
Mathematics, Signal Processing and Linear Systems

New Problems and Directions

Chapman University, November 14-19, 2017

Abstracts





Linear Stochastic Systems and a new family of Topological Algebras

Daniel Alpay

Schmid College of Science and Technology, Chapman University

alpay@chapman.edu

Motivated by the theory of non commutative stochastic distributions, we introduce algebras which are
inductive limits of Banach spaces and carry inequalities which are counterparts of the inequality for the norm
in a Banach algebra. We then define an associated Wiener algebra, and prove the corresponding version of
the well-known Wiener theorem. Finally, we consider factorization theory in these algebra, and in particular,
in the associated Wiener algebra. The talk is based on joint works with Palle Jorgensen and Guy Salomon.
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The Bounded Real Lemma for nonrational operator-valued transfer functions

Joseph A. Ball, Gilbert Groenewald and Sanne ter Horst

joball@math.vt.edu

The Bounded Real Lemma characterizes in terms of the system matrix [A B
C D ] when a rational matrix

function F (λ) realized in the form F (λ) = D + λC(I − λA)−1B has analytic continuation to a Schur-class
function (i.e., holomorphic on the unit disk D with contractive matrix values). The characterization is in
terms of existence of a positive definite solution H of a Linear Matrix Inequality (the Kalman-Yakubovich-
Popov (KYP) inequality). Recent extensions ([1], [2]) of this result to nonrational operator-valued functions
involve a number of different settings (with or without controllability/observability or stability assumptions,
with or without strict inequalities). In these various settings sometimes unbounded solutions of the KYP
inequality are required while in other instances bounded solutions suffice. In this talk we show how an
operator-theoretic approach reconciles and unifies these diverse results.
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Hardy Hodge decomposition of vector fields

Laurent Baratchart, Dang Pei and Qian Tao

laurent.baratchart@inria.fr

We show that on a smooth compact hypersurface embedded in Rn, a Lp vector with 1 < p <∞ field is
uniquely the sum of the trace of a harmonic gradient in the unbounded component of the complement, of
the trace of a harmonic gradient in the bounded component, and of a tangent divergence free vector field.
On a Lipschitz hypersurface, the result continues to hold but for restricted range of p. The decomposition
generalizes both the Helmholtz-Hodge decomposition on amanifold and the decomposition of a complex
function on a curve in the plane as the sum of two Hardy functions. This is joint work with D. Pei and Q.
Tao.

Arrhythmia Classification Feature Extraction with Symlet Wavelets

Alexander Barrett, Cyril Rakovski, Mohamed Allali, Anthony Chang

Chapman University - MI3, CHOC Children’s Hospital

barre110@mail.chapman.edu

The electrocardiogram (ECG) is an efficient tool to assess heart health and diagnose heart arrhythmias
(irregular heartbeats) by capturing the heart′s electrical activity. Atrial Fibrillation (AF) is one the most
common serious arrhythmias and is therefore of particular interest to diagnose. We focus on training a
classifier to automatically detect if an arrhythmia is present in an ECG and distinguish whether or not the
arrhythmia is AF. To accomplish this, we first preform 6-level wavelet decomposition with a Symlet5 wavelet
on each ECG signal to help isolate and detect the QRS complex, T-wave, and P-wave components of the
ECG (these components play a key role in diagnosing arrhythmias) [1]. We then extract different features
associated with each of these components as well as use several summary statistics of the wavelet coefficients
themselves as features for our model [2]. Finally, we reduce the feature space with principal component
analysis (PCA) to the most significant principal components from which we will train a multinomial logistic
regression classifier. We train our model on a labelled data set (collected from the portable AliveCor ECG
device) containing the following 4 classes: normal, AF, other arrhythmia, or noisy. The data set contains
8528 single lead ECG recordings lasting from 9 to 60 seconds, each of which were sampled at 300 Hz. Wavelet
decomposition was performed in Python with the Pywavelet package and the statistical analysis and model
building was done in R.
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Couplings of differential operators

Jussi Behrndt

Graz University of Technology

behrndt@tugraz.at

In this talk we discuss orthogonal sums of ordinary and partial differential operators on unions of bounded
and unbounded intervals and domains, respectively. It will be shown in which way the natural selfadjoint
realization on the union of the intervals or domains is related to the orthogonal sums of the individual
operators, and the resolvent differences are expressed via a Krein type formula in terms of Titchmarsh-Weyl
functions or Dirichlet-to-Neumann maps.

On the outlying eigenvalues of a polynomial in
large independent random matrices

S. T. Belinschi and H. Bercovici, M. Capitaine

CNRS - Institut de Mathématiques de Toulouse

serban.belinschi@math.univ-toulouse.fr

Consider a selfadjoint polynomial P (X,Y ) in two noncommuting selfadjoint indeterminates. In this talk,
we will discuss the asymptotic eigenvalue behavior of the random matrix P (AN , BN ), where AN and BN
are independent random matrices and the distribution of BN is invariant under conjugation by unitary
operators. We assume that the empirical eigenvalue distributions of AN and BN converge almost surely to
deterministic probability measures µ and ν, respectively. In addition, the eigenvalues of AN and BN are
assumed to converge uniformly almost surely to the support of µ and ν, respectively, except for a fixed finite
number of fixed eigenvalues (spikes) of AN . It is known that the empirical distribution of the eigenvalues
of P (AN , BN ) converges to a certain deterministic probability measure ΠP , which is described in terms of
Voiculescu’s free probability. In addition, when there are no spikes, the eigenvalues of P (AN , BN ) converge
uniformly almost surely to the support of ΠP . When spikes are present, we show that the eigenvalues of
P (AN , BN ) still converge uniformly to the support of ΠP , with the possible exception of certain isolated
outliers whose location can be determined in terms of µ, ν, P and the spikes of AN . A similar result is known
in the case when BN is a Wigner matrix. The relation between outliers and spikes is described using the
operator-valued subordination functions of free probability theory. These results extends known facts from
the special case in which P (X,Y ) = X + Y (see [2, 3]). The talk is based on the preprint [1].
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Quasi-monogenic functions

Swanhild Bernstein

TU Bergakademie Freiberg, Institute of Applied Analysis, Germany
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The Hilbert transform and the Riesz transforms are important operators in Harmonic and Clifford anal-
ysis. The Riesz-Hilbert transform is the phase of the Dirac operator. We construct a class of first order
operators with Fourier symbol

FDH = |ω|h(ω),

where

• h is an L2-multiplier.

