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Motivation

Suppose we are given a function f (x).
How can we measure the time-frequency concentration of
f?
Given g, ↵, � > 0, what do the Gabor coefficients

ck ,n = hf ,T↵kM�ngi

tell us about the smoothness and decay properties of f?
If we can write

f =
X

k ,n

hf ,T↵kM�ngiT↵kM�n�

for some analysis window g and synthesis window �, what
sort of smoothness and decay properties can g and �
share?
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Modulation Spaces

Definition (Short Time Fourier Transform)

Given g 2 L2(Rd), we define the short-time Fourier transform
(STFT) on L2(Rd) by

Vgf (x , �) =
Z

Rd
f (t) g(t � x) e�2⇡i(t ·�) dt = hf ,M�Txgi.

Definition (Modulation Space)
Let g 2 S(R) \ {0}, and 1  p, q  1. The modulation spaace
Mp,q(R) consists of all f 2 S 0(R) such that

kfkMp,q =

✓Z

R

✓Z

R
|Vg(x ,!)|p dx

◆q/p

d!
◆1/q

and the obvious changes being made when p = 1 or q = 1.
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f 2 Mp,q if and only if Vgf is in a so-called mixed-norm
space, where for all !,

Vg(·,!) 2 Lp(R)

and
kVg(·,!)kp 2 Lq(R).

Intuitively, p measures the decay of f at infinity since

|Vgf (x ,!)|  (|f | ⇤ |g|)(x)

so that if f 2 Lp, |Vgf (·,!)| 2 Lp for all !.
q measures the smoothness of f in the sense that

Vgf (x ,!) = \(f · Txg)(!)

will on average be in Lq for each x .
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For 1  p  1, Mp,q(R) is a Banach space.
For 1  p < 1, the dual space of Mp,q(R) is identified with
the modulation space Mp0,q0

(R) where

1/p + 1/p0 = 1/q + 1/q0 = 1.

Mp,q(R) is independent of the window g 2 S(R) in the
sense that if another such window is used, the norms
generated are equivalent.
Mp,q(R) is invariant under time and frequency shifts, and
f 2 Mp,q(R) if and only if bf 2 Mq,p(R).
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Feichtinger Algebra

The modulation space M1,1(R) = S0(R) is called the
Feichtinger Algebra (Feichtinger, 1981).
S0(R) is the smallest Banach space invariant under time
frequency shifts and under the Fourier transform.
This makes S0 = M1,1 and its dual (S0)

⇤ = M1,1 ideal
substitutes for the Schwartz functions S(R) and the
tempered distributions S 0(R) in many instances.
S0(R) is a Banach algebra under pointwise multiplication
and convolution.
S0(R) is the largest Banach space on which the Poisson
Summation Formula holds pointwise.
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S0 and Banach frames

Definition
Given g 2 L2(R) and ↵, � > 0, the Gabor frame operator Sg,g is
defined by

Sg,gf =
X

k2Z

X

n2Z
hf ,T↵kM�ngiT↵kM�ng.

We denote the collection {T↵kM�ng : k , n 2 Z} by G(g,↵,�).
Recall that Sg,g is an isomorphism of L2(R) if and only if the
collection G(g,↵,�) is a frame for L2(R).

Choosing g from M1,1(R) turns out to be the right choice of
window class for Gabor frames.
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Sg,g on S0

Theorem
If g 2 S0(R), then the following are equivalent.
(1) Sg,g is invertible on M1,1(R).
(2) Sg,g is invertible on all of the modulation spaces Mp,q(R),

1  p  1.
In this case, G(g,↵,�) is a frame for L2(R) and the dual window
�� 2 M1,1(R) as well.

This theorem allows us to move toward the notion of a
Banach frame for Mp,q

The idea is to characterize membership of f 2 Mp,q by
some condition on the Gabor coefficients

{hf ,T↵kM�ngi}

where the window g 2 M1,1.
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Banach frames

Definition (Gröchenig, 1991)
A sequence {en : n 2 N} in a Banach space B is called a
Banach frame if there exists an associated sequence space
Bd(N), a constant C > 0, and a continuous operator
R : Bd ! B such that for all f 2 B,

(1)
1
C
kfkB  khf , enikBd  CkfkB, and

(2) R(hf , eni) = f .

