
A Deep Learning Approach to Identifying Source Code in
Images and Video

Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, Erik Linstead
Machine Learning and Assistive Technology Lab

Schmid College of Science and Technology
Chapman University
Orange, California

{ott109,atchi102,harna100}@mail.chapman.edu,{abergh,linstead}@chapman.edu

ABSTRACT
While substantial progress has been made in mining code on an
Internet scale, efforts to date have been overwhelmingly focused on
data sets where source code is represented natively as text. Large
volumes of source code available online and embedded in technical
videos have remained largely unexplored, due in part to the com-
plexity of extraction when code is represented with images. Existing
approaches to code extraction and indexing in this environment rely
heavily on computationally intense optical character recognition.
To improve the ease and efficiency of identifying this embedded
code, as well as identifying similar code examples, we develop a
deep learning solution based on convolutional neural networks and
autoencoders. Focusing on Java for proof of concept, our technique
is able to identify the presence of typeset and handwritten source
code in thousands of video images with 85.6%-98.6% accuracy based
on syntactic and contextual features learned through deep architec-
tures. When combined with traditional approaches, this provides
a more scalable basis for video indexing that can be incorporated
into existing software search and mining tools.

CCS CONCEPTS
• Information systems→Video search; •Computingmethod-
ologies → Machine learning approaches; • Computer sys-
tems organization → Neural networks; • Software and its
engineering → Software libraries and repositories;

KEYWORDS
deep learning, convolutional neural networks, video mining, pro-
gramming tutorials

ACM Reference Format:
Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, Erik Linstead.
2018. A Deep Learning Approach to Identifying Source Code in Images and
Video. InMSR ’18: MSR ’18: 15th International Conference on Mining Software
Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, Article 4, 11 pages. https://doi.org/10.1145/3196398.3196402

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196402

1 INTRODUCTION
As the amount of publicly available programming resources con-
tinues to grow, so too does the volume and diversity of artifacts
available to the empirical software engineering community. While
substantial progress has been made in the last decade in developing
mining techniques for understanding code and those who write
it, this research has largely focused on repositories of textual in-
formation. This includes source code, user forums, bug tracking
systems, and traceability logs, to name only a few application do-
mains. While each of these types of artifacts require their own
heuristics to account for differences in form, function, and vocabu-
lary [23], at the lowest level they share a common textual encoding,
regardless of whether they represent natural languages, program-
ming languages, or a combination of both. However, a substantial
amount of software data also exists in multimedia formats, such as
images and video, due to the popularity of online coding tutorials
and the relative ease in which they can be recorded and distributed
to an Internet-wide audience.

Whether a result of massive open online courses (MOOCs) and
similar learning platforms, or companies looking to accelerate the
adoption of their products and services by attracting end users,
video tutorials have become a staple for software engineers looking
to beat either a learning curve or a tricky API into submission. In
aggregate, these videos are home to an untold amount of source
code, which can be leveraged to extract search features for effec-
tive isolation of pertinent video excerpts, or serve as a basis for
understanding software development trends in the same way as
textual repositories. Yet, because the code is not represented as text,
the tools that have worked so well for traditional software corpora
are unable to be leveraged on the native data. This typically ne-
cessitates the application of optical character recognition (OCR) to
make the data compatible with existing techniques. While popular
OCR solutions are freely available[35], they are also computation-
ally intensive and sensitive to noise. Thus, if these techniques are
to be applied at an Internet scale, performance improvements are
necessary.

While there are several viable architectural solutions for identi-
fying source code in video for the purposes of searching or mining,
a universal performance bottleneck is found in identifying which
video frames contain code, if any, and then processing this code via
OCR. This is complicated by the fact that the position of the code
within the frame is unknown, and can also change from frame-to-
frame (translational variance). This creates substantial overhead as
frames must be segmented into candidate regions to identify likely

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ott et al.

code snippets, with each region being passed through an OCR algo-
rithm. If no code is found, these processing cycles have been wasted.
Tracking unique code examples over the course of a video adds yet
another level of cost, as examples appearing across frames must
be resolved. Finally, while OCR packages are typically well-tuned
for extracting typeset text, handwritten text leads to mixed results
depending on the library used. Thus, videos containing handwrit-
ten code, on paper or whiteboard in a traditional lecture setting,
require additional effort if useful data is to be extracted. Fortunately,
advances in computer vision algorithms based on deep artificial
neural networks (ANNs) provide a promising direction for compu-
tationally inexpensive identification of code-containing frames and
the regions within which that code exists.

Deep learning techniques based on artificial neural networks
represent the cutting-edge in machine learning in multiple domain
applications such as game play[33], biochemical informatics[3, 24],
and medicine[21]. Based largely on widely studied methods such as
backpropagation and gradient descent, deep learning allows ANNs
with deep architectures (multiple hidden layers) to be trained using
large volumes of input data. This is made computationally feasible
with advances in storage and processing hardware, particularly the
availability of a graphics processing units (GPU) and scientific com-
puting libraries [2, 4, 26]. As a result, deep neural networks are well
suited for finding high-order, discriminating features in complex
data such as images. For this reason, the current state-of-the-art
approaches in computer vision are based on deep architectures.

In this paper, we propose a methodology for accelerating code
identification and code example resolution in video tutorials by
leveraging deep learning. In particular, we apply convolutional
neural networks (CNNs) to classify the presence or absence of code
in thousands of video frames. Our method achieves almost 93%
accuracy on this binary classification task. It is also able to correctly
differentiate between typeset code, handwritten code, and partially
visible code (for example, overlapping windows obscuring an IDE)
with accuracies ranging from 85.6% to 98.6%. The CNNs also provide
a natural mechanism for defining regions of interest in the video
frame where OCR is most likely to be applicable, thus pruning
the space of possible regions that must be examined and thereby
increasing the throughput of indexing pipelines.

