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Frequency representation

Suppose we are given some function f 2 L2(Rd).
The Fourier transform allows us to realize f as a
superposition of pure frequencies, viz.

bf (�) =
Z

Rd
f (x) e�2⇡ihx ,�i dx , f (x) =

Z

Rd

bf (�) e2⇡ihx ,�i d�.

Parseval’s formula says this realization preserves energy.Z

Rd
|f (x)|2 dx =

Z

Rd
|bf (�)|2 d�.

The Fourier transform of f gives a frequency distribution of
f as well as a frequency representation of f .
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It is a distribution in the sense that on any set S ✓ Rd , the
quantity Z

S
|bf (�)|2 d�

represents the proportion of the function’s energy in that
frequency band.
Also the Fourier Inversion gives a representation of f in
terms of its frequency content.
A mathematically analogous interpretation takes x as the
position variable and � as the momentum variable.
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What is a Time-Frequency distribution/representation?

In the context of acoustic signals f (t), it has long been
recognized that we do not experience the frequency
content of a signal through the usual Fourier paradigm.
Rather than experiencing a signal as either its time
representation, f (t), or its frequency representation, bf (�), a
signal consists of different frequencies at different times.
A simple metaphor for the representation of an acoustic
signal jointly in terms of time and frequency is in a musical
score (D. Gabor, 1949; de Bruijn, 1965).
The notion of time-frequency distributions have arisen in
the signal processing and quantum physics communities.
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When a particular frequency (note) is to be played at a
particular time, the composer puts a dot at that place on
the time (horizontal) and frequency (vertical) axis.
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The musical score can be thought of as
the energy distribution of the signal f in time and frequency,
and
as a representation of f in time and frequency variables.

Adding the square of the intensities of each note in a
certain time and frequency range gives the energy in the
signal in that region of time-frequency space.
At the same time, the signal can be reproduced from the
musical score.
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We seek to generalize the idea of the musical score
(L. Cohen, 1966, 1989).
For a given f (x), we seek P(x , �), a joint distribution giving
the intensity of f at time x and frequency �.
What properties do we require that P satisfy?
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We require that P satisfy the marginals:
Z 1

�1
P(x , �) d� = |f (x)|2 and

Z 1

�1
P(x , �) dx = |bf (�)|2.

The energy of f in a given time range [t0 � ✏, t0 + ✏] is
Z t0+✏

t0�✏

Z 1

�1
P(x , �) d� dx =

Z t0+✏

t0�✏
|f (x)|2 dx .

The energy of f in a given frequency range [�0 � �, �0 + �] is
Z �0+�

�0��

Z 1

�1
P(x , �) dx d� =

Z �0+�

�0��
|bf (�)|2 d�.

And obviously,
Z 1

�1

Z 1

�1
P(x , �) d� dx = kfk2

2.
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We would further like to say that the energy of f in the
time-frequency region

[t0 � ✏, t0 + ✏]⇥ [�0 � �, �0 + �]

is Z t0+✏

t0�✏

Z �0+�

�0��
P(x , �) d� dx .
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From a quantum physics perspective, we would like P(x , �)
to behave as a true probability distribution.
The expected value of an observable G is given by

hGf , f i =
Z 1

�1

Z 1

�1
g(x , �)P(x , �) d� dx

where the operator G is given as the function g of the
position and momentum operators, i.e.,
G = g(X , (�1/2⇡i)d/dx), Xf (x) = xf (x).
These considerations led to the invention of the Wigner
distribution.
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Definition (Wigner Distribution)

Given f 2 L2(Rd), the Wigner distribution of f , denoted Wf (x , �)
is defined by

Wf (x , �) =
Z

Rd
f (x +

t
2
) f (x � t

2
) e�2⇡i(�·t) dt .

Given f , g 2 L2(Rd), the cross-Wigner distribution is given by

W (f , g)(x , �) =
Z

Rd
f (x +

t
2
) g(x � t

2
) e�2⇡i(�·t) dt .

Introduced by E. Wigner in 1932 in the context of quantum
mechanical measurements.
Starting with J. Ville in 1948 it has become popular and
useful in signal analysis.
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Basic properties of W (f , g)

Theorem
The following hold.