Definition (Discrete mixed-norm spaces)
For 1  p  1, define `p,q to be the space of sequences
a = (ak ,n)k ,n2Z, for which

kak`p,q =

✓X

n2Z

✓X

k2Z
|ak ,n|p

◆q/p◆1/q
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Theorem
Assume that G(g,↵,�) is a frame for L2(R) with ↵� 2 Q and
g 2 M1,1 Then there exists C > 0 such that for all 1  p  1,
and f 2 Mp,q,

1
C
kfkMp,q 

✓X

n2Z

✓X

k2Z
|hf ,T↵kM�ngi|p

◆q/p◆1/q

 kfkMp,q .

Moreover, there exists � 2 M1,1 such that f 2 Mp,q can be
recovered by

f =
X

n2Z

X

k2Z
hf ,T↵kM�ngiT↵kM�n�

where the series converges unconditionally in Mp,q if
1  p, q < 1 and weakly if p or q = 1.
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Pseudodifferential operators

Definition
Let � be a function or distribution on R2d . Then the operator

K�f (x) =
Z

Rd
�(x ,!)bf (!) e2⇡i(x ·!) d!

is the pseudodifferential operator with symbol �.

Pseudodifferential operators arose in the mid-1960s and
were formally described by Kohn and Nirenberg, 1965.
The notion arose earlier in a different context in the study
of time-varying communication channels by Zadeh, 1950.
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Motivation from PDE

Consider the N-th order differential operator with
nonconstant coefficients given by

Af (x) =
X

|↵|N

a↵(x)D↵f (x).

By Fourier inversion,

D↵f (x) =
Z

Rd
(2⇡i!)↵bf (!) e2⇡i(x ·!) d!.

Af (x) =
Z

Rd

✓ X

|↵|N

a↵(x) (2⇡i!)↵
◆
bf (!) e2⇡i(x ·!) d!

which is the pseudodifferential operator with symbol

�(x ,!) =
X

|↵|N

a↵(x) (2⇡i!)↵
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Motivation from Communications

The standard model for a time-invariant communication
channel is convolution.

Hf (x) =
Z

R
h(t) f (x � t) dt .

The impulse response h completely characterizes the
channel and does not change with time.
In mobile communications, the impulse response can
change with time, so the general model is

Hf (x) =
Z

R
h(x , t) f (x � t) dt .
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Letting �(x ,!) =
Z

R
h(x , t) e�2⇡i!t dt , then by Fourier

inversion
h(x , t) =

Z

R
�(x ,!) e2⇡i!t d!.

Substituting gives

Hf (x) =

Z

R

Z

R
�(x ,!) e2⇡i!t f (x � t) d! dt

=

Z

R
�(x ,!) e2⇡i!x

Z

R
f (t) e�2⇡i!t dt d!

=

Z

R
�(x ,!) e2⇡i!x bf (!) d!.
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Letting ⌘(t , ⌫) =
Z

R
h(x , t) e�2⇡i⌫x dx , then by Fourier

inversion
h(x , t) =

Z

R
⌘(t , ⌫) e2⇡i⌫x d⌫.

Substituting gives

Hf (x) =

Z

R

Z

R
⌘(t , ⌫) e2⇡i⌫x f (x � t) d⌫ dt

=

Z

R

Z

R
⌘(t , ⌫)M⌫ Tt f (x) dt d⌫

so that H is realized as a superposition of time delays and
Doppler shifts.
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⌘(t , ⌫) is called the spreading function of the operator H
and measures how much a delta impulse is “spread” in
time and how a pure tone is “spread” in frequency.
Note that

⌘(t , ⌫) =

Z

R
h(x , t) e�2⇡i⌫x dx

=

Z

R

Z

R
�(x ,!) e2⇡i!t e�2⇡i⌫x d! dx

=

Z

R

Z

R
�(x ,!) e�2⇡i(⌫x�!t) d! dx

so that the spreading function is the symplectic Fourier
transform of the symbol.
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All of this suggests that Gabor analysis is a natural setting
for studying the properties of pseudodifferential operators.
An illustration of this is the following generalization of the
Calderón-Vaillancourt theorem on the L2-boundedness of
pseudodifferential operators.

Theorem (Calderón-Vaillancourt, 1971)
Given a smooth symbol � with bounded derivatives up to order
2d + 1, the pseudodifferential operator with symbol � is
bounded on L2(Rd).
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Theorem (Gröchenig and Heil, 1999)

If � 2 M1,1(Rd), then the pseudodifferential operator with
symbol � is bounded on Mp,q(Rd) for all 1  p, q  1, with
uniform bound

kK�kop  Ck�kM1,1 .

In particular, K� is bounded on L2(Rd) = M2,2(Rd).

Since the space of smooth symbols with bounded
derivatives up to order 2d + 1 is embedded in M1,1, this
result is a generalization of the C-V Theorem.
Note that the result assumes no smoothness on �.
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