In addition to code identification with CNNs, we also apply deep
autoencoders to the problem of detecting similar or related code
examples in video. Autoencoders provide a convenient method
for learning compact representations of images. When architected
with convolutional layers, they also achieve translational invari-
ance, which can cope with code examples that exhibit position
changes across frames. These compact representations allow for
substantially faster similarity computation than approaches that
rely on pixel-by-pixel comparisons in high-resolution imagery. Our
experiments show that our autoencoder approach allows for up to
1.1 million image comparisons per second when run on an appro-
priate hardware configuration.

The remainder of this paper is organized as follows: Section
2 provides an overview of the dataset used for our experiments,
as well as how that data was collected and labeled using crowd-
sourcing. Section 3 provides a brief description of the deep learning
algorithms leveraged in this paper, specifically convolutional neural
networks and autoencoders. Section 4 describes the results of our

experiments, both in terms of classification accuracy of our models
and runtime performance. Related work is described in section 5,
with particular attention to CodeTube[29], a previously published
code tutorial indexing and search engine that inspired many of the
performance optimizations present here. Finally, we discuss con-
clusions drawn from our work and future directions for computer
vision applications in software engineering research in section 6.

2 DATA
While neural networks with deep architectures are able to learn
high-order features in imagery data, the large number of parame-
ters that are required by these models demand substantial amounts
of input data for training. As a first step in exploring the suitability
of CNNs and autoencoders for mining source code in video, we cul-
tivated a corpus of 40 tutorials consisting of approximately 22 hours
of video from YouTube. A diverse set of Integrated Development
Environments (IDEs), text editors, font sizes, and text colors appear
in the dataset. We focused on the Java programming language for
the experiments described here. A subset of the videos used in this
study focused on Microsoft Word, PowerPoint, and other general
technology topics. This allowed us to balance our dataset between
positive and negative code samples. This diversity in training data
allows the network the best chance to recognize code in a variety of
scenarios. Though we chose to focus on Java for proof of concept,
the methods described here are generic and can be applied to any
programming language for which labeled data exists.

All 40 videos were downloaded to our server using pytube[7],
a Python library for scraping YouTube videos. After downloading,
each video was segmented into a discrete image set by sampling
at a rate of one frame per second using FFmpeg[1]. This resulted
in 79,500 unlabeled images. A complete list of video URLs from
which the frames were extracted, as well as source code used for
downloading and processing the videos, can be found at:
https://github.com/mlat/msr18.

Upon inspection of the imagery, it was observed that embedded
source code was largely presented through four primary mecha-
nisms.

• Visible Typeset Code: Source code is typewritten and com-
pletely visible within the frame, such as frames depicting
the contents of an IDE, text editor, or PowerPoint slide max-
imized to fill the screen.

• Partially Visible Typeset Code: Source code is typewritten,
but parts of the example are obscured or truncated by other
windows or items displayed in the frame.

• Handwritten Code: Source code is written by hand on sur-
faces such as paper or whiteboards.

• No Code: No code of any type is visible within the frame.
Based on this observation, we decided to use these four categories
as the class labels for our machine learning models.

As with all supervised learning methods, the ability of CNNs to
achieve high classification accuracy is predicated on the availability
of accurately labeled training data. Given the tedious and time-
intensive nature of manually labeling images, we decided to use
a crowdsourcing approach. All images were stored in a relational
database, and a web interface was built which would present users
with one unlabeled image at a time. The user then selected the label

A Deep Learning Approach to Identifying Source Code in Images and Video MSR ’18, May 28–29, 2018, Gothenburg, Sweden

they believed most accurately described the image, and this was
recorded in the database.

To label as many images as accurately and efficiently as possible,
help was solicited from approximately 100 students enrolled in a
freshman and sophomore-level course focusing on object-oriented
programming in Java. Enrolled students represent majors in com-
puter science, software engineering, data analytics, and mathemat-
ics. Students were provided with detailed instructions and examples
to differentiate among each of the class labels. Of the 100 students
contacted, approximately half chose to participate and were given a
3-week window of time for labeling activities. In order to compare
our machine learning models to a human baseline, timestamps were
recorded every time a label was submitted. Using these estimates,
we determined that our human labelers averaged approximately 12
labeled images per minute.

At the end of the labeling period, the database was queried to
determine the candidate images for training and testing the per-
formance of our models. Our inclusion criteria limited candidates
to images that had been tagged by more than one distinct user. In
the case that the labels provided by the users differed, the majority
label was taken as the true value. If only two users tagged an image,
and they did not agree, the image was excluded from training and
testing sets. This process resulted in an image set of 19,200 frames.

Due to differing resolutions in our video corpus, as well as a need
for uniform input sizes in the first layer of our neural networks, as a
final preprocessing step all images were rescaled to 300x300 pixels.
Though rescaling to this size can result in subtle distortion to the
human eye, the reduced resolution allows for greater computational
efficiency during the training process. This is especially true for
convolutional neural networks, as small filter sizes may be used.

