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Finite Frames and Linear Algebra

We start from the elementary fact that a collection of d
vectors in Cd ,

X = {x1, x2, . . . , xd}

is a basis for Cd if and only if X is linearly independent,
that is, if

c1x1 + c2x2 + · · ·+ cdxd = 0 =⇒ c1 = c2 = · · · = cd = 0.

Every x ∈ Cd can be written uniquely as

x = a1x1 + a2x2 + · · · + adxd

where ai = 〈x , x̃i〉 and X̃ = {x̃1, x̃2, . . . , x̃d} is the dual
basis of X .
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Matrix notation

Let

B =

 | | |
x1 x2 · · · xd
| | |


Since X is linearly independent, B is invertible.

B−1 =


x̃1

x̃2
...

x̃d

 where {x̃j}dj=1 is the dual basis.

x = BB−1x = B


〈x , x̃1〉
〈x , x̃2〉

...
〈x , x̃d〉

 =
d∑

j=1

〈x , x̃j〉 xj .
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Finite Frames

Let Y = {y1, y2, . . . , yn} ⊆ Cd , where n > d be a spanning
set for Cd . We say then that Y is a frame for Cd .
Since Y contains a basis for Cd , for all x ∈ Cd there exist
coefficients αj such that

x = α1y1 + α2y2 + · · · + αnyn.

However these coefficients need not be unique.
Frames mimic bases but are redundant in the sense that

Not all of the frame elements need be present in order to
represent elements in the vector space, and
There are multiple representations of each vector in the
space.
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Matrix notation

Let
F =

[
y1 y2 · · · yn

]
Since Y is a frame, F has full rank, the d × d matrix FF ∗ is
invertible.
For all x ∈ Cd , x = FF ∗(FF ∗)−1x , and note that
F † = F ∗(FF ∗)−1 is the pseudoinverse of F . Letting

F † =


ỹ1

ỹ2
...

ỹn

 , x = FF †x = F


〈x , ỹ1〉
〈x , ỹ2〉

...
〈x , ỹn〉

 =
n∑

j=1

〈x , ỹj〉 yj .
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By properties of the pseudoinverse, c = F †x is the solution
to Fc = x with the smallest norm.
Hence of all coefficients α1, α2, . . . , αn that satisfy

x =
n∑

j=1

αjyj ,

αj = 〈x , ỹj〉 has minimal norm.
The collection of vectors {ỹj}nj=1 is called the dual frame of
Y .
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Abstract frames

Definition
A frame in a separable Hilbert space H is a sequence of vectors
{xk}k∈K with the property that there exist constants A, B > 0,
called the frame bounds such that for all x in the Hilbert space

A ‖x‖2 ≤
∑
k∈K

|〈x , xk 〉|2 ≤ B ‖x‖2 .

A frame is tight if A = B and is uniform if
∥∥xj
∥∥ = ‖xk‖ for all j

and k . A tight frame with frame bounds A = B = 1 is a Parseval
frame.

Note that in the case of finite frames, this inequality is
A ‖x‖2Cd ≤ ‖F ∗x‖Cn ≤ B ‖x‖2Cd .
This inequality is always satisfied if F has full rank.
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The frame operator

Definition
Given a frame {xk}, we define the analysis operator by

T : H → `2(K ); x 7→ {〈x , xk 〉}.

Its adjoint is synthesis operator

T ∗ : `2(K )→ H; {ck} 7→
∑

ck xk .

The frame operator for {xk}k∈K is

S = T ∗T : H → H; x 7→
∑
〈x , xk 〉 xk .
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The analysis operator corresponds to the mapping
F ∗ : Cd → Cn, x 7→ F ∗x , and the synthesis operator to
F : Cn → Cd , y 7→ Fy .
The frame inequality can be written as

A〈x , x〉 ≤ 〈Sx , x〉 ≤ B〈x , x〉

or as
A I ≤ S ≤ BI

so that S is a self-adjoint positive operator on H.
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The frame operator

After some manipulation, we arrive at the operator
inequality

A− B
A + B

I ≤ I − 2
B + A

S ≤ B − A
B + A

I.

This implies that S is an isomorphism of H and that∥∥∥∥I − 2
B + A

S
∥∥∥∥ ≤ B − A

B + A
< 1.

If the frame is tight (A = B) then S is a multiple of the
identity.
Numerical inversion of S converges very rapidly if A ≈ B,
so that good frame bounds are important.
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The dual frame

We have the following representations of x ∈ H.

x = S S−1x =
∑
〈S−1x , xk 〉 xk =

∑
〈x ,S−1xk 〉 xk ,

x = S−1Sx =
∑
〈x , xk 〉S−1xk .