• The associated transform should be invertible.
We ensure this by h(ω)h(ω)

CH
= 1.

• The Riesz-Hilbert transform (and it’s Fourier symbol) should be (para-) vector-valued.

• The Riesz-Hilbert transform will be self-adjoint if h = −h.

A function u is left quasi-monogenic in Rn+1 iff (∂x0 +DH)u = 0.
We consider a construction of quasi-monogenic functions and an associated Hardy space decomposition

and some examples of generalized Riesz-Hilbert transforms associated to quasi-monogenic functions and
generalized Dirac operators.

Linear systems associated with regular noncommutative
formal power series

Vladimir Bolotnikov and Joseph A. Ball

The College of William and Mary

vladi@math.wm.edu

Let F+
d be the unital free semigroup generated by d letters {1, . . . , d}, and let p(z) =

∑
α∈F+

d

pαz
α be a

formal power series in d formal noncommuting variables z = (z1, . . . , zd) with scalar coefficients pα ∈ C such
that p∅ = 0, pα > 0 if |α| = 1, and pα ≥ 0 for all α ∈ F+

d . By zα (and also Aα for a d-tuple of Hilbert space
operators) we mean

zα = ziN ziN−1
· · · zi1 and Aα = AiNAiN−1

· · ·Ai1 if α = iN iN−1 · · · i1 ∈ Fd.

For a fixed integer n ≥ 1, we associate with p the positive weight ω = {ωp,n;α}α∈F+
d

via the equality

∑
α∈F+

d

ω−1p,n;αz
α =

∞∑
j=0

(
n+ j − 1

j

)
(p(z))j ,



and then the weighted linear system

x(1α) =
ωp,n;α
ωp,n;1α

A1x(α) +
1

ωp,n;1α
B1,αu(α)

...
...

...

x(dα) =
ωp,n;α
ωp,n;dα

Adx(α) +
1

ωp,n;dα
Bd,αu(α)

y(α) = Cx(α) + ω−1p,n;αDαu(α).

(1)

with a d-tuple A = (A1, . . . , Ad) of state space operators Aj : X → X , the state-output operator C : X → Y,
and a family of colligation matrices and the family of input spaces indexed by α ∈ F+

d :

Uα =

[
A B̂α
C Dα

]
:

[
X
Uα

]
→
[
X d
Y

]
, where A =

A1

...
Ad

 , B̂α =

B1,α

...
Bd,α

 . (2)

Associated with the system (1) are the observability operator Op,n;C,A : x 7→
∑
α∈F+

d

(ω−1p,n;αCA
αx)zα and

the family of transfer functions. Under certain metric constraints imposed on the colligation matrices (2).
the operator Op,n;C,A maps the state space X into (or onto) the weighted Hardy-Fock space H2

ωp,n(F+
d ) ={∑

α∈F+
d

fαz
α :

∑
α∈F+

d

ωp,n;α · |fα|2 <∞
}

, while transfer functions are Bergman-inner power series inH2
ωp,n(F+

d )

and provide a version of the Beurling-Lax theorem in this space.

Non-Commutative Harmonic Analysis for ternary Clifford algebras

Paula Cerejeiras

CIDMA, Department of Mathematics, University of Aveiro, Portugal

Universidade Aveiro

pceres@ua.pt

The Dirac operator in standard Clifford Analysis describes Fermions as well as general SU(2)-symmetries.
But, motivated by N-body systems, there is a high interest in the study of SU(n)-symmetries, for instance,
the SU(3) symmetries arise from the 3-body problem or from diffraction in optics. In this talk we look to
an approach to study Dirac operators co-variant under such symmetries based on ternary Clifford algebras.
We describe fractional derivatives and higher order decompositions of the Laplacian with respect to these
algebras and provide the basic tools for a function theory in this setting.



Semicircular Elements Induced by Orthogonal Projections
Signals with Statistical Data?

Ilwoo Cho and OTHER AUTHORS

St. Ambrose Univ., Dept. of Math. and Stat.

choilwoo@sau.edu

Starting from mutually orthogonal integer-many projections in a fixed C∗-probability space, we construct
a corresponding Banach ∗-probability space generated by semicircular elements induced by the projections.
The construction, itself, is the main result of this talk, and it may provide a certain way to establish signal
processing, equipped with, or determined by the semicircular law.
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An introduction to Aharonov-Berry superoscillations

Fabrizio Colombo

University of Milano

fabrizio.colombo@polimi.it

Aharonov-Berry superoscillations are band-limited functions that can oscillate faster than their fastest
Fourier component. This is mathematically possible because the coefficients of the linear combinations of
the band limited components depend on the number of components. This phenomenon was discovered in the
context of quantum physics, but it has important applications in several research fields, including metrology,
antenna theory, and superresolution in optics. In this talk we give an introduction to the mathematical
theory developed in the recent years.



On Szegő’s theorem for polynomials
orthogonal in an indefinite metric

Maxim Derevyagin and Brian Simanek

The University of Mississippi

derevyagin.m@gmail.com

We will discuss a non-classical case of orthogonal polynomials on the unit circle (abbreviated by OPUC).
Namely, it is the case when only a finite number of Verblunsky coefficients lie outside the closed unit disk. In
particular, we will consider how this case is related to pseudo-Carathéodory functions, which are an efficient
tool to approach various problems arising in digital signal processing and circuits and systems theory.

The main goal will be to show how to carry over the OPUC machinery to this nonstandard situation. As
a consequence, we will be able to prove Szegő’s theorem in the considered case and get asymptotic results
for the corresponding orthogonal polynomials.
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Spectral factorization of invertible semi-separable systems via inner-outer factorization

Patrick Dewilde

TUM Institute of Advanced Study

p.dewilde@me.com

The talk elucidates the connection between inner-outer factorization and (general) spectral factorization
for a (mixed causal-anticausal) semi-separable (or quasi-separable) system. A general spectral factorization
of an invertible system splits the system in a product of an outer system with a conjugate outer system. It
turns out that such a spectral factorization can be obtained from a single inner-outer factorization based on
a well-chosen realization of the original mixed system. Necessary and sufficient conditions for existence also
follow. The result leads to an algorithm for spectral factorization that uses only orthogonal transformations.
Reference
P. Dewilde, On the lu-factorization of infinite systems of semi-separable equations. Indagationes Mathemat-
icae, 23:1028-1052, 2012.