3 METHODS
Traditionally, fully-connected, feedforward artificial neural net-
works (ANNs) receive a single vector representing the raw data
at the input layer. This input is then transformed through a series
of weighted connections to hidden layers that perform non-linear
operations, before being routed to an output layer for the purposes
of classification. Each neuron in a layer is connected to every other
neuron in the previous layer. The output of each neuron is calcu-
lated as a function of the dot product of input values and incoming
connection weights. Non-linear relationships in the data are mod-
eled by passing the dot product through an appropriate activation
function. This is typically achieved through the application of sig-
moidal functions, such as the logistic or hyperbolic tangent function.
Because these functions are continuous and differentiable, weights
in the network can be trained efficiently using gradient descent to
minimize the error between network predictions and truth data
through a process known as backpropagation[30]. It can be shown
that feedforward neural networks with a single hidden layer and
sigmoidal neurons are universal approximators capable of learning
any continuous function[5].

Though powerful, structured input data such as images lose
their spatial relationships when passed through traditional fully-
connected ANN architectures. This is problematic for applications
such as computer vision since image features are comprised of
groups of pixels. Convolutional Neural Networks (CNNs) represent

Figure 1: VGG network, commonly referred to as VGG16
due to its sixteen convolutional layers. Input images are
300x300x3 pixels. The output of the network is a binary clas-
sification for the presence of code in the input image. The
blue volume in the network represents a global average pool-
ing layer which is required to perform class activation map-
ping.

an alternative ANN architecture that is able to maintain spatial
relations between pixels by convolving the input space with a
multidimensional weight matrix, commonly referred to as a filter.
The convolutional architecture was inspired by the neurobiological
findings of Hubel and Wiesel in experiments performed on the cat
visual cortex [14].

Training CNNs with backpropagation was first proposed by Le-
Cunn et al. [20]. CNNs use a shared weight paradigm to reduce the
number of trained parameters, and as a result scale better compared
to their fully-connected counterparts. Weight-sharing in CNNs is
typically associated with two primary functions. The first is to
reduce the number of free parameters that need to be stored or up-
dated during learning. This can be important in applications where
storage space or training data is limited, or where overfitting is a
danger. The second function is to apply the exact same operation at
different locations in the input data to process the data uniformly
and provide a basis for invariance, typically translation invariant
recognition in CNN architectures.

To model non-linear data, non-linear activation functions are
required. For CNNs, the Rectified Linear Unit (ReLU) [25] is the
activation function of choice, as it is computationally inexpensive
and avoids the vanishing gradient problem. The ReLU function,
shown in equation 1, is a maximum of the input, xi , and 0 to produce
the output, yi .

yi =max(0,xi) (1)

A pooling layer is often implemented to downsample the feature
space between convolutional blocks. Max pooling is a variant that
takes the maximum value in a given window and ignores the rest.
Fully connected layers at the end of convolutional networks allow
for classification. Another variant, the softmax function, allows for

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ott et al.

Binary Classification Training Set Testing Set
Code No Code Code No Code

Visible Typeset Code vs No code 6,906 7,030 1,734 1,761
Visible Typeset & Partially Visible Typeset Code vs No
code

8,015 7,030 2,003 1,761

Visible & Partially Visible Typeset & Handwritten vs
No code

8,330 7,030 2,079 1,761

Handwritten Code vs No code 314 7,030 76 1,761
Handwritten Code vs Everything 314 15,045 75 3,764

Category Classification Training Set Testing Set
VC PVC HC NC VC PVC HC NC

Visible Typeset vs Partially Visible Typeset vs Hand-
written vs No Code

6,906 1,109 314 7,030 1,734 269 75 1,761

Table 1: Dataset size for each relative task. The dataset sizes reported in this table were averaged over the five folds in cross-
validation. The first five tasks in the table are a binary classification. We predict whether the attribute occurs in an image. In
the category classification, we are interested in identifying which of the four categories the image falls into: visible typeset
code (VC), Partially visible typeset code (PVC), handwritten code (HC), or no code (NC).

a probability distribution over classes of interest. Obtaining the ith
output of an input vector z is shown in equation 2. Training CNN’s
is accomplished via a cost function, typically a cross entropy cost
in the presence of a softmax. Equation 3 displays the cost function
as the negative log probability of the correct answer. Where ti is
the target value of the ith output and yi is the ith output from the
softmax in equation 2. The aim is to maximize the log probability
of getting the correct answer.

yi =
ezi∑
j e

zj (2)

C = −
∑
j
tj logyj (3)

Convolutional Neural Networks are the current state-of-the-art
solution for image recognition tasks. In this paper, we leverage the
popular VGG [34] network to label images that contain varying
degrees of on-screen code. The VGG network, shown in figure
1, has a convenient architecture in which multiple convolutional
operations occur in succession, followed by a max pooling layer for
downsampling. Additionally, VGG is shallow compared to networks
like Inception [36] and ResNet [10]. This is important because our
dataset is small relative to the number of parameters those networks
contain. Using a shallower network, such as VGG, allows us to train
the network from scratch while avoiding overfitting and achieving
a high classification accuracy.

Here we train multiple instances of the VGG network for a va-
riety of classification tasks, described in table 1. The table also
provides details on the size of training and testing sets used for
each of our experiments. As stated previously, we are interested in
predicting if an image frame contains typeset code, partially visible
typeset code, handwritten code, or no code at all. The output of
the network, for the first five cases listed in table 1, is a binary
classification. The last case represents a multiclass classification
problem where we are interested in predicting membership across
all four of these categories.

