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@ The Continuous Wavelet transform of Grossman and
Morlet

@ The CWT as a time-frequency (time-scale) transformation
@ Relation to the Calderon Reproducing Formula

@ Discrete Wavelet decompositions of Frazier and Jawerth
@ Relation to Littlewood-Paley theory
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Time shifts and scaling

Definition

Given a> 0, b € R, define the dilation operator on L2(R) by
D,f(x) = a'/?f(ax) and the time-shift operator T, by

be( ) = f(x — b). Note that (Daf)"(v) = (Djaf)(7), and that

(Tof)(7) = €227 1(3).

@ Suppose g(x) is a bump function centered at 0.
e If a> 1, then D,g is more concentrated near 0 than g is.
e If0 < a<1,then D,g is more spread out near 0 than g is.
e The function D, T,g will be a bump function centered at
a'b.

@ Note that D,Tpg(x) = a'/?g(ax — b).
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Continuous Wavelet Transform

@ Grossmann and Morlet (1986) define a distribution
analogous to the STFT but which draws out features of a
function related to “time” and “scale.”

@ The distribution is analogous to a “coherent state”
decomposition as the analyzing functions are transforms of
a single function.

@ The idea was proposed earlier for the analysis of seismic
traces related to oil exploration.

@ The distribution has properties analogous to the type of
time-frequency distribution discussed earlier.
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Definition
Given a function g € L?(R), the continuous wavelet transform of
a function f € L2 is defined by

Wy(f)(a.b) = |~ f(t)a'/2g(at — B) ot = (F, DaTbGhuze

—0o0

fora>0and b e R. )

@ By Plancherel,

~

Wy(f)(a,b) = (f,DaTpg) = (f, D1,aMpg)
= <Da?7 Mb@) = [Da/fa/\(b)'
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//‘ng(a“zdb = // (Da79) (b)do %2
- / / alf(a)[? 14 )lzdvf

/Ig( )!2[/0 |(a7)|2da]dfy

(300
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Admissibility

@ We say that g is admissible if it satisfies

0 |~ 2
/ 19()| d < oo

o 1

@ The mapping Wy : L3(R, dx) — L2((0,00) x R, dbda/a) is
an isometry if and only if g is admissible.

@ Intuitively, admissibility means that g(0) = 0 or that
J9(x)dx =

@ If suppg C [O, oo) then Wy naturally restricts to that
subspace of L? consisting of functions whose Fourier
transforms are supported on the half-line.
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Hardy space H?

Define the Hardy space on the upper half plane, H?>(D..) as the
space of all holomorphic functions on D such that

(3] 1/2
1l = sup ( NS i}’)\de> -
y>0

—00

Theorem (Paley-Wiener, 1934)

A holomorphic function f € H?>(D.,) if and only if its Fourier
transform vanishes on the negative half-line.
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@ This means that if g € H? is admissible, then W, can be
thought of as an isometry on H?.

@ By symmetry, if g is admissible and g vanishes on the
positive half-line then W, is an isometry on the subspace
of L2 consisting of functions whose reflection about the
origin is in H?.

e If g is admissible and g is symmetric about the origin, W
is an isometry on L2(R).
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Invertibility

e If gis admissible and if ¢; = [*7_|g(7)I? |v|~" dv, then
(cq)~ /2 Wy is an isometry.

@ By the polarization identity we obtain the following
inversion formula for f € L?(R).

F(x) = \/1@ /O / Waf(a, b) a'/2g(ax — b) dbd:

where the integral is interpreted weakly.

Walnut (GMU) Lecture 5 — Wavelet Transform — Time and Scale



In the spring of 1985, Yves Meyer recognized that a
recovery formula found by Morlet and Alex Grossmann
was an identity previously discovered by Alberto
Calderdn. At that time, Yves Meyer was already a
leading figure in the Calderon—Zygmund theory of
singular integral operators. Thus began Meyer’s study
of wavelets, which in less than ten years would
develop into a coherent and widely applicable theory.

— Yves Meyer’s Abel Prize announcement, Norwegian
Academy of Sciences
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Calderén Reproducing Formula

@ Let ¢ € C*(RY) be radial such that
°® suppy C {x: ||Ix|| <1},

° / x%p(x)dx =0 for |o| < N some N € N, and
RY

° / |B(ty)? ? =1forally € RY\ {0}.
0
@ Then for all f € L3(RY),

> at
f(X):/O @t*@t*f(X)T

where o(x) = t=9p(x/t), t > 0.
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To see formally why the Calder6n Reproducing Formula holds,
note that

ot(y) = o(tv).