Matrix convex sets without absolute extreme points

Eric Ever

Department of Mathematics, University of California at San Diego

eevert@ucsd.edu

Let Mn(S)g denote g-tuples of n × n complex self-adjoint matrices. Given tuples X = (X1, . . . , Xg) ∈
Mn1

(Sg) and Y = (Y1, . . . , Yg) ∈Mn2
(S)g, a matrix convex combination of X and Y is a sum of the form

V ∗1 XV1 + V ∗2 Y V2 V ∗1 V1 + V ∗2 V2 = In

where V1 : Mn(R) → Mn1 and V2 : Mn(R) → Mn2 are contractions. Matrix convex sets are sets which
are closed under matrix convex combinations. A key feature of matrix convex combinations is that the
g-tuples X,Y , and V ∗1 XV1 + V ∗2 Y V2 do not need to have the same size. As a result, matrix convex sets are
a dimension free generalization of convex sets.

While in the classical setting there is only one good notion of an extreme point, there are three natural
notions of extreme points for matrix convex sets: Euclidean, matrix, and absolute extreme points. A central
goal in the theory of matrix convex sets is to determine if one of these notions of extreme points for matrix
convex sets is minimal with respect to spanning.

Matrix extreme points are the most restricted type of extreme point known to span matrix convex sets;
however, they are not necessarily the smallest set which does so. Absolute extreme points, a more restricted
type of extreme points that are closely related to Arveson’s boundary, enjoy a strong notion of minimality
should they span. However, until recently it has been unknown if general matrix convex sets are spanned by
their absolute extreme points.

This talk will give a class of closed bounded matrix convex sets which do not have absolute extreme
points. The sets considered are non-commutative sets, KX , formed by taking matrix convex combinations
of a single tuple X. In the case that X is a tuple of compact operators with no nontrivial finite dimensional
reducing subspaces, KX is a closed bounded matrix convex set with no absolute extreme points. This result
shows that matrix convex sets may fail to be spanned by their absolute extreme points and suggests that
there is no natural notion of extreme point for matrix convex sets which is minimal with respect to spanning.



THOUGHTS ON OPTIMAL CONTROL

Paul A. Fuhrmann

Department of Mathematics /Ben Gurion University

fuhrmannbgu@gmail.com

The purpose of this talk is to outline a, seemingly new, approach to a wide variety of optimal control
problems for linear, causal, time-invariant systems. This approach has the advantages of not being restricted
to finite-dimensional systems, and has extensions to optimization problems for various classes of transfer
functions, including positive real and bounded real functions.

Control theory has developed over the years into a very broad subject, making it difficult to get a good
grasp on the various aspects of the subject and the way they are related. Even restricting ourselves to linear,
time-invariant, systems, this difficulty is enhanced by the wide choice of system descriptions. We can choose
to use external, that is input/output descriptions, or internal descriptions, namely models that explain the
external behavior of the given system. Models are far from unique and state space models are but one of
many. In fact, even if state space is the form we may prefer for computational purposes, it may not be the
best representation for the analysis, and solution, of most control problems. There is another choice to be
made due to the possibility of passing on, using various transforms, from the time domain to the frequency
domain. In many cases, the frequency domain provides a setting with a richer functional structure that
facilitates the solution of the problems of interest.

Apart from the setting, there is a wide variety of control problems to be considered. These include
robust stabilization, model reduction, optimal regulator and estimation problems. In order to gain a good
understanding of the subject, it is not enough to find a solution to any particular problem. It is of utmost
importance to also clarify the relations between different aspects of the theory. Thus, whenever possible, we
indicate different approaches to a particular result.

The choice we made is to work mostly in the frequency domain setting, in particular in the use of vectorial
Hardy spaces H2

± as signal spaces and co-invariant subspaces as state spaces for the system. This choice
has the additional advantage of being able to use the algebraic theory, emphasizing the polynomial module
structure, as a guide.

Although the technicalities of polynomial model based system theory for discrete time linear systems over
an arbitrary field are vastly different from the Hardy space based theory for some classes of continuous-time
systems there are strong algebraic similarities. These, with the help of heavy analytic tools, can be used
to extend the algebraic approach to a wide variety of optimal control and estimation problems for several
classes of, not necessarily rational, analytic functions. Due to the underlying Hilbert space structure of
Hardy spaces, the treatment of optimal control problems are greatly simplified. As we shall try to show,
this has the potential of leading to a grand unification of optimal control theory. Thus, (doubly) coprime
factorizations over H∞± play a central role. Although many of the theorems we use are true in appropriate
infinite dimensional setting, presently, we shall deal mostly with the finite dimensional case. Other than
studying infinite dimensional systems, this opens up the possibility of extending the methods to other
settings as, for example to special classes of systems (positive real, bounded real). Another challenging
direction for future research is to extend optimal control theory to deal with complexity, that is, to networks
of systems, using local optimality results for the nodes as well as the interconnection data.

Here, in telegraphic style, is an outline of the suggested approach to optimal control theory for stable



systems. It is based on [7].

• Describe the optimization problems in the time domain from the input/output point of view. Choose
the signal spaces to be L2

(−∞,∞) spaces. Introduce the left and right translation groups. Describe the

input/output map in terms of a convolution integral with an appropriate kernel. Characterize causality
and boundedness.

• Use the Fourier-Plancherel transform, and the Paley-Wiener theorems, to reformulate the setting to
that of the Hardy spaces H2

± setting. Introduce in the Hardy spaces the H∞± -module structure.

• Discuss stability, transfer functions. Identify the restricted input/output map with a Hankel opera-
tor. Characterize Hankel operators as H∞− -module homomorphisms with respect to the H∞− -module
structures of the Hardy spaces H2

±.

• Use the Beurling-Lax characterizations of invariant subspaces, See [1, 10]. Relate the kernel and image
of the Hankel operator to the Douglas-Shapiro-Shields factorizations, that is coprime factorizations
over H∞− , see [2, 4].

