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Multiresolution Analysis

Definition
A multiresolution analysis on R is a sequence of subspaces
{Vj}j2Z ✓ L2(R) satisfying:
(a) For all j 2 Z, Vj ✓ Vj+1.
(b) span{Vj}j2Z = L2(R). That is, the set [j2ZVj is dense in

L2(R).
(c) \j2Z Vj = {0}.
(d) A function f (x) 2 V0 if and only if D2j f (x) 2 Vj .
(e) There exists a function '(x), L2 on R, called the scaling

function such that the collection {Tn'(x)} is an
orthonormal basis for V0.
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An MRA is completely determined by the scaling function
'(x).
Given ' with the property that {Tn'(x)} is an orthonormal
system, define the subspace V0 by V0 = span{Tn'(x)},
and the subspaces Vj by Vj = D2j V0, that is, f 2 Vj if and
only if D2�j f 2 V0.
Then verify that (a)–(e) hold for this sequence of
subspaces.
The following lemma holds.

Lemma

Given ' 2 L2(R), the system {Tn'(x)} is an orthonormal
system if and only if

X

n2Z
|b'(� + n)|2 ⌘ 1.
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The Haar MRA

If we let '(x) = 1[0,1](x), then the MRA so generated is
called the Haar MRA and leads to the construction of the
Haar wavelet.
In this case, V0 is the space of scale-0 dyadic step
functions, and clearly {'(x � n) : n 2 Z} is an orthonormal
basis for V0.
Vj is the space of scale-j dyadic step functions.
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The Shannon MRA

If we let '(x) be defined by b'(�) = 1[�1/2,1/2](�), then the
MRA so generated is called the bandlimited MRA and
leads to the construction of the Bandlimited wavelet.
By the Shannon Sampling Theorem,

{'(x � n) : n 2 Z} =

⇢
sin⇡(x � n)
⇡(x � n)

: n 2 Z
�

is an orthonormal basis for V0.
The space Vj consists of those functions bandlimited to the
interval [�2j�1, 2j�1].

Walnut (GMU) Lecture 7 – Multiresolution Analysis



The Meyer MRA

b'(�) =

8
>><

>>:

0 if |�| � 2/3
1 if |�|  1/3

c(� � 1/2) if x 2 (1/3, 2/3)
s(� + 1/2) if x 2 (�2/3,�1/3)
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Because
X

n2Z
|b'(� + n)|2 ⌘ 1, {'(x � n) : n 2 Z} is an

orthornomal system.
Define V0 = span{'(x � n) : n 2 Z}.
We can describe V0 as follows.

V0 =

(
f 2 L2(R) : bf (�) =

X

n2Z
cn e2⇡in� b'(�) : (cn) 2 `2(Z)

)
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Wavelets from MRA

Our goal will be to prove the following theorem.

Theorem
If {Vj} is an MRA, then there exists a function  2 L2(R) such
that { j,k} is an orthonormal wavelet basis for L2(R).
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Outline of proof.

For each j we define Wj to be the orthogonal complement
of Vj in Vj+1, i.e.

Vj+1 = Vj � Wj .

Find a function  (x) with the property that {Tk }k2Z is an
orthonormal basis for the space W0.
Then {D2j Tk }k2Z is an orthonormal basis for Wj .
Finally we observe that

L2(R) =
M

j2Z
Wj

so that {D2j Tk }j,k2Z is an orthonormal basis for L2(R).
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The dilation equation

There exists {h(k)} 2 `2 such that

'(x) =
X

k

h(k) 21/2'(2x � k).

This equation is referred to as the two-scale dilation
equation and the sequence {h(k)} is referred to as the
scaling sequence or scaling filter.
That ' satisfies such an equation is a simple consequence
of the fact that

' 2 V0 ✓ V1

and that
{21/2'(2x � k) : k 2 Z}

is an orthonormal basis for V1.
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We may write
b'(�) = m0(�/2) b'(�/2),

where
m0(�) =

1p
2

X

k

h(k) e2⇡ik�

is called the auxiliary function.

b'(�) =
X

k

h(k) (D2Tk')
^(�)

=
X

k

h(k) (D1/2Mk b')(�)

=

✓X

k

h(k) 2�1/2 e2⇡in(�/2)
◆

b'(�/2)

= m0(�/2) b'(�/2).

Walnut (GMU) Lecture 7 – Multiresolution Analysis



Haar case.

With '(x) = 1[0,1](x),

'(x) = '(2x)+'(2x�1) =
1p
2
(21/2'(2x)+21/2'(2x�1)).

Therefore,

h(k) =

(
1p
2

if k = 0, 1
0 otherwise
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m0(�) =
1
2
(1 + e2⇡i�) = e⇡i� cos(⇡�)
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Shannon case

b'(�) = 1[�1/2,1/2](�),

solving
b'(�) = m0(�/2)b'(�/2)

yields
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m0(�) = 1[�1/4,1/4](�) on [�1/2, 1/2]
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Meyer case
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The auxiliary function

Lemma
If {Tn'(x)} is an orthonormal system and if '(x) satisfies the
two-scale dilation equation with scaling filter {h(k)}. Then the
auxiliary function m0(�) satisfies

|m0(�)|2 + |m0(� + 1/2)|2 ⌘ 1.