If f , g 2 L2(Rd), then W (f , g) 2 L1 \ L2(Rd) is uniformly
continuous on R2d , and Wf is real-valued.
If f1, f2, g1, g2 2 L2(Rd), Moyal’s formula holds, i.e.

hW (f1, g1),W (f2, g2)iL2(R2d ) = hf1, f2iL2(Rd ) hg1, g2iL2(Rd ).

If f , bf 2 L1 \ L2(Rd) then Wf (x ,!) satisfies the marginals,
i.e. Z 1

�1
Wf (x , �) d! = |f (x)|2,

Z 1

�1
Wf (x , �) dt = |bf (�)|2,
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If f (0) 6= 0 then

f (x) =
1

f (0)

Z

Rd
Wf (

x
2
, t) e2⇡iht ,xi dt .

This follows from the fact that the coordinate change

(x , y) 7!
✓

x +
y
2
, x � y

2

◆

is inverted by

(x , y) 7!
✓

x + y
2

, x � y
◆

and then applying Fourier inversion.
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Positivity of Wf .

In order to be a true energy density function, we would like
to say that Wf (x , �) � 0 for all f 2 L2 and (x , �) 2 R2d . This
only holds for functions of a special form, the generalized
gaussians.
However, positivity for Wf can be achieved by taking
averages, i.e., Wf ⇤ �. This fact can be interpreted as a
form of the uncertainty principle.
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Theorem
For a, b > 0 let

�a,b(x , �) = e
�2⇡

✓
x2
a + �2

b

◆

.

Then
Wf ⇤ �a,b > 0 for all f 2 L2(Rd) if and only if ab > 1.
Wf ⇤ �a,b � 0 for all f 2 L2(Rd) if and only if ab � 1.

This can be interpreted as saying that the values of
Wf (x , �) at a particular point (x , �) or even in a set
U ✓ R2d of small area do not have a clear physical
meaning.
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The Short-Time Fourier Transform

From the late 1940s, communication engineers took a
different (but related) approach to understanding the joint
time-frequency content of a signal, the spectrogram.

Definition
Given a, b 2 Rd , we define for f 2 L2(Rd) the

translation operator, or time shift operator,
Taf (x) = f (x � a), and the
modulation operator, or frequency shift operator,
Mbf (x) = e2⇡i(b·x) f (x).

Given g 2 L2(Rd), we define the short-time Fourier transform
(STFT) on L2(Rd) by

Vgf (x , �) =
Z

Rd
f (t) g(t � x) e�2⇡i(t ·�) dt = hf ,M�Txgi.
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Vg is also referred to as the voice transform or the
windowed Fourier transform with g being the window
function.
Vgf (x , �) = \(f )(Txḡ)(�).
For fixed window g, the function |Vgf (x , �)|2 is called the
spectrogram of f .
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Properties of the STFT

For f , g 2 L2, Vgf (x , �) is uniformly continuous on R2d and
bounded with

kVgfk1  kfk2kgk2.

For fixed g 2 L2, Vg : L2(Rd) ! L2(R2d) and moreover

kVgfkL2(R2d ) = kfkL2(Rd )kgkL2(Rd )

so that if kgk = 1, Vg is an isometry.
Moyal’s formula is satisfied, i.e., if f1, f2, g1, g2 2 L2(Rd)
then

hVg1(f1),Vg2(f2)iL2(R2d ) = hf1, f2iL2(Rd ) hg1, g2iL2(Rd ).

Vg is invertible with

f (t) =
1

kgk2

Z Z

R2d
Vgf (x , �)M�Txg(t) d� dt .
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The STFT as a TF Distribution

Many of the fundamental properties of the Wigner
distribution follow from those of the STFT by observing that

W (f , g�)(x , �) = 2d e4⇡i(x ·�) Vgf (2x , 2�)

where g�(x) = g(�x).
Note that although

Wf (x , �) = 2d e4⇡i(x ·�) Vf� f (2x , 2�),

the time-frequency distribution Vf f (x , �) does not satisfy
the marginals.
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Radar Ambiguity Function

Definition
The (radar) ambiguity function of f 2 L2(Rd) is given by

Af (x , �) =
Z

Rd
f (t +

x
2
) f (t � x

2
) e�2⇡i(�·t) dt .

and given g 2 L2(Rd), the cross-ambiguity function by

A(f , g)(x , �) =
Z

Rd
f (t +

x
2
) g(t � x

2
) e�2⇡i(�·t) dt .

