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Outline

The Continuous Wavelet transform of Grossman and
Morlet
The CWT as a time-frequency (time-scale) transformation
Relation to the Calderon Reproducing Formula
Discrete Wavelet decompositions of Frazier and Jawerth
Relation to Littlewood-Paley theory
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Time shifts and scaling

Definition

Given a > 0, b ∈ R, define the dilation operator on L2(R) by
Daf (x) = a1/2f (ax) and the time-shift operator Tb by
Tbf (x) = f (x − b). Note that (Daf )∧(γ) = (D1/a f̂ )(γ), and that
(Tbf )∧(γ) = e−2πibγ f̂ (γ).

Suppose g(x) is a bump function centered at 0.
If a > 1, then Dag is more concentrated near 0 than g is.
If 0 < a < 1, then Dag is more spread out near 0 than g is.
The function DaTbg will be a bump function centered at
a−1b.

Note that DaTbg(x) = a1/2g(ax − b).
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Continuous Wavelet Transform

Grossmann and Morlet (1986) define a distribution
analogous to the STFT but which draws out features of a
function related to “time” and “scale.”
The distribution is analogous to a “coherent state”
decomposition as the analyzing functions are transforms of
a single function.
The idea was proposed earlier for the analysis of seismic
traces related to oil exploration.
The distribution has properties analogous to the type of
time-frequency distribution discussed earlier.
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Definition

Given a function g ∈ L2(R), the continuous wavelet transform of
a function f ∈ L2 is defined by

Wg(f )(a,b) =

∫ ∞
−∞

f (t) a1/2g(at − b) dt = 〈f ,DaTbg〉L2(R)

for a > 0 and b ∈ R.

Wg(f )(a,b) = f ∗ Dag(b/a).
By Plancherel,

Wg(f )(a,b) = 〈f ,DaTbg〉 = 〈̂f ,D1/aMbĝ〉

= 〈Da f̂ ,Mbĝ〉 =
[
Da f̂ ĝ

]∧
(b).
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Isometry

∫ ∞
0

∫ ∞
−∞
|Wg f (a,b)|2db

da
a

=

∫ ∞
0

∫ ∞
−∞
|(Da f̂ ĝ)∧(b)|2db

da
a

=

∫ ∞
0

∫ ∞
−∞

a|̂f (aγ)|2 |ĝ(γ)|2dγ
da
a

=

∫ ∞
−∞
|ĝ(γ)|2

[ ∫ ∞
0
|̂f (aγ)|2 da

]
dγ

=

(∫ ∞
−∞

|ĝ(γ)|2

|γ|
dγ
)
‖f‖22.
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Admissibility

We say that g is admissible if it satisfies∫ ∞
−∞

|ĝ(γ)|2

|γ|
dγ <∞.

The mapping Wg : L2(R,dx)→ L2((0,∞)× R,db da/a) is
an isometry if and only if g is admissible.
Intuitively, admissibility means that ĝ(0) = 0 or that∫

g(x) dx = 0.
If supp ĝ ⊆ [0,∞) then Wg naturally restricts to that
subspace of L2 consisting of functions whose Fourier
transforms are supported on the half-line.
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Hardy space H2

Definition

Define the Hardy space on the upper half plane, H2(D+) as the
space of all holomorphic functions on D+ such that

‖f‖H2 = sup
y>0

(∫ ∞
−∞
|f (x + iy)|2 dx

)1/2

<∞.

Theorem (Paley-Wiener, 1934)

A holomorphic function f ∈ H2(D+) if and only if its Fourier
transform vanishes on the negative half-line.
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This means that if g ∈ H2 is admissible, then Wg can be
thought of as an isometry on H2.
By symmetry, if g is admissible and ĝ vanishes on the
positive half-line then Wg is an isometry on the subspace
of L2 consisting of functions whose reflection about the
origin is in H2.
If g is admissible and ĝ is symmetric about the origin, Wg
is an isometry on L2(R).
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Invertibility

If g is admissible and if cg =
∫∞
−∞ |ĝ(γ)|2 |γ|−1 dγ, then

(cg)−1/2Wg is an isometry.
By the polarization identity we obtain the following
inversion formula for f ∈ L2(R).

f (x) =
1
√cg

∫ ∞
0

∫ ∞
−∞

Wgf (a,b) a1/2g(ax − b) db
da
a

where the integral is interpreted weakly.
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In the spring of 1985, Yves Meyer recognized that a
recovery formula found by Morlet and Alex Grossmann
was an identity previously discovered by Alberto
Calderón. At that time, Yves Meyer was already a
leading figure in the Calderón–Zygmund theory of
singular integral operators. Thus began Meyer’s study
of wavelets, which in less than ten years would
develop into a coherent and widely applicable theory.