Proof:

1 =
X

n

|b'(� + n)|2 =
X

n

����m0

✓
� + n

2

◆����
2 ����b'

✓
� + n

2

◆����
2

=
X

k

����m0

✓
� + 2k

2

◆����
2 ����b'

✓
� + 2k

2

◆����
2

+

����m0

✓
� + 2k + 1

2

◆����
2 ����b'

✓
� + 2k + 1

2

◆����
2
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=
X

k

|m0(�/2 + k)|2 |b'(�/2 + k)|2

+
X

k

|m0(�/2 + 1/2 + k)|2 |b'(�/2 + 1/2 + k)|2

= |m0(�/2)|2
X

k

|b'(�/2 + k)|2

+|m0(�/2 + 1/2)|2
X

k

|b'(�/2 + 1/2 + k)|2

= |m0(�/2)|2 + |m0(�/2 + 1/2)|2.
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The wavelet recipe.

We seek a function  such that { (x � k) : k 2 Z} is an
orthonormal basis for W0.
Since W0 ✓ V1,

 (x) =
X

k

g(k) 21/2'(2x � k)

or equivalently

b (�) = m1(�/2) b'(�/2)

where
m1(�) =

1p
2

X

k

g(k) e2⇡ik� .

How does the function m1 relate to m0?
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Given a function f 2 V1, we write

f = f0 + g0

where f0 2 V0 and g0 2 W0.
By our assumptions

f (x) =
X

k

a(k) 21/2'(2x � k),

f0(x) =
X

k

b(k)'(x � k),

g0(x) =
X

k

c(k) (x � k).
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Taking Fourier transforms gives

bf (�) = A
✓
�

2

◆
b'
✓
�

2

◆
,

bf0(�) = B(�) b'(�),
bg0(�) = C(�) b (�)

where A(�), B(�), and C(�) all have period 1.

A
✓
�

2

◆
b'
✓
�

2

◆
= B(�) b'(�) + C(�) b (�)

= B(�)m0

✓
�

2

◆
b'
✓
�

2

◆
+ C(�)m1

✓
�

2

◆
b'
✓
�

2

◆

2

4
m0

��
2
�

m1
��

2
�

m0
��+1

2
�

m1
��+1

2
�

3

5

2

4
B(�)

C(�)

3

5 =

2

4
A
��

2
�

A
��+1

2
�

3

5
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Lemma

If m1(�) = e2⇡i(�+1/2) m0(� + 1/2) then the matrix
2

4
m0

��
2
�

m1
��

2
�

m0
��+1

2
�

m1
��+1

2
�

3

5

is unitary. Moreover, if

m0(�) =
1p
2

X

k

h(k) e2⇡ik� and m1(�) =
1p
2

X

k

g(k) e2⇡ik�

then
g(k) = (�1)k h(1 � k).
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Theorem
Let {Vj} be an MRA with scaling function '(x) and scaling filter
h(k). Define the wavelet  (x) by

 (x) =
X

k

(�1)k h(1 � k) 21/2 '(2x � k).

Then

{ j,k (x) : j , k 2 Z} = {2j/2 (2j x � k) : j , k 2 Z}

is a wavelet orthonormal basis on R.
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Haar wavelet

h(k) =

(
1p
2

if k = 0, 1
0 otherwise

g(k) =

8
><

>:

1p
2

if k = 0
� 1p

2
if k = 1

0 otherwise

Therefore,

 (x) =
1p
2
(21/2'(2x)�21/2'(2x�1)) = 1[0,1/2](x)�1[1/2,1](x).
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Shannon wavelet
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Meyer wavelet
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Smooth Compactly supported wavelets

Theorem
Let  (x) be such that for some N 2 N, both xN (x) and
�N+1 b (�) are in L1(R). If { j,k (x)}j,k2Z is an orthogonal system
on R, then

R
R xm  (x) dx = 0 for 0  m  N.

Theorem says that smooth wavelets have vanishing
moments.
We also want wavelets with compact support, which
means that m0(�) is a polynomial.
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Daubechies wavelets

Theorem
Let '(x) be a compactly supported scaling function associated
with an MRA with finite scaling filter h(n). Let  (x) be the
corresponding wavelet. Then for each N 2 N,

Z

R
xk  (x) dx = 0 for 0  k  N � 1

if and only if m0(�) can be factored as

m0(�) =

✓
1 + e�2⇡i�

2

N◆
L(�)

for some period 1 trigonometric polynomial L(�).
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Daubechies’s Strategy.

We seek a trig polynomial m0(�) =
1p
2

X

k

h(k) e�2⇡ik�

satisfying

m0(�) =

✓
1 + e�2⇡i�

2

◆N

L(�).

and the QMF conditions.
We have

|m0(�)|2 =

����
1 + e�2⇡i�

2

����
2N

|L(�)|2 = cos2N(⇡�) L(�).

Since L(�) is a real-valued trig polynomial with real
coefficients, we arrive at L(�) = P(sin2(⇡�)) for some
polynomial P.
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This polynomial P must satisfy

1 = (1 � y)N P(y) + yN P(1 � y)

with P(y) � 0 for all 0  y  1. and we arrive at

PN�1(y) =
N�1X

k=0

✓
2N � 1

k

◆
yk (1 � y)N�1�k .

For example,

P0(y) = 1,
P1(y) = 1 + 2y ,
P2(y) = 1 + 3y + 6y2,

P3(y) = 1 + 4y + 10y2 + 20y3.
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