
Learning Lexical Features of Programming Languages from
Imagery Using Convolutional Neural Networks

Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson, Cristiano Firmani,
Erik Linstead

Machine Learning and Assistive Technology Lab
Schmid College of Science and Technology

Chapman University
Orange, California

{ott109,atchi102,harna100,best120,ander427,firma103}@mail.chapman.edu,linstead@chapman.edu

ABSTRACT
We demonstrate the ability of deep architectures, specifically con-
volutional neural networks, to learn and differentiate the lexical
features of different programming languages presented in coding
video tutorials found on the Internet. We analyze over 17,000 video
frames containing examples of Java, Python, and other textual and
non-textual objects. Our results indicate that not only can computer
vision models based on deep architectures be taught to differenti-
ate among programming languages with over 98% accuracy, but
can learn language-specific lexical features in the process. This
provides a powerful mechanism for carrying out program compre-
hension research on repositories where source code is represented
with imagery rather than text, while simultaneously avoiding the
computational overhead of optical character recognition.

CCS CONCEPTS
•Computer systems organization→Neural networks; • Soft-
ware and its engineering→ Software libraries and reposito-
ries;

KEYWORDS
deep learning, convolutional neural networks, program syntax

ACM Reference Format:
Jordan Ott, Abigail Atchison, Paul Harnack, Natalie Best, Haley Anderson,
Cristiano Firmani, Erik Linstead. 2018. Learning Lexical Features of Pro-
gramming Languages from Imagery Using Convolutional Neural Networks.
In ICPC ’18: ICPC ’18: 26th IEEE/ACM International Confernece on Program
Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3196321.3196359

1 INTRODUCTION
In recent years, the state-of-the-art in computer vision techniques
have converged on deep learning solutions based on artificial neu-
ral networks. In particular, convolutional neural networks (CNNs)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196359

have demonstrated the ability to learn high-order features in im-
agery which can be leveraged for both supervised and unsupervised
machine learning tasks. While this has led to a wide variety of ap-
plications in areas such as medical informatics and autonomy, the
inherently textual nature of source code has left CNNs relatively
unexplored in the software engineering community.

Despite the textual nature of source code, substantial volumes
of software data remain embedded in images and video as part of
technical tutorials available on the Internet. This data provides an
opportunity for new directions in program comprehension research,
particularly the ability of computer vision models to learn visual
differences, such as syntax, among programming languages in the
same way that human eyes perceive these features when looking
at code. If computer vision models are capable of learning such
features, these models can form the basis of new techniques for the
automated understanding of code in images and videos that is not
predicated on optical character recognition to first convert the data
into text.

In this paper we apply, for the first time, CNNs to the task of
learning lexical features from image-based representations of pro-
grams, focusing on Java and Python for a pilot study. Leveraging a
training set of 17,500 hand-labeled images, we are able to achieve
98.73% cross-validated accuracy distinguishing Java and Python,
and 92.50% accuracy distinguishing Java and Python from non-code
data. Using class activation mapping (CAM) [16] as a visualization
technique, we can see that our CNN models are learning low-level
lexical features of programming languages as part of the training
process, similar to cues a human uses to differentiate one language
from another.

2 DATA
As a first step in exploring the suitability of CNNs for identifying
lexical features of programming languages, we cultivated a corpus
of 100 tutorials consisting of approximately 50 hours of video from
YouTube. A diverse set of Integrated Development Environments
(IDEs), text editors, font sizes, and text colors appear in the dataset.
We focused on the Java and Python programming languages for
the experiments described here. All 100 videos were downloaded to
our server and segmented into a discrete image set by sampling at
a rate of one frame per second. This resulted in 160,500 unlabeled
images. These images were then filtered manually to exclude frames
with code examples that were obstructed or obscured in any way,
or contained handwritten code (such as on a whiteboard). This

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Ott et al.

Binary Classification Training Set Testing Set
Java Python Java Python

Java vs Python 4,853 2,514 1,215 630

Categorical Classification Training Set Testing Set
Java Python NC Java Python NC

Java vs Python vs NC 4,853 2,514 5,495 1,215 630 1,370
Table 1: Average data set size of each cross validation fold.

step was taken to ensure that the CNNs could leverage full textual
context as part of the learning process. In the future it would be
worthwhile to explore the ability of the models to generalize to
obscured or handwritten code.

As with all supervised learning methods, the ability of CNNs to
achieve high classification accuracy is predicated on the availability
of accurately labeled training data. To label as many images as
accurately and efficiently as possible, help was solicited from ap-
proximately 50 students enrolled in freshman and sophomore-level
courses focusing on programming in Java and Python. Students
were asked to label images as coming from one of three categories:
containing Java code, containing Python code, or not containing
either Java or Python. This process resulted in a final image set of
17,500 frames. Due to differing resolutions in our video corpus, as
well as a need for uniform input sizes in the first layer of our neural
networks, all images were rescaled to 500x500 pixels.