Within software engineering tutorials, a single frame may sit
idle for a given time interval while the instructor narrates over
the frame. As our data is randomly shuffled to produce training
and testing sets, this may lead to duplicates appearing in both
sets and result in overfitting. To avoid this, a standard pixel-wise
comparison is implemented to remove frames from the test set if
they appear too similar to frames in the training set. To further
assess the generalizability of our models, our experiments were
performed using five-fold cross-validation. At the start of each
fold, network weights were reinitialized to create a new network.
Simulations were implemented in Python using the Keras API with
a Tensorflow backend using two NVidia P100 GPUs with 16 GBs of
memory and 3,584 CUDA cores each. Individually these GPUs are
capable of achieving 4.7 TeraFLOPs and 9.3 TeraFLOPs of single
and double-precision floating point performance, respectively.

Class Activation Mapping (CAM) gives convolutional networks
tremendous localization ability despite being trained on image-level
labels [42]. CAM requires the use of a global average pooling layer
[22], which is added to the last convolutional layer of the VGG
network. The Keras Visualization Toolkit [19] is used to produce
CAM results. Using CAM, we are able to visualize what regions of
input images the network attends to when making its classification
prediction. This allows us to ensure the network is learning fea-
tures directly related to code and not other circumstantial features
contained in the images. Additionally, leveraging the CAM results
allows us to quickly identify appropriate image regions that can be
passed to an OCR library in order to tokenize and index contained
code for further search or mining activities.

During a tutorial, a code example may appear at various points
throughout the video or be built up incrementally over time. Thus,
it is convenient to be able to identify which frames are likely related
to the same code example. This process can be computationally in-
tense, however, as it requires a substantial number of pixel-by-pixel
comparisons across all pairs of frames. To speed up this process,
we apply autoencoders. An autoencoder is a type of neural net-
work that is trained to reconstruct its input. Unlike feedforward
and convolutional neural networks, autoencoders are unsupervised.

A Deep Learning Approach to Identifying Source Code in Images and Video MSR ’18, May 28–29, 2018, Gothenburg, Sweden

They experience features of the data but are not dependent on truth
data. Instead, an autoencoder is trained to minimize the distance
between its input and its output.

Formally, an autoencoder network may be viewed as consisting
of two parts: an encoder function, z = f (x) , and a decoder function
that produces a reconstruction of the input, r = д(z) [8]. Internally,
it has a hidden layer, z , that represents a compact encoding of the
original data. Because the model is forced to compress the data
into a compact representation and then reconstruct the original
input, the network learns to extract the most relevant features
for encoding. Autoencoders have been shown to be comparable to
principle component analysis [12]. The concept of autoencoders can
be applied to images by using convolutional layers. This allows for
images to be encoded into a compact representation, maintaining
the most important features in the encoding. Images can then be
compared against each other in a lower-dimensional space using
any appropriate distance metric (here we use Euclidean distance),
requiring fewer operations and less CPU time.

In order to facilitate reproducibility of our experiments, all Python
source code used for training, testing, and validating the perfor-
mance of our CNNs and autoencoders is available from the GitHub
link provided in section 2.

4 RESULTS
Here we detail the results of applying our deep learning architec-
tures to code image classification and similarity analysis.

4.1 CNN Experiments
To begin, convolutional neural networks were trained using 5-fold
cross-validation for the 5 binary classification tasks and 1 multiclass
classification task described in table 1. Each convolutional model
took, on average, 2.5 hours per fold to train, for a total of 62.5
computing hours of training for all folds in all models. In practice,
overall time was decreased by training models in parallel by taking
advantage of multiple GPUs on our deep learning server. Though
computationally intensive, training is done a priori, and cost can be
amortized over a model’s lifetime once deployed to automatically
classify images.

Table 2 displays the mean and median accuracies of the 5-fold
cross-validation experiments for each classifier. An accuracy of
92.92% is achieved on the binary classification task of predicting the
presence of visible typeset code. Combing the visible typeset and
partially visible typeset code categories yields an accuracy of 90.3%
when predicting the presence of typeset code. Binary classification
on the amalgamation of code categories (visible, partially visible,
and handwritten) produces an accuracy of 90.52%. When predicting
the probability distribution over each of the four categories an accu-
racy of 85.59% is achieved. The confusion matrix for predicting one
of four categories is shown in figure 2. The confusion matrix reports
that 129 images were incorrectly predicted as visible code when
the ground truth was partially visible. This error is understandable,
as even human labelers have a difficult time choosing the correct
category. In certain cases, we observed the same human labeler to
mark a given image as visible code one time and partially visible
code the next.

Figure 2: Confusion matrix for the task of predicting one of
four categories: visible typeset code (VC), Partially visible
typeset code (PVC), handwritten code (HC), or no code (NC).

Two separate experiments were conducted on handwritten code
detection. The first was to predict handwritten code versus no
code at all and the VGG network achieved an average accuracy of
98.191%. The second task was to predict handwritten code versus
both visible and partially visible typeset code, and an accuracy of
98.6% was found. The latter task is slightly more difficult, as the net-
work must learn to disambiguate common syntactical features that
occur in both handwritten and typeset code (indentation structure,
semicolons, curly brackets, etc.).

In regards to handwritten code, we note two possible limitations
to our results. The first is that the proportion of the dataset that falls
into this category is very small relative to the non-handwritten por-
tion. On the two handwritten code detection tasks described above,
accuracies of 95.7% and 98.01% respectively were achievable if the
network was only to predict no code. However, as the networks in
these tasks achieved a five-fold cross-validation mean of 98.2% and
98.6% respectively, it is clear the networks have learned some distin-
guishing features between handwritten code and non-handwritten
code.