• Discuss how inner functions are derived through spectral factorizations, or alternatively, by solving a
Lyapunov equation or, alternatively, a homogeneous Ricatti equations.

• Use the Kalman approach to realizations as factorizations to identify the restricted Hankel operator,
that is the map from the orthogonal complement of the kernel to the range, as a reachability operator.
Both these subspaces are called model spaces and play a central role as state spaces.

• Explain the connection between Hankel operators and intertwining maps, that is H∞± -homomorphisms,
between model spaces.

• Explain how an H∞± -isomorphism can be inverted by solving a Bezout equation, as in [3], or, even
better, by embedding an intertwining relation in a doubly coprime factorization.

• Apply this invertibility procedure to the solution of optimal control problems.

• State the solution in terms of a state space realization.

So far we outlined the frequency domain solution to the optimal control problem for the case of a stable,
H∞+ transfer function.. This can be taken as a intermediate step towards the analysis of the general, not
necessarily stable, case. We present the basic ideas in the same condensed style as before. Some of the ideas
and results presented owe much to a cooperation with Raimund Ober in the early 1990s and a long term
one with Uwe Helmke, culminating in [8].

• Given the strictly proper transfer function G(s), construct a normalized coprime factorizations of the
form

G = NrM
−1
r = M−1` N`, (3)

with all factors in H∞+ and the normalization conditions(
M∗r N∗r
−N` M`

)(
Mr −N∗`
Nr M∗`

)
=

(
I 0
0 I

)
satisfied.



• Derive state space representatins for all the the factors, see [9].

• Derive stabilizing controllers, having the coprime factorization representations K = UrV
−1
r = V −1` U`

by solving the Bezout equations V`Mr +U`Nr = I and M`Vr +N`Ur = I. Embed in a doubly coprime
factorization (

V` U`
−N` M`

)(
Mr −Ur
Nr Vr

)
=

(
I U`Vr − V`Ur
0 I

)
,

• Show the existence of a unique, stabilizing, controller for which the characteristic function RL,
defined by

RL := U∗rMr − V ∗r Nr = M`U
∗
` −N`V ∗`

is in H∞+ and has the DSS factorization over H∞− , given by

RL = Φ∗JSJ = SKΦ∗K .

For more on characteristic functions, see [5]

• Show that (
J1
J2

)
:=

(
−N∗`
M∗`

)
SK(

K1 K2

)
:= SJ

(
M∗r N∗r

)
,

with Ji,Ki ∈ H∞+ .

• Show that
KerH( −N` M`

) = Ω∗JH
2
−,

ImH( −N` M`

) = H+(SK) = {SKH2
+}⊥.

KerH Mr

Nr

 = S∗JH
2
−,

ImH Mr

Nr

 = H+(ΩK) = {ΩKH2
+}⊥,

where the inner functions are given by

ΩJ =

(
−N` M`

K1 K2

)
ΩK =

(
Mr J1
Nr J2

)
.

• Show that all the maps defined in the following table are H∞− -isomorphisms with respect to the ap-
propriate H∞− -module structures.



Map Intertw. Relation Hom

ZK : H+(ΩK) −→ H+(SK)

ZK

(
f1

f2

)
= P+

(
−U∗

r V ∗
r

)( f1

f2

)
( Φ∗

K I )

(
M∗

r N∗
r

J∗
1 J∗

2

)
= S∗K ( −U∗

r V ∗
r ) H∞−

Z−1
K : H+(SK) −→ H+(ΩK)

Z−1
K f = P+

(
−N∗

`

M∗
`

)
f

(
M∗

r N∗
r

J∗
1 J∗

2

)(
−N∗

`

M∗
`

)
=

(
0
I

)
S∗K H∞−

WJ : H−(S∗
J) −→ H−(Ω∗

J)

WJh = PH−(Ω∗
J

)

(
V ∗`
U∗`

)
h

(
V ∗
`

U∗
`

)
S∗J =

(
−N∗

` K∗
1

M∗
` K∗

2

)(
−Φ∗

J

I

)
H∞−

W−1
J : H−(Ω∗

J) −→ H−(S∗
J)

W−1
J h = PH−(S∗

J
) ( M∗r N∗r )

(
h1
h2

) ( M∗
r N∗

r )

(
−N∗

` K∗
1

M∗
` K∗

2

)
= S∗J ( 0 I ) H∞−

H( −N` M`

) : H−(Ω∗
J) −→ H+(SK)

H( −N` M` )

(
h1

h2

)
= P+

(
−N` M`

)( h1

h2

) ( I 0 )

(
−N` M`

K1 K2

)
= SK ( J∗

1 J∗
2 ) H∞−

HR : H−(S∗
J) −→ H+(SK)

HRh = P+Rh
Φ∗JSJ = SKΦ∗K H∞−

H( Mr
Nr

) : H−(S∗
J) −→ H+(ΩK)

H( Mr
Nr

)h = P+

(
Mr

Nr

)
h

(
K∗

1

K∗
2

)
SJ =

(
Mr J1

Nr J2

)(
I
0

)
H∞−

H : H−(Ω∗
J) −→ H+(ΩK)

H = H( Mr
Nr

)
( M∗r N∗r )

(
h1

h2

)
H∞−

• Explain how all these maps are associated with appropriate optimal control problems. These maps are
strongly interrelated through the following commutative diagram.

H−(S∗J)

H+(ΩK)H−(Ω∗J)

H+(SK)

?

6
H
HHH

HHH
HHH

HHH
HHHHj

-

-

��
�
��

�
��

�
��

�
��

�
��*

WJ ZK

HRL

H( −N∗`
M∗`

)
( −N` M` )

H( −N` M` )
H( Mr
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• Use this diagram, to obtain related ones by applying the adjoint operation to all maps, or, using doubly
coprime factorizations, inverting the maps. For example, problems of robust control turn this way into
problems of model reduction. In this connection, see [6]. Most of these connections have not yet been
worked out.

