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@ Definition of MRA in one dimension

@ Finding the wavelet from the scaling function
@ The Daubechies wavelets

@ MRA in higher dimensions
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Multiresolution Analysis

A multiresolution analysis on R is a sequence of subspaces
{Vi}jez C L3(R) satisfying:
(a) Foralljez, V; C V4.
(b) span{V;}jez = L3(R). That s, the set Ujcz V; is dense in
L2(R).
(¢) Njez V; = {0}.
(d) A function f(x) € Vg if and only if D,;f(x) € V;.
(e) There exists a function ¢(x), L2 on R, called the scaling
function such that the collection { T, (x)} is an
orthonormal basis for V.
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@ An MRA is completely determined by the scaling function
o(X).

@ Given ¢ with the property that { T,¢(x)} is an orthonormal
system, define the subspace V, by Vo = span{ T ¢(x)},
and the subspaces V; by V; = D,; Vy, thatis, f € V; if and
only if D,—;f € V.

@ Then verify that (a)—(e) hold for this sequence of
subspaces.

@ The following lemma holds.

Lemma

Given ¢ € L2(R), the system {T,p(x)} is an orthonormal
system if and only if

Doty +mPE=1.

nez
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The Haar MRA

o If we let p(x) = 1j0,1)(X), then the MRA so generated is
called the Haar MRA and leads to the construction of the
Haar wavelet.

@ In this case, V; is the space of scale-0 dyadic step
functions, and clearly {¢(x — n): n € Z} is an orthonormal
basis for V.

@ V; is the space of scale-j dyadic step functions.
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The Shannon MRA

o If we let p(x) be defined by @(v) = 1_1,2,1/2(7), then the
MRA so generated is called the bandlimited MRA and
leads to the construction of the Bandlimited wavelet.

@ By the Shannon Sampling Theorem,
{p(x—=n):neZ} = {smw(x—n): neZ}

w(x —n)

is an orthonormal basis for V.

@ The space V; consists of those functions bandlimited to the
interval [-2/~1,2/—1].

Walnut (GMU) Lecture 7 — Multiresolution Analysis



The Meyer MRA

0 if |7 >2/3
o 1 if |y <1/3
P =9 oy~ 1/2) if);ye (1/3,2/3)
s(y+1/2) ifx e (-2/3,-1/3)

-t
3
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e Because » [G(y+nP =1, {p(x—n): neZ}isan
nezZ
orthornomal system.

@ Define Vy =span{¢(x —n): ne Z}.
@ We can describe Vj as follows.

Vo = {f e 3R = ¢ €MP(v): (cn) € EZ(Z)}

nez

Walnut (GMU) Lecture 7 — Multiresolution Analysis



Wavelets from MRA

Our goal will be to prove the following theorem.

If{V;} is an MRA, then there exists a function ¢ € L?(R) such
that {+); «} is an orthonormal wavelet basis for L?(R).
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Ouitline of proof.

@ For each j we define W to be the orthogonal complement
of Vjin Vi 4, ie.
Vit = V& W,
@ Find a function (x) with the property that { Ty } ez is an
orthonormal basis for the space W.
@ Then {D,; Txv}kez is an orthonormal basis for W;.
@ Finally we observe that

LR) =D W

JEZ

so that { D, Tyt }; kez is an orthonormal basis for L2(R).
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The dilation equation

@ There exists {h(k)} € 2 such that

E:h k)21/2p(2x — k).

This equation is referred to as the two-scale dilation
equation and the sequence {h(k)} is referred to as the
scaling sequence or scaling filter.

@ That ¢ satisfies such an equation is a simple consequence
of the fact that
pe W W

and that
{212p(2x — k): k € Z}

is an orthonormal basis for V.
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We may write
P(v) = mo(v/2) 8(v/2),
where

mo() = > Ak &
is called the auxiliary function.
P = T @I ()
= 30 (012M2)
- (Ekj hlk) 2112 012 ) (3 2

= mo(v/2)p(v/2).
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Haar case.

o With o(x) = 19 1(x),

(%) = (2X) T p(2x—1) = \1@(21/2<P(2X)+21/2<P(2X—1))-

@ Therefore,
ifk=0,1
otherwise
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1 . .
mo(7) = E(1 + €2™7) = ™ cos(nv)

Im, (D)
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Shannon case

o(v) = 1-1/2,1721(7)s
solving

2(v) = mo(v/2)(v/2)
yields
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mMo(y) = 1—1/4,1/4(7) on [-1/2,1/2]
- /@m B /_é_é :/1)
|
:

0 L |

/ m,(X)’\'
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Meyer case
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The auxiliary function

If{Thp(x)} is an orthonormal system and if p(x) satisfies the
two-scale dilation equation with scaling filter {h(k)}. Then the
auxiliary function my(~y) satisfies

Imo(7)[2 + [mo(y + 1/2)2 = 1.