This brings us to our second concern regarding handwritten
code detection. The network tends to learn features associated with
handwritten code, but not directly related to it. For example, the
network tends to predict an image of a man standing in front of a
whiteboard as containing handwritten code. This is ostensibly due
to the fact that in software engineering tutorial videos, handwritten
code is often illegible, even to human viewers. Thus, black markings
on a whiteboard in the presence of other common features, like a
person, will cause the network to strongly predict the presence of
code. However, while the results on handwritten code are promising,
further experimentation with a larger dataset is needed.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ott et al.

Mean Accuracy Median Accuracy Precision Recall
Visible Typeset Code vs No code 92.917 92.725 0.939 0.919
Visible Typeset & Partially Visible Typeset Code vs No
code

90.323 90.182 0.905 0.890

Handwritten Code vs Everything 98.609 98.646 0.991 0.995
Handwritten Code vs No code 98.191 98.162 0.987 0.994
Visible & Partially Visible Typeset & Handwritten vs
No code

90.518 90.499 0.903 0.884

Visible Typeset vs Partially Visible Typeset vs Hand-
written vs No Code

85.594 85.547 0.839 0.856

Table 2: Mean and median accuracies as well as precision and recall scores, of the five-fold cross-validation experiments.

Equally as promising as the classification accuracies of the mod-
els is the speed in which they are able to label images. Once the
networks have been trained, using them in practice is highly ef-
ficient. We found that the VGG networks can label 4,500 images
per minute on average using the GPU. This represents a 375x im-
provement over our human baseline. In practical terms, this means
an hour-long video can be completely labeled in under 50 seconds,
compared to the 300 minutes required by a human, assuming a
sampling rate of 1 frame per second.

Figure 3 shows CAM results on correctly predicted Java code
image frames. The heatmap produced by CAM can be interpreted
by the degree of redness in a given region. The more red a region is,
the more weight the network associates with features in that area
to formulate its output prediction. In figure 3, the left column shows
examples from the test set, while the right column shows the CAM
overlaid on the corresponding test image. Visual analysis of the
CAM result images reveals the network’s preference towards fea-
tures such as method and class declarations, semicolons, and curly
brackets. Additionally, contextual features like keywords, package
imports, and variable initializations show up favorably in CAM
results. The first row of figure 3 shows an image of handwritten
Java code, correctly identified by the network. The CAM image
on the right shows that the network achieves this identification
through recognition of the class declaration, method heading, and
curly brackets. The second through fourth rows show examples of
typeset Java code tagged correctly by the network. In cases such
as the last row of figure 3, the CAM heatmap covers nearly the
entire body of the image. This is a consistent occurrence when the
predominant focus of the image is Java code and code features are
easily visible. The results of figure 3 show the network is capable
of learning syntactic and contextual features of image code frames.

In addition to providing a convenient mechanism for visualizing
learned features, the heat maps also provide a heuristic for identi-
fying regions for OCR. In particular, "hot" areas can be thought of
as the center point for candidate bounding boxes. The length and
height of the bounding rectangles can be adjusted by examining
the distribution of "heat" over a region.

Though our experiments here have focused solely on the iden-
tification and tagging of video frames that contain the Java pro-
gramming language, the ability of the models to discern between
Java and other languages is of practical significance. Thus, we pre-
sented our trained CNNs with images of programming languages
other than Java to see how well they faired. These tests were met

with varying degrees of accuracy. Figure 4 shows examples of the
network on video frames of C and HTML respectively. Java and C
share many syntactic attributes such as curly braces, semicolons,
and method declarations (in a general sense). This leads the net-
work to be easily fooled by these code snippets. However in the
case of HTML, Java differs significantly. The bottom row of figure
4 shows that the network is able to differentiate HTML from Java
by identifying the presence of many angle brackets, a feature that
is not common to Java.

The Python programming language is somewhat of a middle
ground, as it’s syntax is not as far from Java as HTML and not as
similar as C. The results of the network classifying Python code
snippets can be seen in figure 4. The first Python example is cor-
rectly identified as non-Java code. From the CAM results, it appears
that the network identifies the absence of semicolons and curly
braces. However, the second Python example is incorrectly classi-
fied. One possible reason for this is that the text in this image is
smaller, resulting in lower quality. This makes it harder for the net-
work to identify key features such as semicolons and curly braces
that are harder to see. As a result, the network focuses on the main
body and shape of the indented code.

It is important to emphasize that our models are at a disadvan-
tage when asked to differentiate Java from other programming
languages because no labeled examples of other languages were
provided to the CNNs during training. Thus, our tests on these
tasks do not represent robust experiments, but only initial attempts
to understand what Java-specific language features were learned
by the networks. To obtain more precise results would require the
hand labeling of datasets for each language. Acquiring more la-
beled data samples of other languages for training will allow the
network to better generalize to languages other than Java. This
work is currently in progress.

4.2 Autoencoder Experiments
Having demonstrated the efficacy of CNNs on identifying code
in video, we turn to the task of determining which code samples
within a tutorial represent the same example. This is complicated by
the fact that even identical code samples across frames are subject
to positional variation due to vertical and horizontal translations
caused by scrolling or window repositioning. Additionally, a code
example may be built up incrementally over frames, resulting in
images that are similar but not identical.