As the saying goes ”god, (or the devil), lies in the details”. It can be easily seen, from glancing at the
brief outline, that there is an enormous amount of details needed to tell the full story and that would require
a monograph. Whether I can do it myself remains to be seen.
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We overview recent results on generalizations of Wasserstein geometry, originally defined on the space
of scalar probability densities, to the space of Hermitian matrices and of matrix-valued distributions and
vector-valued distributions on continuous as well as discrete spaces (graphs and networks). We follow a
control-theoretic optimization formulation of the Wasserstein-2 metric, having its roots in fluid dynamics
(due to Benamou and Brenier). We make contact with the mathematics of quantum mechanics and, in
particular, we show that the Lindblad equation of open quantum systems represents gradient flow of the
quantum entropy relative to a matricial Wasserstein metric. These result was announced in [1]. At about
the same time as [1], closely related approaches showing that the Lindblad equation is a gradient flow, were
formulated independently and simultaneously in [2,3]. Generalizations, extentions, and further developments
are detailed in [4,5,6,7].
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The computational workload required to implement a digital signal processing filter is proportional to
the ratio of sample rate to spectral transition bandwidth. Large ratios indicate poor condition number
for the computations and make the implementation costs prohibitive. Often, small transition bandwidth
is associated with narrow passband bandwidth which means we also have a large ratio of sample rate to
filter bandwidth and the sample rate far exceeds the required Nyquist rate for the filtering process. We
improve condition number and reduce implementation cost by a sequence of three processing tasks. We first
perform an input signal conditioning operation with an M−path filter that performs M−to-1 bandwidth
and sample rate reduction. This is followed by a filter that the implements the desired filter specifications at
the reduced sample rate. This filter operating at 1

M -th sample rate has 1
M -th of the number of taps and is

performed at 1
M -th sample rate for a workload reduction on 1

M2 . The filtered signal is then processed by an
M -path filter that performs the dual task of 1−to-M up-sampling while preserving the reduced bandwidth.
The cost of the M−to-1 down sampling and the 1−to-M up sampling filters is shown to be surprisingly
small. The total workload of the three cascade filter chain is usually an order of magnitude below that of
the original direct implementation. There are filtering tasks for which large ratio of sample rate to transition
bandwidth does not correspond to a commensurately large ratio of sample rate to passband bandwidth and
the sample rate reduction appears not to be a viable method to improve the algorithm condition number.
This paper describes a technique that uses Mpath perfect reconstruction (PR) non-maximally decimated
filter banks (NMDFBs) to form multiple narrow bandwidth filters that span the sample rate spectral span.
The cascade resampling operation is applied to each narrowband sub-channel which supports the desired
significant workload reduction and condition number improvement. The multiple base-banded narrowband
signals are recombined in an M-path synthesis filter. Here again we find the computational costs to perform
the M -path M

2 −to-1 and M−path 1−to-M2 analysis and synthesis filter banks represents a small increase
relative to the single channel cascade. The first benefit of this process is that the computational workload of
the cascade analysis-synthesis filter bank filter implementation is typically an order of magnitude below that
of the tapped delay line, direct implementation, of the same filter. A second benefit is that a high data rate
input time series is partitioned into a set of multiple, reduced sample rate, intermediate time series processed
by reduced speed parallel arithmetic processors. This process enables simple, reduced cost, processing of
input signals with GHz sample rates.
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One of the main developments in optimization over the last 15 years is Semi-Definite Programming. It
treats problems which can be expressed in terms of Linear Matrix Inequalities (LMIs). Any such problem is
necessarily convex, so determining the scope and range of applicability comes down to the question:

How much more restricted are LMIs than Convex Matrix Inequalities?
Two different classes of problems naturally arise. The first considers inequalities in which the coefficients

are matrices, and the unknowns are real variables (vectors in Rn). Studying such inequalities requires a
mixture of matricial functional analysis, algebraic geometry and real algebraic geometry. Much of the recent
progress has been due to Claus Scheiderer.

Another class of problems involves inequalities in which the unknowns are also matrices. In this situation,
the dimension of the matrices is generally not specified or relevant. Such problems arise in linear systems
engineering. These dimension free problems lead directly to a new area, which might be called free real
algebraic geometry.

Owing to new developments, we now have some understanding of the scope of LMI methods. The talk
will describe the current situation.

Operator algebras and signal processing
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A fundamental tool in multi-band signal processing is the design of filters which serve to break up an input-
signal, speech or image, along a prescribed set of frequency-bands (for example low-pass and high-pass). The
input signal itself is a discrete-time signal, and so the frequency variable is complex, the frequency-response.
A main requirement is that separate frequency components be uncorrelated (so orthogonal with reference to
a Hilbert space.) That is required for transmission, and the receiver’s output signal is then merged from its
band components. As it turns out, the construction of such filters amounts to realizations of representations
of a certain algebra of operators On, generated by a finite number n of isometries, one for each band, having
mutually orthogonal ranges, and summing to the identity. Hence the output is a faithful version of the
input-signal.

The early work on On was initiated by J. Cuntz in the 1970s, and the algebra On is often named after
him. (At the time, no one expected any connections to signal processing at all.) While representations of
the On algebras are of interest in their own right, and enter into the analysis of systems of non-commuting
operators; the subject has by now proved to be of independent interest. Because of recent joint work with
Alpay and Lewkowicz, we shall focus here on representations that arise from this application to sub-band



filters in signal processing. In the talk, we outline an account of joint results on the use of representations
of the On-relations arising in these filter problems; and it even includes applications to the study of fractals,
and geometric measure theory.

The versatility is not surprising since Cuntz algebras, as C∗-algebras are infinite, and by their nature, their
representations reflect intrinsic self-similarity, characterizing the problem at hand. Thus the representations
serve to encode sub-bands, and more generally iterated function systems (IFSs), their dynamics, and their
self-similar measures. At the same time of Cuntz? paper, the On -representations offered a new non-
commutative harmonic analysis. Although the Cuntz-algebras initially entered into the study of operator-
algebras and physics, it is only in recent years, the study of their representation, has blossomed, and it has
found increasing use in a multitude of applied problems, including wavelets, fractals, and signals.

Compressed sensing in Quaternionic analysis
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We study the problem of compressed sensing for quaternionic Fourier matrices as arising in color repre-
sentation of images. We will show that such matrices are allowing a sparse reconstruction by means of an
l1-minimization with high probability. We will give explicit expressions for this probability and show how
this method can be used for other discrete Fourier transforms. Examples of sparse sampling of color images
are provided.