The radar ambiguity function is due to Woodward, 1953.
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Why “radar”?

Suppose that a test signal f (t) is sent from a radar
apparatus a distance r from the source and moving at
velocity v from the source.
The echo of f is received with time-shift �t (proportional to
the range) and Doppler shift �� (proportional to the
velocity), i.e.

e(t) = M��T�t f .

The echo is compared to arbitrary time-frequency shifts of
f , and we compute

|he,M!Txf i| = |Af (x ��t ,! ���)|

Maximizing this quantity over all (x ,!) gives estimates for
(�t ,��).
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Uncertainty Principles

The uncertainty principle can be loosely formulated as
follows.

A function and its Fourier transform cannot
simultaneously be concentrated on small sets.

An alternate but related formulation says the following.
The time-frequency distribution of any function
cannot be concentrated on a small set in the
time-frequency plane. This is independent of
which time-frequency distribution is used.
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Classical Uncertainty Principle

Theorem
Let f 2 L2(R) and let a, b 2 R be given. Then

✓Z

R
(x�a)2 |f (x)|2 dx

◆1/2 ✓Z

R
(��b)2 |bf (�)|2 d�

◆1/2
� 1

4⇡
kfk2

2.

Equality holds if and only if f (x) is a time-frequency shift of a
gaussian '(x) = e�⇡x2/c.

If kfk2 = 1 then |f (x)|2 and |bf (�)|2 can be thought of as
probability distributions, and the quantities

min
a2R

✓Z

R
(x�a)2 |f (x)|2 dx

◆1/2
, min

�2R

✓Z

R
(��b)2 |bf (�)|2 d�

◆1/2

as their standard deviations and hence as a measure of
concentration of |f |2 and |bf |2 about their means.
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Proof of the Classical UP

Lemma
Let A and B be self-adjoint operators on a Hilbert space. Then

k(A � a)fkk(B � b)fk � 1
2
|h[A,B]f , f i|

for all a, b 2 R, and f in the domain of AB and BA, where
[A,B] = AB � BA is the commutator of A and B.

Proof:

h[A,B]f , f i = h[(A � a), (B � b)]f , f i
= h(B � b)f , (A � a)f i � h(A � a)f , (B � b)f i
= 2i Imh(B � b)f , (A � a)f i.

Applying Cauchy-Schwarz yields the result.
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Apply the above Lemma to the position and momentum
operators,

Xf (x) = x f (x), and Pf (x) =
1

2⇡i
f 0(x)

which are self-adjoint and whose commutator is

[X ,P]f =
1

2⇡i
(xf 0(x)� (xf )0(x)) = � 1

2⇡i
f (x).

Finally observe that

k(X � a)fk2 =

✓Z

Rd
(x � a)2|f (x)|2 dx

◆1/2

and

k(P � b)fk2 = k \(P � b)fk2 =

✓Z

Rd
(� � b)2|bf (�)|2 d�

◆1/2
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Uncertainty Principle of Donoho and Stark

Theorem (D. Donoho-P. Stark, 1989)

Suppose that for some sets T , ⌦ ✓ Rd , f 2 L2(Rd) satisfies

✓Z

T c
|f (x)|2 dx

◆1/2
< ✏Tkfk2, and

✓Z

⌦c
|bf (�)|2 d�

◆1/2
< ✏⌦kbfk2.

Then
|T ||⌦| � (1 � ✏T � ✏⌦)

2.

We say that under the hypotheses of the theorem f and bf
are ✏T (resp. ✏⌦) concentrated on T (resp. ⌦).
The theorem can be interpreted as saying that any function
must essentially occupy an area of at least one in
time-frequency space.
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Uncertainty Principle for the STFT

Theorem (Lieb 1990, Gröchenig 2001)
Let kfk2 = kgk2 = 1 and suppose that for some ✏ > 0 and
U 2 R2d , Z Z

U
|Vgf (x , �)|2 dx d� � 1 � ✏.

Then |U| � 2d(1 � ✏)2.
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