3 METHODS
Structured input data, such as images, lose their spatial relationships
when passed through traditional fully-connected, feed-forward arti-
ficial neural networks (ANNs). This is problematic for applications
such as computer vision since image features are comprised of
groups of pixels. Convolutional Neural Networks represent an al-
ternative ANN architecture that is able to maintain spatial relations
between pixels by convolving the input space with a multidimen-
sional weight matrix, commonly referred to as a filter. Training
CNNs with backpropagation was first proposed by LeCunn et al.
[7]. CNNs use a shared weight paradigm to reduce the number of
trained parameters, and as a result scale better compared to their
fully-connected counterparts. Weight sharing also builds transla-
tional invariance into the learned model, so that features can be
recognized despite their specific location in the image.

In this paper, we leverage the VGG [11] network, a popular
CNN architecture, to distinguish between Java and Python in video
frames. The VGG network has a convenient architecture in which
multiple convolutional operations occur in succession, followed by
a max pooling layer, which has the effect of downsampling high-
dimensional pixel spaces. After these layers have been repeated
several times, a fully connected output layer, typically implement-
ing a softmax function, is added. For our experiments, the VGG
architecture was implemented in Python using the Keras API with
a TensorFlow backend using two NVidia P100 GPUs with 16 GBs
of memory and 3,584 CUDA cores each.

4 RESULTS
Convolutional neural networks were trained using 5-fold cross-
validation for the two experiments detailed in Table 1. Each convo-
lutional model took, on average, 2.5 hours per fold to train, for a
total of 37.5 computing hours of training for all folds in all models.
In practice, the overall time was decreased by training models in
parallel by taking advantage of multiple GPUs on our deep learning
server.

The mean accuracies of the 5-fold cross-validation experiments
for each classifier are detailed below. A mean accuracy of 98.73%
(median 98.75%) is achieved on the binary classification task of
predicting Java versus Python typeset visible code. Including a
third category of no code, yields an accuracy of 92.50% (median
92.60%). This accuracy was achieved when both Java and Python
datasets contained only visible typeset code.

Figure 1 shows CAM results on correctly predicted Java code im-
age frames. Additional CAM figures are available in the supplemen-
tary material. The heatmap produced by CAM can be interpreted
by the degree of redness in a given region. The more red a region
is, the more weight the network associates with features in that
area to formulate its output prediction. In Figure 1, the left column
shows examples from the test set, while the right column shows
the CAM overlaid on the corresponding test image. The first row
shows an example of correctly predicted Java typeset code, while
the second shows a Python image frame. Visual analysis of the
CAM result images reveals the network’s preference towards Java
and Python specific features such as method and class declarations,
semicolons, and curly brackets. For example, the Java example in
Figure 1 shows the network’s strong preference for curly brackets
when predicting Java as the category. The Python image directly
below it shows strong preference for the de f keyword as well as
Python’s indentation pattern. The results of Figure 1 show the net-
work is capable of learning lexical and contextual features of image
code frames.

To ensure our method can distinguish between Java and Python
in homogeneous settings, we present the CAM results in Figure
2. Like Figure 1, the left column shows examples from the test
set, while the right column shows the CAM overlaid on the corre-
sponding test image. Both Java and Python code snippets are of
the Quicksort algorithm. Each line is semantically the same, only
differing in the languages appropriate syntax. The first row shows
an example of correctly predicted Java typeset code, while the sec-
ond shows a Python image frame. The Java CAM image shows
the network identifies curly brackets, semicolons, backslashes for
comments, and keywords such as public and private. The Python
CAM image highlights then end of lines, indicating an absence of
semicolons. These results show that convolutional networks, such

Learning Lexical Features of Programming Languages from Imagery Using Convolutional Neural NetworksICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Figure 1: CAM results on correctly predicted Java (top) and Python (bottom) code image frames. The left column shows the
normal test image. The right column shows the CAM results overlaid on the test image.

as the ones used in this study, are capable of learning, visually,
lexical differences between programming languages.

Using CAM, we are able to visualize what regions of input images
the network attends to when making its classification prediction.
This allows us to ensure the network is learning features directly
related to the language’s syntax and not other circumstantial fea-
tures contained in the images (IDE/text editor features). Additional
CAM results, as well as the convolutional architecture used for
the artificial neural networks in this study, are available in the
supplementary material: https://github.com/mlat/icpc.

5 RELATEDWORKS
The application of deep learning to the study of natural language
represented as text was conducted in [2]. The authors leveraged
a single CNN architecture to predict part-of-speech tags, chunks,
named entity tags, as well as other semantic attributes given an
input sentence. The authors in [6] use recurrent neural network
grammars to identify and learn heads of phrases in order to deter-
mine the syntactic category of a natural language phrase. In [1], the
authors propose a modular ANN architecture for lexical analysis of
natural language in the form of a continuous input stream.