Positive Realness of Descriptor Fractional Systems:
Test and Output Feedback
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We present an algebraic method for testing the real-positiveness of time-invariant descriptor fractional
linear systems. If a defect of real-positiveness is found, we show how a proportional output feedback can
be used to make the system real-positive. We find the maximal open set in which every value of the
proportionality factor makes the system real-positive by output feedback.

Our approach relies almost exclusively on symbolic computations and thus avoids any instability that can
appears in numerical algorithms. Real-positiveness is shown to be equivalent to the emptiness of the some
real algebraic sets. Similarly finding the output feedback that makes the system real-positive is shown to be
equivalent to determine when some parametric real algebraic sets are empty as a function of the parameter.
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Is it possible to encode a path of the Wiener process using a finite number of bits per time lag and
recover it with a bounded mean squared error (MSE) distortion? if yes, what is the minimal MSE that
can be attained subject to the bitrate constraint? The answers to these two question was given in Berger’s
PhD thesis, that shows that the optimal tradeoff between code bitrate and distortion is described by Shan-
non’s distortion-rate function (DRF) of the Wiener process. That is, his result implies that for any positive
bitrate, there exists a coding scheme that allows recovering of the path of the Wiener process with MSE
equals to Shannon’s distortion-rate function. Berger’s result, however, does not take into account practical
considerations in encoding analog process. Indeed, hardware and other implementation constraints restrict
access only to samples of the continuous-time path, taken at some finite time resolution.

In this talk we consider the minimal MSE in recovering the path of the Wiener process, but from a code
that is only a function of samples of this path. In particular, we derive a distortion function that depends
both on the code bitrate and the sampling rate. For example, this function implies that for any bitrate,
distortion less than 1.12 times Shannon’s DRF can be attained by providing only a single bit per sample of
the path. Our results imply that the optimal encoding strategy is obtained by two steps: first interpolate
the continuous-time waveform from its uniform samples, and then encode the result of this interpolation in
an optimal manner. Since this interpolation before encoding is unfeasible in some scenarios, we also consider
the case in which interpolation is performed only at the decoder. Namely, the discrete-time samples are
encoded using a source code which is optimal with respect to the discrete-time samples. We show that there
is a positive gap between this sub-optimal scheme and the optimal scheme, although the ratio of the two
distortions is bounded by 1.28. That is, ignoring the continuous-time origin of the samples, but otherwise
encoding them in an optimal manner, increases distortion by up to this factor.
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We will discuss some inverse problems for Laplace-Poisson partial differential equations (PDE) with
source term in divergence form, in dimension 3. We consider situations where incomplete (noisy) Cauchy
data are given in some restricted region of the space (accessible to measurements) from which the unknown
source term is to be recovered, at least partly.

These issues arise in many physical problems related to non-destructive inspection, in particular for
electromagnetic phenomenon modelled by Maxwell’s equations, under quasi-static assumptions. They are
ill-posed inverse problems, that need to be regularized in order to be constructively solved.

We will more specifically consider related problems from planetary sciences and paleomagnetism, con-
cerning magnetization recovery from magnetic data [1, 2]. There, the magnetization distribution supported
in thin rocks samples is to be estimated from measured values of the normal component of the (weak) mag-
netic field, measured by a very sensitive magnetometer (SQUID, Superconducting QUantum Interference
Device). The magnetization is therefore assumed to have a rectangular (horizontal) support, while the nor-
mal magnetic field is measured on a parallel rectangle located above. They are related together by means
of convolution operators with truncated Poisson and Riesz kernels, the components of the magnetic field
being harmonic in the half-space located above the magnetization support (the sample). We first tackle the
issue of estimating the net moment of the magnetization (its mean value, a vector in R3), an important
preliminary step towards the full inversion problem. Observe that both are ill-posed, in that the moment
recovery problem lacks stability, while the magnetization recovery issue itself suffers from non-uniqueness of
its solution (silent sources, that fortunately possess vanishing moment). Note also that solving the moment
recovery problem not only provides an a priori estimate of the mean value of the unknown magnetization,
but also an appropriate direction.

We will show how do harmonic analysis tools, together with approximation techniques allow to set
assumptions for well-posedness (stability) and to constructively solve for the above moment estimation
issue. This is done by building a set of functions against which the scalar product of the available values of
the normal magnetic field (taken on the data set) best quadratically approximates the components of the
magnetic moment, under some norm constraint. Resolution algorithms and numerical illustrations will be
provided. We will also discuss the links with Hardy spaces of gradients of harmonic functions in the upper
half-space.
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This talk is devoted to the following remark: the 2-sliding mode [1] differentiation approach can be recast
in the framework of calculus of variation. More precisely, the Levant’s differentiator [2] is expressed via the
Euler-Lagrange equation, as the stationary point of a functional representing a regularized cost function,
with L2 regularization. Connections with optimal control thus follow since the Euler-Lagrange equation is
a particular instance of the Pontryagin maximum principle which in turn is the basic foundation of optimal
control (see e.g. [3]).
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A theory of vessels, developed by M. Livšic, can be considered as a generalization of the theory of nodes,
as it has been shown in [3]. We are going to discuss an application of this theory to solutions of completely
integrable PDEs, demonstrating how the basic ingredients of the classical (inverse) scattering theory arise in
the setting of vessels. For this task, we will use the example of Korteweg-de Vries (KdV) equation. At this
moment it is known that a simplest, two dimensional vessel is equivalent to a generalization of either KdV
or of NonLinear Shrödinger (NLS) equation [2]. This result will be explained, providing tools for further
demonstration of the application of the theory of vessels to solutions of KdV: 1. the classical Gelfand-
Levitan theory has been recently incorporated into the theory [1], 2. vessels approach enables to deal with
analytic parameters, and the first steps in this direction were shown in [3], 3. soliton solutions based on
finite dimensional realization of the system theory were presented in [4]. Notice that the apparatus of the
operator/system theory is applicable to the mentioned PDEs, as it was demonstrated in a joint work with
D. Alpay and V. Vinnikov [5].
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State-feedback is one of the most important notions of control systems. It appears as a solution of the
LQR problem and in many more optimal control problems. On the other hand, many system performance
objectives, are given in terms of pole-assignment. Occasionally, these requirements are conflicting. For exam-
ple, LQR state-feedbacks tend to locate the closed-loop eigenvalues on the left half-plane near the imaginary
axes, where we might endanger the system stability and might have unsatisfactory response indices.