(/Ooosﬁt*sﬁt*f(')it)/\ﬁ)

- /0 Sleer o £y () &

t
G R ORS O
0

Hence

@ This formal calculation can be rigorized by a limiting
process.
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Atomic Decompositions

@ The Calderén formula allows for the characterization of
certain function spaces in terms of so-called atomic
decompositions.

@ This work bears the names of Calderén (1977), Calderén
and Torchinski (1975, 77), Coifman and Weiss (1977),
Tabileson and Weiss (1980), and Uchiyama (1982).

@ The idea is to use the atomic decompositions to prove that
so-called Calderdn-Zygmund operators are bounded on a
large class of function spaces.

@ A CZO, T, has the form
TH(x) = y K(x,y)f(y)dy

where the kernel K is continuous off the diagonal x = y
and is singular on the diagonal.
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Atomic Decompositions

@ Define (on R for convenience) the dyadic intervals
D = {[2k,2/(k +1)]: j, k € Z},
and for each / € D, define the cube Q; C R x (0, 00) by
Qi = Ix[l1/2,1].

@ The decompositions take the form f = " s a/(x).
leD
@ Here the atoms a; are compactly supported near /, and
encode the oscillatory behavior of f near /.

@ Certain function spaces can be characterized in terms of
the magnitude of the coefficients {s;}.
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Atomic Decompositions

@ More specifically, we define

at

a0 = 5 [ = y)ec N

where the coefficients s; are chosen based on the function
space.

@ For example, for L2(R),

az(Ayw*man?fm

and 3 /(s)? = [If|l3-
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@ Note that Q = [2k,2/(k+1)] x [21,2]],j, k € Z.
@ Hence by Plancherel,

2/ (k+1)
s = Xy L e mea

1 JEZ keZ

2(k+1) dt
=Z/ / (e NP S
2 2k

JEZ keZ

=Zﬁ/mum2m

Jjez.

= [ ([ e )ik,
S AL
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Lipschitz Spaces

@ These decompositions hold for spaces defined in terms of
the local smoothness or oscillatory behavior of functions
on RY.

@ Example: Lipschitz Spaces. Given 0 < a < 1, define

Ao = {f: |f(x) = f(y)] < Clx — y|*}

f(x)—f(y
£, = sup M=)
xzy IX—YI
@ It can be shown that ||f||; is equivalent to

sup [t (¢t x F)(¥)|-
yER,t>0

with

@ This leads to an atomic decomposition of A, with
s =7 2|14,

and a; as above.
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Besov and Triebel-Lizorkin Spaces

@ These spaces are generalizations of Lipschitz spaces and
characterized by local smoothness and global decay
properties.

@ Fora e R, 0 < p, g < oo, the Besov space, B,O,"q is
characterized by

N dt 1/q
Mlgze = ([ o3 G) " <o

@ ForaeR,0 < p<oo,0<q< oo, the Triebel-Lizorkin
space, Fp°? is characterized by

00 Y at 1/q
ez = | ([ tlec D00 F)

< 0.
p
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@ In each case, we choose

s1=|I'/2sup (¢t F)(y)|
yel

and obtain the proper atomic characterization of the
spaces in terms of |s/].

@ In the Besov case, HfHBg,q is equivalent to

<Z< 2 (|/\_1/2‘a+1/p|sllp>qm>1/".

veZ N|l|=2-v

@ In the Triebel-Lizorkin case, Hf”,‘_—;x,q is equivalent to

H(Z(HWZ—“sm/)q)”q

o
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@ Notice that by this construction, both the coefficients and
the atoms depend on f.

@ Here the atoms a; are compactly supported near /, and
encode the oscillatory behavior of f near /.

@ Membership of f in certain function spaces can be
characterized in terms of the magnitude of the coefficients

{s1}-
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Littlewood-Paley Theory

@ Littlewood-Paley theory addressed the question of
characterizing LP(T) (T is the torus) in terms of Fourier
coefficients.

@ The difficulty takes the form of the following classical
theorem.