Digital image processing in the code recognition domain is out-
lined in [10]. In this study, the authors look to identify Java code

in video frames through the application of OCR to candidate sub
frames. In [14], the authors use language specific statistical model-
ing to identify code regions appearing across frames. In [9], deep-
learning is applied to this domain through the application of con-
volutional neural networks to Java programming tutorials. This
approach allows for a more scalable solution to video indexing
while still maintaining accuracy. In this study, we extend this deep
learning approach, focusing on building a single model that can
differentiate between multiple languages while learning lexical
features in the process.

The in-depth analysis of source code samples, although not in
the form of images, has been explored in depth over the past decade.
The study of vocabulary trends throughout Java software develop-
ment is conducted in [8]. Others have sought to classify languages
given source code samples. In [15], the authors present a maximum
entropy classifier. The work in [12] employs a support vector ma-
chine based classifier while a statistical analysis of program features
is conducted in [5]. In [4], a Multinomial Naive Bayes classifier is
used and a modified Kneser-Ney discounting classifier is presented
in [13]. The application of a CNN to language classification comes
in [3]. This paper demonstrates the efficiency and accuracy of ap-
plying CNNs to the problem of classifying textual source code.

While previous work shares our goal of leveraging language
features to classify programming languages, we believe our study

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Ott et al.

Figure 2: CAM results on correctly predicted Java (top) and Python (bottom) code image frames, of the Quicksort algorithm.
The left column shows the normal test image. The right column shows the CAM results overlaid on the test image.

represents the first use of deep learning to do this using native
images instead of text.

REFERENCES
[1] Chun-Hsien Chen and V. Honavar. 1999. A neural-network architecture for

syntax analysis. IEEE Transactions on Neural Networks 10, 1 (1999), 94–114.
https://doi.org/10.1109/72.737497

[2] Ronan Collobert and Jason Weston. 2008. A Unified Architecture for Natural
Language Processing: Deep Neural Networks with Multitask Learning. In Pro-
ceedings of the 25th International Conference on Machine Learning (ICML ’08).
ACM, New York, NY, USA, 160–167. https://doi.org/10.1145/1390156.1390177

[3] S. Gilda. 2017. Source code classification using Neural Networks. In 2017 14th
International Joint Conference on Computer Science and Software Engineering
(JCSSE). 1–6. https://doi.org/10.1109/JCSSE.2017.8025917

[4] Jyotiska Nath Khasnabish, Mitali Sodhi, Jayati Deshmukh, and G. Srinivasaragha-
van. 2014. Detecting Programming Language from Source Code Using Bayesian
Learning Techniques. InMachine Learning and Data Mining in Pattern Recognition,
Petra Perner (Ed.). Springer International Publishing, Cham, 513–522.

[5] David Klein, Kyle Murray, and Simon Weber. 2011. Algorithmic Programming
Language Identification. CoRR abs/1106.4064 (2011). arXiv:1106.4064 http://arxiv.
org/abs/1106.4064

[6] Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong, Chris Dyer, Graham
Neubig, and Noah A. Smith. 2016. What Do Recurrent Neural Network Grammars
Learn About Syntax? CoRR abs/1611.05774 (2016). arXiv:1611.05774 http://arxiv.
org/abs/1611.05774

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[8] Erik Linstead, Lindsey Hughes, Cristina Lopes, and Pierre Baldi. 2009. Exploring
Java software vocabulary: A search and mining perspective. In Proceedings of

the 2009 ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools
and Evaluation. IEEE Computer Society, 29–32.

[9] Jordan Ott, Abigail Atchison, Paul Harnack, Adrienne Bergh, and Erik Linstead.
2018. A Deep Learning Approach to Identifying Source Code in Images and Video.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR).

[10] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!: extracting relevant fragments from software development
video tutorials. In Proceedings of the 38th International Conference on Software
Engineering. ACM, 261–272.

[11] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[12] Secil Ugurel, Robert Krovetz, and C. Lee Giles. 2002. What’s the Code?: Automatic
Classification of Source Code Archives. In Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’02).
ACM, New York, NY, USA, 632–638.

[13] J. K. v. Dam and V. Zaytsev. 2016. Software Language Identification with Natural
Language Classifiers. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), Vol. 1. 624–628. https://doi.org/
10.1109/SANER.2016.92

[14] Shir Yadid and Eran Yahav. 2016. Extracting code from programming tutorial
videos. In Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM, 98–111.

[15] Shaul Zevin and Catherine Holzem. 2017. Machine Learning Based Source Code
Classification Using Syntax Oriented Features. CoRR abs/1703.07638 (2017).
arXiv:1703.07638 http://arxiv.org/abs/1703.07638

[16] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2921–2929.

