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@ What is a Time-Frequency distribution/representation?
@ The Wigner Distribution

@ The Short-Time Fourier Transform

@ The Ambiguity Function

@ Uncertainty Principles
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Frequency representation

@ Suppose we are given some function f € L2(R9).

@ The Fourier transform allows us to realize f as a
superposition of pure frequencies, viz.

) = [ 1002 ok, 1) = [ ) ) .
Rd

Rd
@ Parseval’'s formula says this realization preserves energy.

2 _ F 2
[ eor = [ e o

@ The Fourier transform of f gives a frequency distribution of
f as well as a frequency representation of f.
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@ ltis a distribution in the sense that on any set S C RY, the

quantity
JAGGIR
S

represents the proportion of the function’s energy in that
frequency band.

@ Also the Fourier Inversion gives a representation of f in
terms of its frequency content.

@ A mathematically analogous interpretation takes x as the
position variable and ~ as the momentum variable.
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What is a Time-Frequency distribution/representation?

@ In the context of acoustic signals f(t), it has long been
recognized that we do not experience the frequency
content of a signal through the usual Fourier paradigm.

@ Rather than experiencing a signal as either its time R
representation, f(t), or its frequency representation, f(v), a
signal consists of different frequencies at different times.

@ A simple metaphor for the representation of an acoustic
signal jointly in terms of time and frequency is in a musical
score (D. Gabor, 1949; de Bruijn, 1965).

@ The notion of time-frequency distributions have arisen in
the signal processing and quantum physics communities.
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@ When a particular frequency (note) is to be played at a
particular time, the composer puts a dot at that place on
the time (horizontal) and frequency (vertical) axis.
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@ The musical score can be thought of as
e the energy distribution of the signal f in time and frequency,
and
e as a representation of f in time and frequency variables.
@ Adding the square of the intensities of each note in a
certain time and frequency range gives the energy in the
signal in that region of time-frequency space.

@ At the same time, the signal can be reproduced from the
musical score.
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@ We seek to generalize the idea of the musical score
(L. Cohen, 1966, 1989).

@ For a given f(x), we seek P(x,~), a joint distribution giving
the intensity of f at time x and frequency ~.

@ What properties do we require that P satisfy?
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@ We require that P satisfy the marginals:

| Pxear =R and [ P(xdx = )P

@ The energy of f in a given time range [ty — ¢, fp + €] is

t0+6 l’0+6
/ / P(x,~) dvydx = / |£(x)|? dix.
to— fo—e

@ The energy of f in a given frequency range [yo — 9,70 + 4] is

Yo+9 Yo+6 5
/ / P(x, ) dx dvy = / F(7)[2 dy.
Yo— -4

@ And obviously,

/ / P(x.) dv dx = | f[2.
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@ We would further like to say that the energy of f in the
time-frequency region

[to — €, fg + €] x [vo — 0,70 + ]

fote ryo+o
/ / P(x,~) dv dx.
fo Y

—€ 0—9
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@ From a quantum physics perspective, we would like P(x,~)
to behave as a true probability distribution.

@ The expected value of an observable G is given by

(GF,f) = //g,v x,) dv dx

where the operator G is given as the function g of the
position and momentum operators, i.e.,
G = g(X,(—1/2ri)d/dx), Xf(x) = xf(x).

@ These considerations led to the invention of the Wigner
distribution.
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Definition (Wigner Distribution)

Given f € L2(RY), the Wigner distribution of f, denoted Wf(x,~)
is defined by

Wi(x,v) = - f(x + é) f(x — é) e—2mi(vt) g,

Given f, g € L2(RY), the cross-Wigner distribution is given by

N .
W(fa g)(X,’y) = / f(X + é) g(x = E) e—ZW’(W'f) at.
Rd

@ Introduced by E. Wigner in 1932 in the context of quantum
mechanical measurements.

@ Starting with J. Ville in 1948 it has become popular and
useful in signal analysis.
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Basic properties of W(f, g)

The following hold.

e Iff, g € L2(RY), then W(f,g) € L= n L2(RY) is uniformly
continuous on R29, and Wf is real-valued.

e Iffy, b, g1, g» € L2(RY), Moyal’s formula holds, i.e.
(W(h,91), W(k, 92)) 12(reay = (f1, 2) 12(ra) (91, 92) 2(Rd)-

o Iff, fe L' N L2(RY) then Wf(x,w) satisfies the marginals,
ie.

° /jO WF(x,~) dw = |f(x)[?,

o [ " Wrxy) dt = [F()2,
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e If £(0) # 0 then

1 X :
f(x) = — / WF(Z, t) ™% d.
(%) 70) Juo (5:0)

@ This follows from the fact that the coordinate change

y . Y
(x,y) — <x+ 2,x 2)

is inverted by

s ()

and then applying Fourier inversion.
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Positivity of WF.

@ In order to be a true energy density function, we would like
to say that Wf(x,~) > 0 forall f € L? and (x,~) € R?9. This
only holds for functions of a special form, the generalized
gaussians.

@ However, positivity for Wf can be achieved by taking
averages, i.e., Wf x . This fact can be interpreted as a
form of the uncertainty principle.
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Fora, b > 0 let

Then
@ Wfxoap >0 forallfe2(RY) ifand only if ab > 1.
@ Wixao,p >0 forallf e L2(RY) ifand only ifab > 1.

@ This can be interpreted as saying that the values of
Wi(x,~) at a particular point (x,~) or even in a set
U C R?9 of small area do not have a clear physical
meaning.
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The Short-Time Fourier Transform

@ From the late 1940s, communication engineers took a
different (but related) approach to understanding the joint
time-frequency content of a signal, the spectrogram.