Let1 < p < oo, p # 2, and suppose that >, ¢, €™ s the
Fourier series of a function in LP(T) \ L2(T). Then for almost
every choice of e = £1, the series ), enCn e2minX s not the
Fourier series of a function in LP(T).
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Littlewood-Paley Theory

@ For >, ¢, €™M the Fourier series of some f € LP(T),
define Agf = ¢y and for N € N,

(AnaHx) = > cpe?™™,

2N§|n‘<2N+1
Let - 1/
d(f)(x) = (Z |(ANf)(x>12) |
N=0

Then for 1 < p < oo, there exist constants Ay, By such that
forall f € LP(T),

Apl|flle < 1d(F)llp < Bollfllp-

@ The key point here is the use of dyadic blocks of the
Fourier transform.
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Discrete Calderé6n Formula

@ Given ¢ as in the Calderdn reproducing formula, observe
that for v € Z, the function ¢, * f will pick out the
frequency content of f in the range |v| ~ 2.

@ Let ¢, 1 € C®(RY) be radial such that

° suppy C {x: [Ix|| <1},
x*(x)dx =0 for |a] < Nsome N € N, and
o SUpp @ C {y:1/2< x| <2},
o [p(7)| = c>0if {:3/5 < |x|| <5/3},
o Y (272 "y) =1forally e RY\ {0}.
VEL

o Thenforall f € L2A(RY), f(x) = thp—v * ppv * f(X).
VEZ
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Characterizations

We can characterize several classical function spaces in terms
of the g-function:

(060 = (X lees +x )”2.

VEZL

® LPspaces, 1 < p < oot ||f|lp = [|ga(f)llp-
@ Hardy spaces HP, 0 < p < 1:

ey rgd(fxx)v’dx)”p.

@ Sobolev spaces L, 1 < p < oo, k € N:

. » p/2 1/p
= ([ (S 2¥lee00R1) " ax)

VEZL
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Besov and Triebel-Lizorkin spaces

@ In addition we can characterize these spaces in a similar
way using the discrete Calderén formula.

) 1/q
© B lgge (L2 loe 1)

VEZ

| 1/q
o B o~ (2o Y1)

VEZL

p
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The p-transform

@ Frazier and Jawerth (1988) unified atomic decomposition
techniques by designing a “proto-wavelet basis” they
dubbed the ¢-transform.

@ The idea was to obtain useful atomic decompositions in
which the atoms were independent of the function being

analyzed.
@ The decompositions had the form
f=> (f.on) e
1eD

where ¢y, 1; are concentrated near / in the spatial variable
and near [|/|=1,2//|7"M U [-|/]71, —2|/|7 "] in the frequency
variable.

@ In fact, the collections {¢,: | € D} and {v;: | € D} are
frames for L2(R).
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The ¢-transform construction

@ Let ¢, 1 € C>®(RY) be radial such that
°® supp @ C {y: 1/2 <[l <2},
o [p(7)|=c>0if {r:3/5< || <5/3}
e 1 satisfies the same conditions, and

o Y (22 ") =1forally e RY\ {0}.
VEZ
@ Then for all f € L3(RY),
f= Z<f7 @/) ¢l
1eD

where hy(x) = 2"/2h(2"x — k) when | = [27Vk, 27 (k +1)].
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The ¢-transform construction

@ Starting with the functions ¢ and +) as above, we have

f(X) = thav * Gav  F(X)
VEZ

where ¢(x) = p(—x).
@ Using the fact that both ¢ and ) have the same compact
support, we argue as in the Shannon Sampling Formula

and obtain
() =D > 27/2(Fomw # £)(277K) 272 hp (x — 27VK).
VEZL KEZ

@ Finally we observe that
272y (X = 277K) = 2729p(2"x — K) = 1)y

and
272 (Gp-v % 1)(27VK) = (f, ).
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Orthonormal wavelets

@ The coefficients {(f, p))} of the ¢-transform play the same
role as s; in the atomic characterization of function spaces
that arise in Littlewood-Paley theory.

@ In particular, membership in such spaces can be
characterized by the magnitude of the coefficients

{I(f, 0n}

@ At the same time, Meyer took this further and constructed
a smooth, orthonormal basis consisting of functions of the
form

{Y(2"x — K): v, k € Z}.

Walnut (GMU) Lecture 5 — Wavelet Transform — Time and Scale