– Yves Meyer’s Abel Prize announcement, Norwegian
Academy of Sciences
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Calderón Reproducing Formula

Let ϕ ∈ C∞(Rd ) be radial such that
suppϕ ⊆ {x : ‖x‖ ≤ 1},∫
Rd

xαϕ(x) dx = 0 for |α| ≤ N some N ∈ N, and∫ ∞
0
|ϕ̂(tγ)|2 dt

t
= 1 for all γ ∈ Rd \ {0}.

Then for all f ∈ L2(Rd ),

f (x) =

∫ ∞
0

ϕt ∗ ϕt ∗ f (x)
dt
t

where ϕt (x) = t−dϕ(x/t), t > 0.
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Proof:

To see formally why the Calderón Reproducing Formula holds,
note that

ϕ̂t (γ) = ϕ̂(tγ).

Hence (∫ ∞
0

ϕt ∗ ϕt ∗ f (·) dt
t

)∧
(γ)

=

∫ ∞
0

(ϕt ∗ ϕt ∗ f )∧(γ)
dt
t

=

∫ ∞
0
|ϕ̂(tγ)|2 f̂ (γ)

dt
t

= f̂ (γ)

This formal calculation can be rigorized by a limiting
process.
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Atomic Decompositions

The Calderón formula allows for the characterization of
certain function spaces in terms of so-called atomic
decompositions.
This work bears the names of Calderón (1977), Calderón
and Torchinski (1975, 77), Coifman and Weiss (1977),
Tabileson and Weiss (1980), and Uchiyama (1982).
The idea is to use the atomic decompositions to prove that
so-called Calderón-Zygmund operators are bounded on a
large class of function spaces.
A CZO, T , has the form

Tf (x) =

∫
Rd

K (x , y) f (y) dy

where the kernel K is continuous off the diagonal x = y
and is singular on the diagonal.
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Atomic Decompositions

Define (on R for convenience) the dyadic intervals

D = {[2jk ,2j(k + 1)] : j , k ∈ Z},

and for each I ∈ D, define the cube QI ⊆ R× (0,∞) by

QI = I × [|I|/2, |I|].

The decompositions take the form f =
∑
I∈D

sI aI(x).

Here the atoms aI are compactly supported near I, and
encode the oscillatory behavior of f near I.
Certain function spaces can be characterized in terms of
the magnitude of the coefficients {sI}.

Walnut (GMU) Lecture 5 – Wavelet Transform – Time and Scale



Atomic Decompositions

More specifically, we define

aI(x) =
1
sI

∫
QI

ϕ(x − y)(ϕt ∗ f )(y) dy
dt
t

where the coefficients sI are chosen based on the function
space.
For example, for L2(R),

sI =

(∫
QI

|(ϕt ∗ f )(y)|2 dy
dt
t

)1/2

and
∑

I(sI)
2 = ‖f‖22.
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Note that QI = [2jk ,2j(k + 1)]× [2j−1,2j ], j , k ∈ Z.
Hence by Plancherel,

∑
I

(sI)
2 =

∑
j∈Z

∑
k∈Z

∫ 2j

2j−1

∫ 2j (k+1)

2j k
|(ϕt ∗ f )(y)|2 dy

dt
t

=
∑
j∈Z

∫ 2j

2j−1

∑
k∈Z

∫ 2j (k+1)

2j k
|(ϕt ∗ f )(y)|2 dy

dt
t

=
∑
j∈Z

∫ 2j

2j−1

∫
R
|ϕ̂t (γ)|2 |̂f (γ)|2 dγ

dt
t

=

∫
R

(∫ ∞
0
|ϕ̂(tγ)|2 dt

t

)
|̂f (γ)|2 dγ

=

∫
R
|̂f (γ)|2 dγ.
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Lipschitz Spaces

These decompositions hold for spaces defined in terms of
the local smoothness or oscillatory behavior of functions
on Rd .
Example: Lipschitz Spaces. Given 0 < α < 1, define

Λ̇α = {f : |f (x)− f (y)| ≤ C|x − y |α}

with
‖f‖Λ̇α

= sup
x 6=y

|f (x)− f (y)|
|x − y |α

.