Definition
Given a, b € RY, we define for f € L?(RY) the
@ translation operator, or time shift operator,
Taf(x) = f(x — a), and the
@ modulation operator, or frequency shift operator,
Mpf(x) = €2™(6X) f(x).
Given g € L2(RY), we define the short-time Fourier transform
(STFT) on L2(RY) by

Vof(x,) = /R KO GTE—X) & 27D dt = (1, M, Teg)
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@ V; is also referred to as the voice transform or the
windowed Fourier transform with g being the window
function.

® Vof(x,7) = (N(Tx9)(7)-

@ For fixed window g, the function |Vyf(x,~)[? is called the
spectrogram of f.
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Properties of the STFT

@ For f, g € L2, V,f(x,~) is uniformly continuous on R2? and
bounded with
Voflloo < IIfll2[lgll2-

e Forfixed g € L2, Vg: L2(RY) — [2(R29) and moreover

[ Vafll 2reey = [Ifll 2(re)l| 9| 20y

so that if ||g|| = 1, Vg is an isometry.

@ Moyal’s formula is satisfied, i.e., if fi, f, g1, go € LQ(Rd)
then

(Vg (1), Vo () 12(r20y = (F1s ) 2(Re) (91, 92) 12(Ra)-
@ Vj is invertible with

1

f(t) = ol

[ [, vatten M Teg(t) o et
R2d
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The STFT as a TF Distribution

@ Many of the fundamental properties of the Wigner
distribution follow from those of the STFT by observing that

W(f,g7)(x,7) = 27 &' Vgf(2x, 27)

where g~ (x) = g(—x).
@ Note that although

WH(x,~) = 29 e*01) Vi f(2x, 27),

the time-frequency distribution V;f(x,~) does not satisfy
the marginals.
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Radar Ambiguity Function

The (radar) ambiguity function of f € L?(R) is given by

AF(x,7) = /R e+ 2 (- 5y et

and given g € L?(RY), the cross-ambiguity function by

A(f, 9)(x;7) :/ f(t+ Xy g(t — Xy e2mit g,
R 2 2

@ The radar ambiguity function is due to Woodward, 1953.
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Why “radar”?

@ Suppose that a test signal f(t) is sent from a radar
apparatus a distance r from the source and moving at
velocity v from the source.

@ The echo of f is received with time-shift At (proportional to
the range) and Doppler shift Ay (proportional to the
velocity), i.e.

e(t) = MA'yTAtf-

@ The echo is compared to arbitrary time-frequency shifts of

f, and we compute

|(e, M, Txf)| = |Af(x — At,w — Av)|

@ Maximizing this quantity over all (x,w) gives estimates for
(At, Ay).
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Uncertainty Principles

@ The uncertainty principle can be loosely formulated as
follows.
A function and its Fourier transform cannot
simultaneously be concentrated on small sets.

@ An alternate but related formulation says the following.

The time-frequency distribution of any function
cannot be concentrated on a small set in the
time-frequency plane. This is independent of
which time-frequency distribution is used.
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Classical Uncertainty Principle

Letf € L2(R) and let a, b € R be given. Then

([fo-arieora)” ( [o-srior (h)uz > g

Equality holds if and only if f(x) is a time-frequency shift of a
gaussian o(x) = e=™¢/¢.

@ If ||f]|2 = 1 then |f(x)|? and ]7(7)]2 can be thought of as
probability distributions, and the quantities

min ([ (x-a? 0P dx)”z, min ([ (b2 [0 d7>1/2

as their standard deviations and hence as a measure of
concentration of |f|? and |f|? about their means.
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Proof of the Classical UP

Lemma
Let A and B be self-adjoint operators on a Hilbert space. Then

I(A = a)f|[l|(B - b)f|| = %|<[A, Bif, f)l

for all a, b € R, and f in the domain of AB and BA, where
[A, Bl = AB — BA is the commutator of A and B.

Proof:

(A Blf.f) = ([(A-a),(B-Db)f.f)
= ((B—b)f,(A—a)f) — (A— a)f,(B— b)f)
2i Im((B — b)f, (A — a)f).

Applying Cauchy-Schwarz yields the result.
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Apply the above Lemma to the position and momentum

operators,
—_ 1 !
Xf(x) = xf(x), and Pf(x) = %f (x)
which are self-adjoint and whose commutator is
I (X)) = ———
X, PIf = 5=(xf'(x) = (xf) (x)) = —5 = f(x).

Finally observe that

1/2
0= afle = [ - afif0 ox)

and

_ - 1/2
(P b)fle = (P~ Bl = ([ (2~ b))
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Uncertainty Principle of Donoho and Stark

Theorem (D. Donoho-P. Stark, 1989)
Suppose that for some sets T, Q C RY, f € L?(RY) satisfies

1/2 . 1/2 -
([Li00rax) " <erlile, and ([ feEay) < calfle

Then

ITIIQ| > (1 — €7 — en)?.

@ We say that under the hypotheses of the theorem f and f
are et (resp. eq) concentratedon T (resp. Q).

@ The theorem can be interpreted as saying that any function
must essentially occupy an area of at least one in
time-frequency space.
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Uncertainty Principle for the STFT

Theorem (Lieb 1990, Gréchenig 2001)

Let||fllo = ||gll2 = 1 and suppose that for some ¢ > 0 and

U e R?9,
// Vf(x,7)2 dxdy > 1 — .
U

Then |U| > 29(1 — ¢)2.
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