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Stability in time-frequency representations
The Balian-Low Theorem
Proof of the BLT
The Amalgam BLT (Heil)
The Zak transform and proof.
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Information Area (Gabor, 1946)

Theorem (Shannon, Whittaker, Kotelnikov, et al.)

Given f 2 L2(R) such that

f̂ (�) = 0 for |�| � ⌦/2

for some ⌦ > 0, then

f (t) =
X

n2Z
f
⇣ n
⌦

⌘ sin⇡(⌦t � n)
⇡(⌦t � n)

.

A function with bandwidth ⌦ possesses ⌦ independent
samples per unit time.
Through a channel with bandwidth ⌦, at most ⌦
independent data values can be transmitted in each unit of
time.

Walnut (GMU) Lecture 2 – Gabor Analysis



Information Area (Gabor, 1946)

Each independent “packet” of data occupies a region in
“time–frequency space” of area 1.
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[F]or every type of resonator a characteristic rectangle
of about unit area can be defined in the
time/frequency diagram, which corresponds to one
“practically” independent reading of the instrument. In
order to obtain their number, we must divide up the
(time ⇥ frequency) area into such rectangles....
The number of these rectangles in any region is the
number of independent data which the instrument can
obtain from the signal, i.e., proportional to the amount
of information. This justifies calling the diagram from
now on the “diagram of information.”

– D. Gabor, Theory of Communication (1946)
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Gabor representation

We seek a Shannon–type representation of arbitrary
functions f (x) in which each of the building blocks occupies
a distinct rectangle in time–frequency space of unit area.

For ⌦ > 0, let g(t) = ⌦e�⇡(t⌦)2
, ĝ(!) =

1
⌦

e�⇡(!/⌦)2
.

Define for n, m 2 Z,

gn/⌦,m⌦(t) = g
⇣

t � n
⌦

⌘
e2⇡im⌦t = T n

⌦
Mm⌦g(t).

Since g(t) minimizes the Uncertainty Principle inequality
each gn/⌦,m⌦ occupies a rectangle of unit area in
time–frequency space centered at (n/⌦,m⌦).
So we take

f (t) ⇠
X

n,m2Z
hf , gn/⌦,m⌦i gn/⌦,m⌦(t).

Does the series satisfactorily represent f (t)?
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What does “satisfactorily” mean?

Completeness: f (x) is uniquely determined by the
coefficients hf , gn/⌦,m⌦i.
Minimality: Any representation of f (x) as
f =

P
n,m an,m gn/⌦,m⌦ is unique.

Stability: There exist constants A, B > 0 such that for all
f 2 L2(R),

A kfk2 
X

n

|hf , gn/⌦,m⌦i|2  B kfk2 .

This inequality is called the frame condition.
Time-Frequency Localization:

✓Z
|t g(t)|2 dt

◆
⇥

✓Z
|! ĝ(!)|2 d!

◆
< 1.

Walnut (GMU) Lecture 2 – Gabor Analysis



More on Stability

If {gn/⌦,m⌦} is not stable, then either A = 0 or B = 1.

A = 0 means there are signals µ 2 L2(R) such that
kµk2 = 1 andX

n,m

|hµ, gn/⌦,m⌦i|2 ⇡ 0.

This means that two very different signals f can have
almost the same expansion coefficients.
B = 1 means there are signals ⌘ 2 H such that

k⌘k = 1 andX

n

|h⌘, gn/⌦,m⌦i|2 >>> 1.

This means that even if k⌘k2 is small, f + ⌘ can have
completely different expansion coefficients than f .
Therefore, noise may be amplified in calculating the
expansion coefficients.
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The Balian–Low Theorem (1981)

Theorem
Given ⌦ > 0 and any function h(t) 2 L2(R), define

hn/⌦,m⌦(t) = h
⇣

t � n
⌦

⌘
e2⇡im⌦t .

If {hn/⌦,m⌦}n,m2Z satisfies the frame condition, then
✓Z 1

�1
|t h(t)|2 dt

◆
·
✓Z 1

�1
|! ĥ(!)|2 d!

◆
= 1.

That is, h(t) maximizes the Uncertainty Principle.
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Theorem
Given ⌦,⌦0 > 0 and any function h(t) 2 L2(R), define

hn/⌦,m⌦0(t) = h
⇣

t � n
⌦

⌘
e2⇡im⌦0t .

If ⌦0 > ⌦ then {hn/⌦,m⌦0}n,m2Z is not complete in L2(R) and
hence does not satisfy the frame condition.
If ⌦0 < ⌦, then there exist h(t) 2 L2 such that✓Z 1

�1
|t h(t)|2 dt

◆
·
✓Z 1

�1
|! ĥ(!)|2 d!