The collection {S−1xk} is called the dual frame of {xk}.
In general frames are redundant, that is, there exist
sequences c = {ck} ∈ `2 \ {0} such that

T ∗c =
∑

ck xk = 0.
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For all sequences {ck} such that x =
∑

ck xk ,∑
|cn|2 =

∑
|〈x ,S−1xn〉|2 +

∑
|〈x ,S−1xn〉 − cn|2.

This implies that of all such ck , ck = 〈x ,S−1xk 〉 has the
smallest norm.
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Riesz bases

A frame that ceases to be a frame upon the removal of one
element is called an exact frame. An exact frame satisfies
the following.

The analysis operator T : H → `2, x 7→ {〈x , xk 〉} is an
isomorphism.
The synthesis operator T ∗ : `2 → H is injective, i.e., the
frame is linearly independent.
The dual frame {S−1xk} is biorthogonal to {xk}.
For every sequence ck ∈ `2,

B−1
∑
|ck |2 ≤

∥∥∥∥∑ ck xk

∥∥∥∥2

≤ A−1
∑
|ck |2.

We say in this case that {xk} is a Riesz basis for H.
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Some historical remarks

The notion of a frame was first introduced in 1952 by Duffin
and Schaeffer in the context of nonharmonic Fourier series.
The paper referenced results of Paley and Wiener (1930)
on basicity properties of sets

E(Λ) = {e2πiλx : λ ∈ Λ}

in L2(−1/2,1/2) where Λ ⊆ R is a perturbation of Z.

Theorem (Duffin-Schaeffer)

The collection E(Λ) is a frame for L2(−γ, γ) for all 0 < γ < 1/2 if
the set Λ has uniform density 1, that is, if there exist constants
δ, L > 0 such that for all n ∈ Z, |λn − n| ≤ L and for all n 6= m,
|λn − λm| ≥ δ (Λ is uniformly discrete).
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Beurling density

Uniform density is a special case of Beurling density
(Landau, 1967).
Given Λ ⊆ R, uniformly discrete, define for r > 0

n+(r) = sup
x∈R
|Λ ∩ [x , x + r ]| and n−(r) = inf

x∈R
|Λ ∩ [x , x + r ]|.

Let D+(Λ) = lim
r→∞

n+(r)

r
and D−(Λ) = lim

r→∞

n−(r)

r
denote

the upper and lower Beurling densities of Λ.
If D+(Λ) = D−(Λ) then the common value D(Λ) is the
Beurling density of Λ.
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H. J. Landau (1967) showed, among other things, that,
given a uniformly discrete subset Λ of R, E(Λ) is a frame for
L2(−γ, γ), then D−(Λ) ≥ 2γ, and that if E(Λ) is a Riesz
basis for L2(−γ, γ), then D+(Λ) ≤ 2γ.
As a consequence, if Λ has uniform density 1, frames E(Λ)
must necessarily be overcomplete for L2(−γ, γ) whenever
0 < γ < 1/2.
Hence the Duffin and Schaeffer result describes
necessarily redundant systems.
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Most of the work on frames in the 60s and 70s focused on
properties of non-redundant systems of exponentials.
Daubechies, Grossman, and Meyer (1986) connected
explicitly the notion of a frame with the expansion of a
function in terms of so-called coherent states.
By this was meant the image of a single function by a fixed
collection of transformations based on the Weil-Heisenberg
group (Gabor expansions) and the affine group (wavelets).
Having a frame as opposed to a Riesz basis is necessary
in order to have stable expansions in terms of atoms with
desirable properties.
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The BLT and frames

Theorem

Given Ω,Ω′ > 0 and any function g(t) ∈ L2(R), define

gn/Ω,mΩ′(t) = g(t − n/Ω) e2πimΩ′t .

If Ω′ > Ω then {gn/Ω,mΩ′}n,m∈Z is incomplete in L2(R) and
hence not a frame.
If Ω′ < Ω and {gn/Ω,mΩ′}n,m∈Z is a frame, then it is not a
Riesz basis, i.e., the frame is overcomplete.
If Ω′ = Ω and {gn/Ω,mΩ′}n,m∈Z is a frame, then it is a Riesz
basis, i.e., it is exact and∫ ∞

−∞
|t g(t)|2 dt ·

∫ ∞
−∞
|ω ĝ(ω)|2 dω =∞.
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Frames in Communication Theory

Consider the following model for transmission of a signal
over a channel. Suppose that the signal of interest is the
vector x ∈ Cd , and that we have fixed a d × n frame matrix
F .
We store the vector by forming its frame coefficients
y = F ∗x ∈ Cn, then transmit y over the channel.
The received signal ŷ will be corrupted by quantization
error and by noise, that is, ŷ = y + ε where ε is a random
vector in Rn. ε = 0 means perfect reconstruction is
possible.
The extent to which the original signal can be
reconstructed from the noisy coefficients ŷ is a measure of
the robustness to noise of the coding scheme.
This question was investigated by Goyal, Kovačević and
Kelner, 2001 for the above coding scheme.
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Noise Reduction

Theorem
If the transmission error ε is modelled as zero-mean
uncorrelated noise, the mean square error of the reconstructed
signal is minimized if and only if the frame is uniform and tight.