One of the attitudes to solve this problem is by parametrizing all the pole-assignment state-feedbacks
of the given system, where the exact pole-locations are given parametrically. In this way we get two sets
of parameters: one is related to the given exact pole-locations and the other is a set of free parameters ob-
tained from the pole-assignment state-feedbacks parametrization. The next step is to apply the optimization
requirements to the free parameters in the state-feedbacks parametrization, while leaving the closed-loop
poles parameters unchanged. In this way we give the designer the freeness to determine the final location
of the closed-loop poles, according to the desired closed-loop system response, while guaranteing the system
optimality (relative to the final placement of the poles).

In order to carry out this program, we first need to find a parametrization of all the pole-assignment
state-feedbacks for a given controllable system. In the talk, such a parametrization will be introduced,
under the assumption that the set of poles to be assigned (parametrically) contains sufficient pure-real poles,
where ”sufficient” means at least the number of parity alternations in a sequence of the sizes of subsystems,
generated from the given system. The parametrization is also proved to be complete, under the above
mentioned assumption, in the sense that any state-feedback assigning the given set of poles to the closed-
loop system, is included in the parametrization. The talk is based on [1] . The parametrization is based
on a recursive substructure of controllable systems, that was first introduced in [2] . Parametrizations of all
the pole-assignment state-feedbacks (up to a set of measure 0), under different assumptions, can be found
in [3]and [4].



References
[1] Y. Peretz, On parametrization of all the exact pole-assignment state-feedbacks for LTI systems, IEEE
Transactions on Automatic Control, vol. 62, num. 7, pp. 3436-3441, July 2017.
[2] Y. Peretz, A characterization of all the static stabilizing controllers for LTI systems, Linear Algebra and
its Applications, vol. 437, num. 2, pp. 525-548, 2012.
[3] R. Schmid, A. Pandey and T. Nguyen, Robust pole placement with Moore’s algorithm, IEEE Transactions
On Automatic Control, vol. 59, num. 2, pp. 500-505, 2014.
[4] A. Pandey, R. Schmid, T. Nguyen, Y. Yang, V. Sima and A. L. Tits, Performance Survey of Robust Pole
Placement Methods, 53’rd IEEE Conference on Decision and Control Los Angeles, California, U.S.A. pp.
3186-3191, December 15-17, 2014.

Selfajoint Vessels and Impedanmce-Conservative
Overdetermined Multidimensional Systems

Daniel Alpay, Ariel Pinhas and Victor Vinnikov

Ben-Gurion University of the Negev

arielp@math.bgu.ac.il

A 1D system is said to be scattering-conservative or impedance-conservative if the energy balance

d 〈x, x〉dt = 〈u, u〉 − 〈y, y〉 or d 〈x, x〉dt = 2Re 〈u, y〉

holds, respectively. It is a well known fact that transfer functions of scattering-conservative systems and
impedance-conservative systems are analytic contractive functions on the unit disk and functions with posi-
tive real part on the upper half plane, respectively [1]. The interplay between these functions is done via the
Möbius transform, and on the systems level, the interplay is by the diagonal transformation of the system
variables [4]. In the case of impedance-conservative systems, two functional models are considered: Repro-

ducing kernel Hilbert spaces with the reproducing kernels S(z)+S(w)∗

−i(z−w) and a L2(dµ) space where the measure

dµ is given by the Herglotz integral representation [2].

In this talk, we consider these phenomena and relations in the setting of 2D overdetermined systems
(or equivalently, commutative two-operator vessels). The 2D scattering-conservative systems or equivalently
the corresponding quasi–hermitian vessels are well studied, see for instance [3]. We here present the 2D
impedance-conservative systems and we introduce a new notion, the selfadjoint vessel. The interplay between
these two types of systems is done by the generalized diagonal transform and the joint characteristic functions
are related by the Möbius transformation. In the case of selfadjoint vessels, two functional models arise. The
first is a reproducing kernel Hilbert space of analytic sections defined on a real compact Riemann surface X
with reproducing kernel

T (q)Kζ(q, r) +Kζτ∨(q, r)T (r)∗,

where Kζ(q, r) is the Cauchy kernel corresponding to ζ ∈ J(X). The second, is an L2(dµ) space of sections
of a vector bundle over the fixed points (with respect to the involution τ) of X. The measure dµ is given by
the Herglotz integral representation version for real compact Riemann surfaces.
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This talk focuses on the theory of realizations of rational non-commutative (nc) functions which are
regular at a non-scalar matrix point Y = (Y1, ..., Yd) ∈ (Cs×s)d, of the form

r(X1, ..., Xd) = Im ⊗D + (Im ⊗ C)

(
ILm −

d∑
i=1

Ai(Xi − Im ⊗ Yi)

)−1( d∑
i=1

Bi(Xi − Im ⊗ Yi)

)
(4)

where A1, ...,Ad : Cs×s → CL× L and B1, ...,Bd : Cs×s → CL×s are linear mappings, C ∈ Cs×L, D =
r(Y ) ∈ Cs×s and X ∈ (Csm×sm)d. Similarly to the classical theory, I will start by introducing modified
definitions for observability, controllability and minimality of realizations of the form above. and proceed
by generalizing a singularity theorem from [2] and [3], that is characterizing the domain of regularity of r
in terms of the linear mappings A1, ...,Ad, in the case where the realization is minimal. In [1], the authors
proved that the (linear mappings) coefficients rω coming from a power series expansion of a nc function

r(X1, ..., Xd) =
∑
ω

rω(X − Im ⊗ Y )�sω, (5)

must satisfy some compatibility conditions; we found necessary and sufficient new compatibility conditions
w.r.t Y on the coefficients A1, ...,Ad,B1, ...,Bd, C and D, for the corresponding sequence of coefficients (rω)
given by the formulas

r∅ ≡ D and rω(Z1, ..., Z`) = CAi1(Z1)...Ai`−1
(Z`−1)Bi`(Z

`), where ω = gi1 ...gi`

to satisfy the compatibility conditions. Finally, our main result is proving that a nc generalized power series
around Y of the form (5) is the power series expansion of a rational nc function r around Y if and only if
a corresponding (functional model) space built from the coefficients A1, ...,Ad,B1, ...,Bd, C and D is finite
dimensional and the new compatibility conditions hold. This is then a generalization of the Fliess-Kronecker
theorem for rational nc functions, which tells us that a generalized power series is the power expansion of a
rational nc function if and only if the rank of some Hankel matrix is finite.
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Complex Hardy H2 spaces, including those of several complex variables (Hardy spaces on tubes) and
Clifford variables (conjugate harmonic systems), with scalar or vector, or even matrix-valued on various
manifolds, due to their Cauchy structures, are (non-standard) reproducing kernel Hilbert spaces.