It can be shown that ‖f‖Λ̇α
is equivalent to

sup
y∈R,t>0

|t−α(ϕt ∗ f )(y)|.

This leads to an atomic decomposition of Λ̇α with

sI = |I|−α−1/2‖f‖Λ̇α

and aI as above.
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Besov and Triebel-Lizorkin Spaces

These spaces are generalizations of Lipschitz spaces and
characterized by local smoothness and global decay
properties.
For α ∈ R, 0 < p, q ≤ ∞, the Besov space, Ḃα,q

p is
characterized by

‖f‖Ḃα,qp
=

(∫ ∞
0

t−αq‖ϕt ∗ f‖qp
dt
t

)1/q

<∞.

For α ∈ R, 0 < p <∞, 0 < q ≤ ∞, the Triebel-Lizorkin
space, Ḟα,q

p is characterized by

‖f‖Ḟα,qp
=

∥∥∥∥(∫ ∞
0

t−αq|(ϕt ∗ f )(y)|q dt
t

)1/q∥∥∥∥
p
<∞.
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In each case, we choose

sI = |I|1/2 sup
y∈I
|(ϕt ∗ f )(y)|

and obtain the proper atomic characterization of the
spaces in terms of |sI |.
In the Besov case, ‖f‖Ḃα,qp

is equivalent to

(∑
ν∈Z

( ∑
|I|=2−ν

(|I|−1/2−α+1/p|sI |p
)q/p)1/q

.

In the Triebel-Lizorkin case, ‖f‖Ḟα,qp
is equivalent to

∥∥∥∥(∑
I

(|I|−1/2−α|sI |1I)
q
)1/q∥∥∥∥

p
.
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Notice that by this construction, both the coefficients and
the atoms depend on f .
Here the atoms aI are compactly supported near I, and
encode the oscillatory behavior of f near I.
Membership of f in certain function spaces can be
characterized in terms of the magnitude of the coefficients
{sI}.
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Littlewood-Paley Theory

Littlewood-Paley theory addressed the question of
characterizing Lp(T) (T is the torus) in terms of Fourier
coefficients.
The difficulty takes the form of the following classical
theorem.

Theorem

Let 1 ≤ p <∞, p 6= 2, and suppose that
∑

n cn e2πinx is the
Fourier series of a function in Lp(T) \ L2(T). Then for almost
every choice of εn = ±1, the series

∑
n εncn e2πinx is not the

Fourier series of a function in Lp(T).
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Littlewood-Paley Theory

For
∑

n cn e2πint the Fourier series of some f ∈ Lp(T),
define ∆0f = c0 and for N ∈ N,

(∆N+1f )(x) =
∑

2N≤|n|<2N+1

cn e2πinx .

Let

d(f )(x) =

( ∞∑
N=0

|(∆N f )(x)|2
)1/2

.

Then for 1 < p <∞, there exist constants Ap, Bp such that
for all f ∈ Lp(T),

Ap‖f‖p ≤ ‖d(f )‖p ≤ Bp‖f‖p.

The key point here is the use of dyadic blocks of the
Fourier transform.
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Discrete Calderón Formula

Given ϕ as in the Calderón reproducing formula, observe
that for ν ∈ Z, the function ϕ2−ν ∗ f will pick out the
frequency content of f in the range |γ| ≈ 2ν .
Let ϕ, ψ ∈ C∞(Rd ) be radial such that

suppψ ⊆ {x : ‖x‖ ≤ 1},∫
Rd

xαψ(x) dx = 0 for |α| ≤ N some N ∈ N, and

supp ϕ̂ ⊆ {γ : 1/2 ≤ ‖x‖ ≤ 2},
|ϕ̂(γ)| ≥ c > 0 if {γ : 3/5 ≤ ‖x‖ ≤ 5/3},∑
ν∈Z

ψ̂(2−νγ)ϕ̂(2−νγ) = 1 for all γ ∈ Rd \ {0}.