The range of the mapping F ∗ : Rd → Rn is only a
d-dimensional subspace of Rn, and the transmitted vector
y sits in this subspace, but the distorted vector ŷ is unlikely
to be.
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The reconstruction scheme

x̂ = (FF ∗)−1Fŷ

solves the least-squares problem minx ‖F ∗x − ŷ‖2 with the
minimum-norm solution x̂ .
In fact, this scheme projects the noise vector ε onto the
range of F ∗ then reconstructs x̂ from those frame
coefficients. Hence the noise power is automatically
reduced.
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Erasure errors

Suppose in addition that the channel distorts the
transmitted vector ŷ by erasing components at random.
Robustness to this sort of distortion means maximizing the
number of components that can be erased while still
allowing reconstruction of the signal as accurately as
possible from the remaining coefficients.

Definition

A frame F = {xk}nk=1 in Cd is maximally robust to erasures if
the removal of any l ≤ n − d vectors from F leaves a frame.
The Spark of an d × n matrix M is the size of the smallest
linearly dependent subset of columns of M. Hence a frame with
frame matrix F is maximally robust to erasures if
Spark(F ∗) = d + 1.
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Compressive sensing.

Problem: Recover an unknown vector x ∈ Rn from d < n
linear measurements under the assumption that x is
sparse, i.e., for some s ∈ N, x has no more than s nonzero
elements (that is, that x is s-sparse).
If we define a d × n matrix F to be the measurement
matrix, then the problem becomes to recover x from
y = Fx under the assumption that x is s-sparse.
Without the assumption of sparsity, the problem is clearly
underdetermined and hence not solvable.
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A necessary and sufficient condition on F guaranteeing
that the problem has a solution is given in the following
theorem.

Theorem
The collection of s-sparse vectors in Rn is uniquely determined
by the measurements Fx in the sense that for all s-sparse
vectors x1 and x2, Fx1 = Fx2 implies x1 = x2 if and only if
Spark(F ) > 2s.

If we think of the measurement matrix F as a frame matrix,
that is, as a matrix whose columns form a frame for Rd ,
then it is clear that in order for the problem to be
meaningful, it is required that the frame be redundant.

Walnut (GMU) Lecture 3 – Frame Theory



Phaseless recovery

Problem: Given a frame {fi}ni=1 for Cd , recover a vector
x ∈ Rd from the magnitudes of its frame coefficients, i.e.,

{|〈x , fi〉|}ni=1.

The initial breakthrough in this work is due to Balan,
Casazza and Edidin, 2006.

Definition

A frame F = {fi}ni=1 for Cd is called phase retrievable if the
mapping

α : Cd → Rn; x 7→ {|〈x , fi〉|}ni=1

is injective up to a constant phase factor.
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The Real Case

Theorem

Assume that F = {fi}ni=1 is a frame for Rd . Then
If F is phase retrievable for Rd then n ≥ 2d − 1.
If n = 2d − 1 then F is phase retrievable if and only if the
frame matrix F corresponding to F has full Spark.
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Complex case

Theorem (Various authors)

Assume that F = {fi}ni=1 is a frame for Cd . Then
(2013) If F is phase retrievable for Cd then

n ≥ 4d − 2− 2b(n) +


2 if n is odd and b = 3 mod 4
1 if n is odd and b = 2 mod 4
0 otherwise

where b(n) denotes the number of 1s in the binary
expansion of n − 1.
(2015) For any positive integer d, a phase retrievable
frame F for Cd can be constructed that contains
n = 4d − 4 vectors.
(2015) If n ≥ 4d − 4 then for generic frames, F is phase
retrievable, and if d = 2k + 1 and n < 4d − 4 then no frame
F for Cd is phase retrievable.
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Feichtinger conjecture

Theorem (Marcus, Spielman and Srivastava, 2015)
Any uniform frame can be partitioned into a finite union of Riesz
sequences.

This theorem was conjectured by Feichtinger in the early
1990s.
It was shown to be equivalent to several long-standing
conjectures in operator theory, graph theory, mathematical
physics, and signal processing, namely The
Kadisson-Singer Conjecture (1959), the Paving Conjecture
(1979), and the Bourgain-Tzafriri Conjecture (1991).
The above named settled the Kadisson-Singer Conjecture
in 2015.
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