem

Assume that G(g, «, ) is a frame for L2(R) with a3 € Q and
g € M1 Then there exists C > 0 such that for all1 < p < oo,
andf e MP9,

1 a/p\ 1/q
e < (5 (ZI. ToeMsn@)?) ) < Wl

nezZ ~kez

Moreover, there exists v € M':! such that f € MP-9 can be
recovered by

f =SS, TokMang) TakMany

neZ keZ

where the series converges unconditionally in MP-9 if
1 <p, g < ooandweakly if p or g = cc.
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Pseudodifferential operators

Let o be a function or distribution on R29. Then the operator

is the pseudodifferential operator with symbol o.

@ Pseudodifferential operators arose in the mid-1960s and
were formally described by Kohn and Nirenberg, 1965.

@ The notion arose earlier in a different context in the study
of time-varying communication channels by Zadeh, 1950.
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Motivation from PDE

@ Consider the N-th order differential operator with
nonconstant coefficients given by

Af(x) = Y aa(x) Df(x).

ja<N

@ By Fourier inversion,

D*f(x) = /R d(27riw)°‘?(w) e?m(xw) gy,

o Af(x) = / ( > aa(x) (27riw)°‘> f(w) €27) gy
BN aj<n
which is the pseudodifferential operator with symbol

o(x,w) = Y au(x)(2miw)

|o|<N
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Motivation from Communications

@ The standard model for a time-invariant communication
channel is convolution.

HIf(x) = /R h(t) f(x — t) .

@ The impulse response h completely characterizes the
channel and does not change with time.

@ In mobile communications, the impulse response can
change with time, so the general model is

Hf(x) = /R h(x, 1) f(x — 1) dt.
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@ Letting o(x,w) = / h(x, t) e~2“ gt, then by Fourier
R

inversion
h(x,t) = / o(x,w) €™ du.
R

@ Substituting gives
Hf(x) = / / o(x,w) & f(x — t) dw dt
R JR
- / o (X, w) E2TIX / F(t) &2 dit s
R R

= /U(X,w) 21X f(w) dw.
R
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@ Letting n(t,v) = / h(x, t) e=2™ dx, then by Fourier
R

inversion
h(x, 1) = / n(t,v) €% d,
R

@ Substituting gives
Hf(x) = //n(t, v) @™X f(x — t) dv dt
RJR
= //n(t,u)/\/l,, Tif(x) dt dv
R JR

so that H is realized as a superposition of time delays and
Doppler shifts.

Walnut (GMU) Lecture 8 — Wavelets in Functional Analysis



@ 7(t,v) is called the spreading function of the operator H
and measures how much a delta impulse is “spread” in
time and how a pure tone is “spread” in frequency.

@ Note that
n(t,v) = / h(x, t) 27X dx
R
— / / a(X,w) eZﬂiwt 6727ri1/X dw dx
RJR

= //a(x,w)e‘z”'(”"‘Wt)dwdx
RJR

so that the spreading function is the symplectic Fourier
transform of the symbol.
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@ All of this suggests that Gabor analysis is a natural setting
for studying the properties of pseudodifferential operators.
@ An illustration of this is the following generalization of the

Calderén-Vaillancourt theorem on the L2-boundedness of
pseudodifferential operators.

Theorem (Calderén-Vaillancourt, 1971)

Given a smooth symbol o with bounded derivatives up to order
2d + 1, the pseudodifferential operator with symbol o is
bounded on L?(RY).
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Theorem (Gréchenig and Heil, 1999)

If o € M>>1(RY), then the pseudodifferential operator with
symbol o is bounded on MP-9(R9) for all1 < p, q < oo, with
uniform bound

HKUHOp < C”O'||Moo,1.
In particular, K, is bounded on [2(RY) = M22(R9).

@ Since the space of smooth symbols with bounded
derivatives up to order 2d + 1 is embedded in M>', this
result is a generalization of the C-V Theorem.

@ Note that the result assumes no smoothness on o.
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