A Deep Learning Approach to Identifying Source Code in Images and Video MSR ’18, May 28–29, 2018, Gothenburg, Sweden

To automate the process of similarity analysis we trained an
autoencoder with convolutional layers on images labeled as con-
taining code. This process took a total of 15 hours on a single GPU.
Once the autoencoder was trained, all images were transformed
into the encoder’s learned compact representation. We observed a
rate of approximately 20,000 images per minute for this task (less
than one second for an hour-long video), which was completed in
parallel using both GPUs in our server.

To test the ability of the autoencoder to efficiently identify related
code examples, a small group of human experts selected excerpts
from videos not used during training that exhibited repetition of
identical or similar code examples across frames. This resulted in
169 frames containing code as determined by our CNN approach.
These frameswere passed through the autoencoder for compression,
and the resulting vectors were clustered using Euclidean distance
with NumPy[27]. The cluster memberships were then examined
manually and the approach was found to achieve 85.7% accuracy
for this experiment. In terms of runtime performance, by using
the autoencoder to compress the video frames, we were able to
achieve 1.1 million frame comparisons per minute. This is a 7.6x
speedup over brute force, pixel-by-pixel image comparison which
achieved a maximum of 145,000 comparisons per minute on our
hardware. Additionally, because we leveraged convolutional layers
in our autoencoders, our comparisons were able to account for
some degree of translational variance in our images.

While our results are promising, it should be noted that a limi-
tation of this experiment is the relatively small number of testing
examples used to determine accuracy. We are currently curating a
much larger synthetic dataset that uses a series of seed code exam-
ple images, and then randomly translates these images throughout
the pixel space. Additionally, more truth data is needed for the
case where an example is built up iteratively over several frames.
Once we have acquired this data we can more aggressively tune the
parameters of the autoencoder to maximize generalizability and
accuracy.

5 RELATEDWORKS
In recent years the study of software repositories has been no-
tably shaped by deep learning techniques that have consistently
improved upon existing knowledge and systems. The applicability
of deep learning to software repositories is presented in [38]. As the
authors demonstrate, deep learning algorithms have led to impres-
sive advances in fields like natural language processing (NLP), and
thus should be looked to when it comes to advancing the study of
software corpora. Specifically, they show how deep learning can be
used to model sequential data, aid in generalization, and optimize
real SE tasks like code suggestion.

In [32] the authors train two Long Short Term Memory (LSTM)
networks to pinpoint the location of syntax errors. In [9], the au-
thors outline DeepAPI, an adapted neural language model (specifi-
cally a Recursive Neural Network Encoder-Decoder) that generates
API sequences given a natural language query outperforming exist-
ing bags-of-words approaches.

Deep learning methods have also been applied to advance clone
detection in a variety ofmediums. In [15], a framework referred to as
CDLH is proposed which applies LSTM networks to compare code

representations using hamming distance. This can be compared to
the Deckard framework outlined in [18] which proposes a clone
detection tool based on syntax analysis. In [37], a language model is
leveraged to convert lexical elements of code to continuous valued
vectors referred to as embeddings. These embeddings are then
compressed through the recursive application of the autoencoder.
This compression allows for efficient comparison of code fragments
to propose potential functionality repetition found in source code
repositories. In our paper we also leverage the autoencoders ability
to compress large entities by compressing matrices of pixels in
order to compare frames efficiently.

The application of other deep learning techniques, specifically
CNNs, has further contributed to a widening of research avenues.
CNNs are used to recognize handwritten English characters in an
offline setting in [41]. Further, in [39] the authors utilize CNNs to
build a multiclass classification system in order to link knowledge
units like a question and its answer in Stack Overflow. This multi-
class, deep learning based system outperforms existing traditional,
human-engineered classifier systems which assume a binary relat-
edness (i.e. related or not) and ultimately fail when encountering
lexical gaps.

CNNs have also been used extensively in the field of digital image
processing because of their powerful and accurate object recogni-
tion abilities. CNNs have been shown to exhibit particular prowess
in the area of text detection and recognition when used with OCR
algorithms, and have been used in video-tagging applications for
robust scene-text recognition in multiple different languages. How-
ever, to the best of our knowledge, CNNs have yet to be applied
towards identifying source code in software engineering tutorial
videos. There have been several successful endeavors in recent
years to tag and extract relevant portions of programming tutorial
videos based on code detection, but these approaches have utilized
standard image processing techniques and not deep learning.

5.1 Text Detection
In [13], a coarse-to-fine strategy is used to extract text from video
without constraints. The authors employ a layered CNN approach
that first utilizes the networks to generate candidate text regions
and then looks to enable feature sharing and identify final text
regions after projection analysis. Their approach results in a ro-
bust multimedia indexing and retrieval system. In [11] the authors
continue in their explorations of deep learning through another
text-focused CNN. Particularly, they center on extracting features
related to text from images by training their CNN with multi-level
supervised information. They propose training this novel network
with text region mask, character label, and binary text/non-text in-
formation. We followed a similar training strategy by hand-labeling
our images to indicate the presence of code contained in the video
frame.

In [16], the authors present an approach that does not rely on
hand labeling. They train large CNNs to perform word recognition
on entire proposal regions (as opposed to individual characters) at
one time. In this study, they detail how they assembled a pipeline
for large-scale detection of text in video. These authors have also
employed CNNs in character classification, as outlined in [17]. Their

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ott et al.

Figure 3: CAM results on correctly (green border) predicted Java code image frames. Normal test image (left column). CAM
results on the test image (right column). The first row shows an image of handwritten Java code. The second through fourth
row shows examples of typeset Java code.