T = Z|@(7+n)|2= mo(”Z”)‘z
S (25 ()
+‘ <7+2k+1> <7+2k+1>

Proof:
2

[(v+n
P\ 72
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= > Imo(y/2+ k)2 |B(v/2 + k)
k

+_Imo(v/2+1/2+ k)P [B(v/2+ 1/2 + k)2
k

= Imo(v/2) ) I8(v/2 + k)I?

k

+Hmo(y/2+1/2)2 Y 15(v/2+1/2+ k)
k

mo(v/2) [ + Imo(v/2 +1/2)|2.
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The wavelet recipe.

@ We seek a function « such that {¢)(x — k): k € Z} is an
orthonormal basis for W.

@ Since Wy C V4,

Zg k)21/2p(2x — k)

or equivalently

V() = m(v/2) §(v/2)

where

m() =5 Yok .
k

@ How does the function my relate to my?
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Given a function f € V4, we write

f=1%H+90

where fy € Vg and g € W.
By our assumptions

f(x) = > a(k)2"%p(2x — k),
k
fo(x) = > b(k)e(x — k),
k
do(x) = > c(k)p(x — k).

k
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Taking Fourier transforms gives

) = A3
h(n) = B &
60 — o

where A(v), B(v), and C(~) all have period 1.

00
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Lemma

If my () = 2™0+1/2) my(~y 4 1/2) then the matrix

mo(3)  m(3)
mo(13h) mi (7%
is unitary. Moreover, if

1 .
mo(vy) = 7 Z h(k) €™ and my () = 7 Z ek
K K

then
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Theorem

Let {V;} be an MRA with scaling function ¢(x) and scaling filter
h(k). Define the wavelet ¢(x) by

P(x) = _(=1)*h(1 — k)22 p(2x — k).

k

Then

{Vjk(X): j,k € Z} = {2/2p(2Ix — K): j,k € Z}

is a wavelet orthonormal basis on R.
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Haar wavelet

1 ifk=0
1 k=0, 1 vz !
e \/é ’ e _i i —
k) { 0 otherwise 9(k) v K _.1
0 otherwise
Therefore,
1
P(x) = 5(21/%(2)()—21/290(2)‘—1)) =110,1/2)(X) =11 2,11(X)-
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Shannon wavelet

4 14y = m, (1) & (vh2)
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Meyer wavelet

| ()]
Q(x/z\ ‘"n“'z\‘ \
'i‘ ) -ll -ZI- -1 0 L 2 \ \-74
3 2 3 3 2 3

& (= w, (YR & (¥
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Smooth Compactly supported wavelets

Let+(x) be such that for some N € N, both xNy(x) and
yN+1(v) are in L'(R). If {¢)j x(x)}jkez is an orthogonal system
onR, then [, x™(x)dx =0 for0 < m < N.

@ Theorem says that smooth wavelets have vanishing
moments.

@ We also want wavelets with compact support, which
means that my(~) is a polynomial.
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Daubechies wavelets

Theorem

Let p(x) be a compactly supported scaling function associated
with an MRA with finite scaling filter h(n). Let ¢(x) be the
corresponding wavelet. Then for each N € N,

/ka(x)dx:Oforogng—1
R

if and only if my(~y) can be factored as

14 g2V

m) = (FT5 ) £0)

for some period 1 trigonometric polynomial L(~).
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Daubechies’s Strategy.

@ We seek a trig polynomial mg(v) =

\;é Z h(k) 6727rik'y
k

mo(7y) = (W;m> ) L(7).

and the QMF conditions.
@ We have

satisfying

2N

14 e 2
———| L@ = cos®(m) L(7).

mo()? = |1

@ Since L(~) is a real-valued trig polynomial with real
coefficients, we arrive at L(v) = P(sin?(rv)) for some
polynomial P.
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@ This polynomial P must satisfy

1= -"Py)+y"P1-y)
with P(y) > 0 forall 0 < y < 1. and we arrive at

N—

;
2N —1 -
Pu_1(y < ) K(1 = y)N-1-k,
k=0

@ For example,

Po(y) = 1,

Pi(y) = 1+2y,

Pa(y) = 1+3y+6y2

Ps(y) = 1+4y+10y?+20y°.
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Daubechies 4 tap wavelet
15 T

-15 scaling function
wave let function
) L
0 0.5 1 15 2 25 <
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Daubechies 12 tap wavelet

v . .
scaling function
wavelet function
i A i

0 2 4 6 8 10 12
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Daubechies 20 tap wavelet

S —1

iscaling function
wavelet function
i i i A

10 12 14 16
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