Then for all f ∈ L2(Rd ), f (x) =
∑
ν∈Z

ψ2−ν ∗ ϕ2−ν ∗ f (x).
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Characterizations

We can characterize several classical function spaces in terms
of the g-function:

gd (f )(x) =

(∑
ν∈Z
|ϕ2−ν ∗ f (x)|2

)1/2

.

Lp spaces, 1 < p <∞: ‖f‖p ≈ ‖gd (f )‖p.
Hardy spaces Hp, 0 < p ≤ 1:

‖f‖Hp ≈
(∫

|gd (f )(x)|p dx
)1/p

.

Sobolev spaces Lp
k , 1 < p <∞, k ∈ N:

‖f‖Lp
k
≈
(∫ (∑

ν∈Z
|2νk |ϕ2−ν ∗ f (x)|2|

)p/2

dx
)1/p

.
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Besov and Triebel-Lizorkin spaces

In addition we can characterize these spaces in a similar
way using the discrete Calderón formula.

Ḃα,q
p : ‖f‖Ḃα,qp

≈
(∑
ν∈Z

2ναq‖ϕ2−ν ∗ f‖qp
)1/q

.

Ḟα,q
p : ‖f‖Ḃα,qp

≈
∥∥∥∥(∑

ν∈Z
2ναq|(ϕ2−ν ∗ f )(y)|q

)1/q∥∥∥∥
p
.
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The ϕ-transform

Frazier and Jawerth (1988) unified atomic decomposition
techniques by designing a “proto-wavelet basis” they
dubbed the ϕ-transform.
The idea was to obtain useful atomic decompositions in
which the atoms were independent of the function being
analyzed.
The decompositions had the form

f =
∑
I∈D
〈f , ϕI〉ψI

where ϕI , ψI are concentrated near I in the spatial variable
and near [|I|−1,2|I|−1] ∪ [−|I|−1,−2|I|−1] in the frequency
variable.
In fact, the collections {ϕI : I ∈ D} and {ψI : I ∈ D} are
frames for L2(R).
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The ϕ-transform construction

Let ϕ, ψ ∈ C∞(Rd ) be radial such that
supp ϕ̂ ⊆ {γ : 1/2 ≤ ‖γ‖ ≤ 2},
|ϕ̂(γ)| ≥ c > 0 if {γ : 3/5 ≤ ‖γ‖ ≤ 5/3},
ψ satisfies the same conditions, and∑
ν∈Z

ψ̂(2−νγ)ϕ̂(2−νγ) = 1 for all γ ∈ Rd \ {0}.

Then for all f ∈ L2(Rd ),

f =
∑
I∈D
〈f , ϕI〉ψI

where hI(x) = 2ν/2h(2νx − k) when I = [2−νk ,2−ν(k + 1)].
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The ϕ-transform construction

Starting with the functions ϕ and ψ as above, we have

f (x) =
∑
ν∈Z

ψ2−ν ∗ ϕ̃2−ν ∗ f (x)

where ϕ̃(x) = ϕ(−x).
Using the fact that both ϕ̂ and ψ̂ have the same compact
support, we argue as in the Shannon Sampling Formula
and obtain

f (x) =
∑
ν∈Z

∑
k∈Z

2−ν/2(ϕ̃2−ν ∗ f )(2−νk) 2−ν/2ψ2−ν (x − 2−νk).

Finally we observe that

2−ν/2ψ2−ν (x − 2−νk) = 2ν/2ψ(2νx − k) = ψI

and
2−ν/2(ϕ̃2−ν ∗ f )(2−νk) = 〈f , ϕI〉.
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Orthonormal wavelets

The coefficients {〈f , ϕI〉} of the ϕ-transform play the same
role as sI in the atomic characterization of function spaces
that arise in Littlewood-Paley theory.
In particular, membership in such spaces can be
characterized by the magnitude of the coefficients
{|〈f , ϕI〉}.
At the same time, Meyer took this further and constructed
a smooth, orthonormal basis consisting of functions of the
form

{ψ(2νx − k) : ν, k ∈ Z}.
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