A Deep Learning Approach to Identifying Source Code in Images and Video MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Figure 4: CAM results on languages other than Java. A green bordermeans the image was correctly predicted as not containing
Java code. A red border means an incorrect prediction. The top row shows an example of C code. The second row shows HTML
code. The bottom two rows are Python code.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ott et al.

approach in that endeavor computed text saliency maps by evaluat-
ing a character vs. background CNN classifier in a sliding window
fashion. Bounding boxes on the text were then derived using these
text saliency maps. Similarly, in our approach, we utilize class ac-
tivation mapping to project the output category of our CNN back
onto the input image, generating a heat map of the zones of interest
where the network predicts code to appear. This way, subregions of
the image can be identified in one simple step, using work already
done by the network itself.

The task of identifying code in video highlights a need for a ro-
bustmodel to detect scene text in video frames. In [31], a CNN-based
architecture for the automatic recognition of color text characters
extracted from scene images is proposed. The authors utilize seven
heterogeneous convolution layers and combine the automatically
learned operations to extract features with strong generalizability,
allowing uppercase and lowercase versions of each letter to be rep-
resented by the same class. Their approach is robust to distortions,
complex background, low resolution, and non-uniform lighting, a
crucial characteristic in the indexing of tutorial videos, which vary
greatly in quality and presentation.

5.2 Code Detection
Video indexing based on recognition of code in captured frames is
an emerging field of study given the growing volume of online code
tutorial videos. However, this problem has yet to be approached
from a deep learning perspective. Rather, researchers in the field
have found success with more standard image processing methods.

One such notable approach to digital image processing in the
code recognition domain is outlined in [29]. Throughout this study,
the authors implement a tool created to enable developers to ac-
cess a greater breadth of expertise by allowing users to query the
contents of video tutorials. The methodological foundations of this
paper largely served as a motivation for our research and informed
the decisions we made in the building of our model. The authors
first optimized their solution by comparing the pixel matrices of
consecutive video frames. If they differed by less than 10% only the
first frame was kept. This highlighted the importance of removing
identical frames and in our paper, we have leveraged the abilities
of the autoencoder in order to further optimize frame similarity
identification.

The authors go on to identify Java code by applying OCR to a
candidate sub frame followed by the application of a parser which
creates a Heterogeneous Abstract Syntax Tree. This construction is
then used to conclude if code is present in the frame. This approach
informed our research as we saw an opportunity to further the
advancements made in the CodeTube study through using CNNs
to identify when code was present in the frame to allow for a more
specific application of OCR.

The authors addressed other pertinent issues in parsing software
video tutorials such as code that appears in multiple frames but
translated to different areas in the frame. To remedy this, the authors
compare the Java constructs generated by OCR applications and
the parser outlined above to identify if consecutive code-containing
frames contain the same code component. In order to improve the
accuracy of this comparison if these constructs are not found to
be similar, Longest Common Substring (LCS) analysis is run on

the pixel matrices in order to determine similarity. LCS is very
effective in this environment as it is not affected by scrolling that
is often conducted in video tutorials however, the expense of its
application motivated us to utilize an autoencoder based approach.
Our method achieves translational invariance and is thus able to
address the issue of code samples changing positions on a screen
while also improving on the efficiency of similarity computation. It
should be noted that the authors expanded their solution beyond
parsing video tutorials by integrating other sources of expertise,
particularly Stack Overflow discussions, and conducted a thorough
user study.

Another approach to indexing programming tutorials was con-
ducted in [40]. The authors base their work on a general application
of OCR to video tutorials to consolidate code as it appears across
frames followed by the leveraging of programming language sta-
tistical models to determine if the extracted text is code and then,
to correct the code downloaded in order to produce higher quality
results. Finally, in [6] the authors describe a method of tagging pro-
gramming videos based on title, description, and audio transcript.
This project did not use machine learning or image recognition
to consider the visuals of the video data but pulled from those
text-based sources to identify relevant topics.

6 CONCLUSION AND FUTUREWORK
In this paper we have described the application of deep learning
techniques, specifically convolutional neural networks and autoen-
coders, to the task of identifying source code examples in video
frames from a large dataset, and examining those examples for
similarity. Though CNNs represent the state-of-the-art in computer
vision, we believe this work represents their first application to
mining software from multimedia data sources. Our results demon-
strate 85.6% to 98.6% accuracy on classification tasks and is capable
of generalizing to typeset, partially visible, and handwritten code
examples. We are also able to achieve 85.7% accuracy for similarity
prediction, albeit on a much smaller test sample. Additionally, our
approach yields substantial runtime performance increases when
used in conjunction with GPU-based computing platforms and
appropriate scientific computing libraries.

We are currently working on curating additional labeled data for
a variety of programming languages, including C++, and R and have
begun an initial exploration into differentiating between Python
and Java code samples embedded in digital images through a model
that can differentiate between multiple languages while learning
lexical features in the process [28]. Using this data we will train
an ensemble of classifiers for identifying these languages in video
and images. We are also finalizing a web API that can be used by
users to submit the URL of a tutorial video and receive in return an
indexed list of frames that contain code, as well as groups of frames
corresponding to the same or similar code examples. We hope that
this will help further the development of code tutorial indexing
platforms, such as the ones discussed in our related works section.
Finally, in the longer term, we are interested to see if computer
vision techniques can be used to detect poorly implemented code
examples of well-known algorithms.

A Deep Learning Approach to Identifying Source Code in Images and Video MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] [n. d.]. FFmpeg. ([n. d.]). https://www.ffmpeg.org/
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.
2015. Predicting the sequence specificities of DNA-and RNA-binding proteins by
deep learning. Nature biotechnology 33, 8 (2015), 831–838.