The speaker will introduce some rational approximation models with the common feature phrased as
adaptive Fourier decomposition (AFD). Such decompositions are violation to the traditional concept of
basis. They, however, are highly adaptive to the function to be expanded. Besides fast convergence, they
offer, in some important cases, intrinsic decompositions of functions into basic pieces of positive instantaneous
frequencies, involving or creating Blaschke products in various contexts.

The results have, so far, applications in signal and image processing and system identification. Such
program has been paid attention and joined by a number of renowned international signal analysis groups.
In particular, unwinding Fourier expansion independently studied by our and Coifman’s groups belongs to
the scope of such fast and positive-frequency-decomposition.

The isomorphism problem for noncommutative analytic varieties

Guy Salomon

Department of Mathematics, Technion — Israel Institute of Technology, Haifa 3200003, Israel

guy.salomon@tx.technion.ac.il

For a noncommutative (nc) subvariety V of the nc unit ball, the algebra of bounded analytic functions on
V — denoted H∞(V) — can be identified as the multiplier algebra of a certain reproducing kernel Hilbert
space consisting of nc functions on V.

In this talk I will show when two such algebras H∞(V) and H∞(W) are isometrically isomorphic (and
also completely isometrically isomorphic) in terms of the varieties V and W. We will also focus in the
homogeneous case in which we were able to obtain some sharper results. In addition, we will discuss the



algebras of bounded analytic functions that extend continuously to the boundary of the nc ball.
Along the way I will present a nc version of the Nullstellensatz for both the homogeneous as well as the

commutative case.
The talk is based on a joint work with Eli Shamovich and Orr Shalit.

On quaternionic metaharmonic layer potentials in R2

Baruch Schneider

Izmir University of Economics

baruch.schneider@ieu.edu.tr

In this talk we give overview of the Hilbert formulas on the unit circle for α-hyperholomorphic function
theory. We present several boundary value properties for the 2D quaternionic metaharmonic layer potentials.

Talk based on joint works with J. Bory Reyes, R. Abreu Blaya, M. A. Pérez-de la Rosa.

Plane waves decomposition, hypergeometric functions and Twistors

Ahmed Sebbar

Bordeaux University / Chapman University

asebbar@math.u-bordeaux.fr, sebbar@chapman.edu

We present some remarks concerning Whittaker’s, Bateman’s and John’s formula of integral geometry
and their links with Klein correspondance. We apply these remarks, in the context of twistor theory, to the
hypergeometric differential equations and to the operator

∆3 =
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∂x3
+

∂3

∂y3
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∂z3
− 3

∂

∂x

∂

∂y
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This is joint work with Oumar Wone.



Ternary algebras and applications

A. Vajiac and D. Alpay, M.B. Vajiac

Chapman University

EMAIL: avajiac@chapman.edu

We introduce of a class of regular functions defined on three dimensional real and complex hypercomplex
algebras. The analytic theory is build on the basis of conjugations. We provide the solution to the Gleason’s
problem which gives rise to Fueter–type variables and we conclude with several applications in physics.

Multicomplex Analysis and a Multicomplex Fourier Transform

Lander Cnudde, Adrian Vajiac, Mihaela Vajiac

University of Ghent and CHAPMAN UNIVERSITY

mbvajiac@chapman.edu

The past decade has seen a resurgence of interest in spaces of commuting complex units, their algebra,
analysis, especially a theory of holomorphic functions in this sense. This talk gives an overview of analysis
on nested multicomplex spaces with a view to defining a Fourier Transform in this direction.

Noncommutative hyperbolic metrics

Victor Vinnikov

Ben-Gurion University, Be’er-Sheva, Israel

vinnikov@cs.bgu.ac.il

We define a pseudometric on noncommutative domains that possesses a noncommutative Schwarz–Pick
property: every noncommutative function is a contraction. The pseudometric is defined in purely geometric
terms and can be calculated analytically for domains defined by a noncommutative hermitian kernel, in
particular for “generalized balls” that appear naturally in the study of interpolation problems and that
include all matrix convex sets. We show that under natural conditions (the noncommutative hyperbolic
metric is nondegenerate and blows up as we approach the boundary), two noncommutative domains admit
a noncommutative bijection iff they are isometric. This is talk is based on a joint work (in progress) with
Serban Belinschi.



Algebraic division or interpolation
through analytic methods

Alain Yger

Université de Bordeaux

yger@math.u-bordeaux.fr

In the last 20 years, a lot of methods inspired by analysis reveal to be quite successful towards the solution
of effective problems in multivariate polynomial computational geometry. One could refer for example to the
realization of Bézout identity thanks to an explicit formula, the construction of “residual currents” attached
to holomorphic sections of metrized bundles over Cn or more generally over a complex analytic varieties
in order to realize concretely Grothendieck duality, the deformation of (sometimes difficult to vizualize)
complex objects (such as algebraic subvarieties in Cn or (C∗)n, rational functions in several variables, Fourier
duality) towards much simpler to handle so-called “tropical” combinatorics objects (tropical cycles, tropical
polynomials, Legendre-Fenchel duality,...). I will give in this lecture a panorama of such technics, trying
to put some of them in situation in front of questions inspired by systems theory (BIBO stability of multi-
dimensional filters, classification of multivariate Mellin transforms of 1/F when F ∈ C[X±11 , ..., X±n ], etc.).
I listed here in chronological order some of the references which where my guidelines during the preparation
of this talk.
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