◆
< 1, and

{hn/⌦,m⌦0}n,m2Z satisfies the frame condition, but is
overcomplete.
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Proof of the BLT

Define the position, X , and momentum, P, operators as
follows

Xf (x) = x f (x), Pf (x) =
1

2⇡i
f 0(x)

and note that they are self-adjoint.
The original formulation of the BLT took a slightly weaker
form: If {gn,m : n,m 2 Z} is an orthonormal basis for L2(R)
then kXgk2 kPgk2 = 1.
This proof (due to G. Battle, 1988) relies on the fact that
the operators X and P do not commute, specifically that

PX � XP =
1

2⇡i
I

on a dense subset of L2(R).
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Since {gn,m : n,m 2 Z} is an orthonormal basis,
8f , h 2 L2(R),

hf , hi =
X

n,m

hf ,TnMmgihh,TnMmgi.

Consequently, if g, Xg, Pg 2 L2(R) then

hXg,Pgi =
X

n,m

hXg,TnMmgihPg,TnMmgi.

Using orthogonality, we calculate

hXg,TnMmgi = hT�nM�mg,Xgi,

hPg,TnMmgi = hT�nM�mg,Pgi.
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Substituting we obtain

hXg,Pgi =
X

n,m

hXg,TnMmgihPg,TnMmgi

=
X

n,m

hPg,T�nM�mgihXg,T�nM�mgi

= hPg,Xgi.

Finally we arrive at the contradiction

0 = hXg,Pgi � hPg,Xgi = h(PX � XP)g, gi = 1
2⇡i

kgk2
2.
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Amalgam BLT

A different version of the BLT is due to Heil (1990), and
requires the following definition.

Definition
The Wiener amalgam space W (C0, `

1) is defined to be the
space of continuous functions on Rd satisfying

kfkW (C0,`1) =
X

k

kf · 1Q+kk1 < 1

where Q = [0, 1]d denotes the unit square in Rd .

The Wiener amalgam space combines a local property
(continuity) with a global decay property (summability of
the local L1 norms).
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Theorem (Amalgam BLT)
If {gn,m} satisfies the frame condition then

g /2 W (C0, `
1)

and
bg /2 W (C0, `

1).

Walnut (GMU) Lecture 2 – Gabor Analysis



Zak Transform

Definition
The Zak transform of a function f 2 L2(R) is given by

Zf (t ,!) =
X

k2Z
f (t + k) e2⇡ik!.

Zf is quasiperiodic, i.e.,
Zf (t + 1,!) = e�2⇡i! Zf (t ,!), and
Zf (t ,! + 1) = Zf (t ,!).

Zf is completely determined by its values on
Q = [0, 1]⇥ [0, 1].
Inversion formula: Given f 2 L1(R),

f (x) =
R 1

0 Zf (x ,!) d!, and
bf (!) =

R 1
0 Zf (x ,!) e�2⇡ix! dx .

Z : L2(R) ! L2(Q) is a unitary operator.

Walnut (GMU) Lecture 2 – Gabor Analysis



Zak Transform and Gabor systems

Lemma
Given any function h(t) 2 L2(R), define

hn,m(t) = h (t � n) e2⇡imt .

Then
Z (hn,m)(t ,!) = e2⇡imt e2⇡in!Zh(t ,!).

This identity is the main property that makes Zak transform
so useful in studying Gabor systems.
The Zak transform diagonalizes the time-shift, Tn, and
frequency-shift, Mm, operators by mapping them to
multiplication operators.
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Zak Transform and Gabor systems

Theorem
Given h(t) 2 L2(R), the following hold.

{hn,m}n,m2Z is complete if and only if Zh 6= 0, a.e.,
{hn,m}n,m2Z is minimal if and only if 1/(Zh) 2 L2(Q), and
{hn,m}n,m2Z satisfies the frame inequality with bounds
A, B > 0 if and only if

A  |Zh(x ,!)|2  B, a.e.
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Proof of Amalgam BLT

The proof of this theorem follows easily from the following
property of the Zak transform.

Lemma
If Zf is continuous on R2 then Zf has a zero in Q.

The proof uses only the quasiperiodicy of Zf .
If Zf does not vanish then we can write

Zf (x ,!) = |Zf (x ,!)| e�2⇡i'(x ,!)

where ' is continuous on R2.
Now using quasiperiodicity, we have for all x , ! 2 R,

'(1,!) = �! + k + '(0,!), '(x , 1) = n + '(x , 0)

where the integers k and n do not depend on (x ,!).
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Next we calculate

0 = '(0, 0)� '(1, 0) + '(1, 0)� '(1, 1)
+'(1, 1)� '(0, 1) + '(0, 1)� '(0, 0)

= �k � n � 1 + k + n = �1.
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Proof of Amalgam BLT

If g 2 W (C0, `
1) then clearly Zg is continuous and hence

also has a zero in Q. Hence {gn,m} cannot satisfy the
frame condition.
If bg 2 W (C0, `

1) then since Zbg(x ,!) = e�2⇡ix! Zg(!,�x),
the same argument applies.
The preceding lemma easily generalizes to Rd , so the
Amalgam BLT holds for higher-dimensional Gabor systems
as well.
It is interesting to note that the property g, bg /2 W (C0, `

1)
neither implies nor is implied by the property that
kxg(x)k2k!bg(!)k2 = 1.
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