[4] François Chollet et al. 2015. Keras. https://github.com/keras-team/keras. (2015).
[5] George Cybenko. 1989. Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems 2, 4 (1989), 303–314.
[6] Javier Escobar-Avila, Esteban Parra, and Sonia Haiduc. 2017. Text retrieval-

based tagging of software engineering video tutorials. In Proceedings of the 39th
International Conference on Software Engineering Companion. IEEE Press, 341–
343.

[7] Nick Ficano. 2018. nficano/pytube. (Jan 2018). https://github.com/nficano/pytube
[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.
[9] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep

API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2016). ACM, New York, NY,
USA, 631–642. https://doi.org/10.1145/2950290.2950334

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Tong He, Weilin Huang, Yu Qiao, and Jian Yao. 2016. Text-attentional convo-
lutional neural network for scene text detection. IEEE transactions on image
processing 25, 6 (2016), 2529–2541.

[12] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504–507.

[13] Ping Hu, Weiqiang Wang, and Ke Lu. 2015. Video text detection with text edges
and convolutional neural network. In Pattern Recognition (ACPR), 2015 3rd IAPR
Asian Conference on. IEEE, 675–679.

[14] David HHubel and Torsten NWiesel. 1962. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology
160, 1 (1962), 106–154.

[15] Ming Li Huihui Wei. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17. 3034–3040. https://doi.org/10.24963/ijcai.2017/423

[16] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2016.
Reading text in the wild with convolutional neural networks. International
Journal of Computer Vision 116, 1 (2016), 1–20.

[17] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep features for
text spotting. In European conference on computer vision. Springer, 512–528.

[18] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. 2007. DECKARD: Scalable and
Accurate Tree-Based Detection of Code Clones. In 29th International Conference
on Software Engineering (ICSE’07). 96–105. https://doi.org/10.1109/ICSE.2007.30

[19] Raghavendra Kotikalapudi and contributors. 2017. keras-vis. https://github.com/
raghakot/keras-vis. (2017).

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[21] Christine Lee, Ira Hofer, Maxime Cannesson, and Pierre Baldi. 2017. Deep
Learning for Predicting in Hospital Mortality. In ANESTHESIA AND ANALGESIA,
Vol. 124. LIPPINCOTT WILLIAMS & WILKINS TWO COMMERCE SQ, 2001
MARKET ST, PHILADELPHIA, PA 19103 USA, 85–86.

[22] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv
preprint arXiv:1312.4400 (2013).

[23] Erik Linstead, Lindsey Hughes, Cristina Lopes, and Pierre Baldi. 2009. Exploring
Java software vocabulary: A search and mining perspective. In Proceedings of
the 2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation. IEEE Computer Society, 29–32.

[24] Alessandro Lusci, Gianluca Pollastri, and Pierre Baldi. 2013. Deep architectures
and deep learning in chemoinformatics: the prediction of aqueous solubility for
drug-like molecules. Journal of chemical information and modeling 53, 7 (2013),
1563–1575.

[25] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[26] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
parallel programming with CUDA. Queue 6, 2 (2008), 40–53.

[27] Travis E. Oliphant. 2001–. Numpy: Python for Scientific Computing. (2001–).
http://www.scipy.org/

[28] Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cris-
tiano Firmani, and Erik Linstead. 2018. Learning Lexical Features of Program-
ming Languages from Imagery Using Convolutional Neural Networks. In 2018
IEEE/ACM 15th International Conference on Program Comprehension (ICPC).

[29] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!: extracting relevant fragments from software development
video tutorials. In Proceedings of the 38th International Conference on Software
Engineering. ACM, 261–272.

[30] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. nature 323, 6088 (1986), 533.

[31] Zohra Saidane and Christophe Garcia. 2007. Automatic scene text recognition
using a convolutional neural network. In Workshop on Camera-Based Document
Analysis and Recognition, Vol. 1.

[32] Eddie A Santos, Joshua C Campbell, Abram Hindle, and JosÃľ Nelson Amaral.
2017. Finding and correcting syntax errors using recurrent neural networks. PeerJ
Preprints 5 (Aug. 2017), e3123v1. https://doi.org/10.7287/peerj.preprints.3123v1

[33] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature 529, 7587 (Jan. 2016), 484–489.
https://doi.org/10.1038/nature16961

[34] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[35] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Proceedings of the
Ninth International Conference on Document Analysis and Recognition - Volume
02 (ICDAR ’07). IEEE Computer Society, Washington, DC, USA, 629–633. http:
//dl.acm.org/citation.cfm?id=1304596.1304846

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[37] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. 2016. Deep learning
code fragments for code clone detection. In 2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). 87–98.

[38] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk. 2015. Toward
Deep Learning Software Repositories. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. 334–345. https://doi.org/10.1109/MSR.2015.38

[39] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping
Li. 2016. Predicting Semantically Linkable Knowledge in Developer Online
Forums via Convolutional Neural Network. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 51–62. https://doi.org/10.1145/2970276.2970357

[40] Shir Yadid and Eran Yahav. 2016. Extracting code from programming tutorial
videos. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM, 98–111.

[41] A. Yuan, G. Bai, L. Jiao, and Y. Liu. 2012. Offline handwritten English character
recognition based on convolutional neural network. In 2012 10th IAPR Interna-
tional Workshop on Document Analysis Systems. 125–129. https://doi.org/10.1109/
DAS.2012.61

[42] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2921–2929.

