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ABSTRACT
Weapply survival analysismethods to a dataset of publicly-available
software projects in order to examine the attributes that might lead
to their inactivity over time. We ran a Kaplan-Meier analysis and fit
a Cox Proportional-Hazards model to a subset of Software Heritage
Graph Dataset, consisting of 3052 popular Python projects hosted
on GitLab/GitHub, Debian, and PyPI, over a period of 165 months.
We show that projects with repositories on multiple hosting ser-
vices, a timeline of publishing major releases, and a good network
of developers, remain healthy over time and should be worthy of
the effort put in by developers and contributors.
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1 INTRODUCTION
Open Source Software (OSS) projects are ubiquitous in today’s soft-
ware landscape and provide a rich set of data on which to analyze
facets of the software development process using everything from
traditional statistics to deep learning [5, 11, 15–17]. They are unique
in that they allow developers to volunteer their time and effort into
creating software that is open for all to use. While open source
development efforts typically have a single person or body that
selects a subset of developed code for build releases and makes it
available for distribution [4], these projects are maintained by a
decentralized team of developers, who with low organizational cost,
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are able to produce applications that are at times used by millions.
The decentralized nature of the teams piques the interest of many
programmers who end up contributing to these projects. There are
no weekly meetings, developers rarely meet face-to-face, people
undertake the work of their choice, and the geographical diversity
of all contributors is immense, yet, there is a clear weekly pattern of
code update and addition[3]. This results in a software development
process that is substantially different from industry-level processes
and potentially allows more creative and innovative practices to
emerge. In a survey, 72% of participants said that they always seek
out open source options when evaluating new tools [1].

Lucassen et al. define the health of a software ecosystem as
"longevity and a propensity for growth."[12] Every healthy open
source project needs a team of dedicated developers and a set time-
line of goals and achievements. These projects also need to be
popular enough to gain interest from potential volunteers. It is hard
to predict the health of an open source project at the time of its
inception, when developers are excited about the project and the
end goals. But it is possible to see how a project has performed over
time. The health of a project could be computed by the number and
frequency of contributions, how frequently big targets are met by
the developers, or how focused the team is on making the software
ready for distribution. Since developers work on these projects as
volunteers, they want to ensure that their contributions do not
go into a project that might end up inactive. If this knowledge
were available to volunteers beforehand, they could consider other
avenues before dedicating their efforts to a single project.

Here we are mainly interested in the health of a project from an
additions-made point of view, since every new code addition made
to a project repository means that the team is meeting its goals.
We also want to look at the number of volunteers that work on a
project, the timeline theywork in, and the number of version control
systems (VCS) they use to host their projects. Having a project on
multiple VCSs or repositories like PyPI or Debian highlights the
accessibility of the project and points to the seriousness of the
developers and the team working on it. We use survival analysis,
commonly used in medical studies to predict treatment efficacy,
to find the probability of survival of popular open source projects
over time using Kaplan-Meier survival analysis, and quantify the
effects of these variables using a Cox Proportional-Hazards model.

2 DATA
An analysis of this nature is only possible with a dataset that records
repositories for projects on common VCSs in their entirety along
with a history of all commits (referred to as revisions) and major

https://doi.org/10.1145/3379597.3387511
https://doi.org/10.1145/3379597.3387511


MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Rao Hamza Ali, Chelsea Parlett-Pelleriti, Erik Linstead

Figure 1: Duration of all projects

releases (noteworthy revisions with a specific name like a ver-
sion number or release date). The popular-3k-python subset of the
Software Heritage graph dataset [18] is used for this analysis. The
dataset includes snapshots of nearly 3000 popular projects, between
2005 and 2018, hosted on GitLab, GitHub, Debian, and PyPI. These
projects were tagged with using Python as the main programming
language. Analyzing individual repositories, we are able to discern
exactly how many times a revision is made to a project as well as
cross-reference a project’s repositories hosted on multiple VCSs.
Overall, we extract the timestamp and author identifier for each
revision and release made on a project, and the VCS used to host
the project repository.

For survival analysis, we first need to establish a timeline within
which we analyze the health of the projects. Our proposed timeline
spans 14 years or 165 months (we define a month to be 4 weeks),
beginning in 2005 and ending in January 2018. Because Software
Heritage collected multiple snapshots for each project, across sev-
eral months, there is a lot of variability in the recency of the latest
snapshot for each project. To ensure that we look at the same du-
ration for all projects, we use a single cutoff date in January 2018.
Figure 1 shows the duration of all projects ordered by longest to
shortest duration, within the time duration. The cut off date also
ensures that projects that started during 2018 will get discarded
from the study, since they did not have enough time to establish
their timeline of revisions. After removing such projects and those
that only had a single instance in their history, we end up with 2059
projects and extract all their historical data for the duration of 165
months. No outliers were excluded.

3 METHOD
Survival analysis is a statistical methodology used in biostatistics
to study the duration of the life of an entity [21]. The approach is
based on measurements of events that can occur at any time during
a study. The data used for survival analysis includes the time until

an event of interest occurs. For example, survival analysis can be
used to model time until tumor recurrence, death after a treatment
intervention, or presence of symptoms in patients. Towards the
application of survival analysis to OSS development, Lin et al. [10]
and Ortega et al. [14] defined the event of interest as developers
who stopped contributing after some time, and used it to study
the effects of developers dropping out on the health of a project.
Aman et al. [2] used commits by new developers as their event,
to analyze the effects of introduction of buggy code to a software
repository. For this study, we define the event of interest as the
event of repository abandonment or complete lack of activity.

An important aspect of survival analysis is censoring. During the
time all projects are observed, if inactivity, as the event of interest,
does not occur, then we only know the total number of months in
which the event did not occur. In other words, the exact time-to-
event is censored. To determine which projects should be censored,
Samoladas et al. [19] used a month-by-month analysis to check
activity of each project. If a project had 2 months of consecutive
inactivity, it was deemed abandoned. But this approach resulted
in a very small subset of projects for which the event of inactivity
had occurred, and a large share of inactive projects for the study
came from a different approach. Instead, we use the approach used
by Evangelopoulos et al. [9] where a project is deemed abandoned
if there is no activity at all. For our study, a project that has revi-
sions beyond the January 2018 cutoff date surely is active and is
deemed censored, since the time-to-event of inactivity is not ob-
served during the 165 months period. And the remaining projects,
that suddenly showed no activity (no new revisions or releases
published) by the end of the time duration, become inactive. This
form of censoring is called Type III censoring (commonly referred
to as random censoring) and allows for staggered start times for
various projects. Avelino et al. [4] describe random censoring as
the most common case in software project research. The period of
study is predefined and projects start at different times during that
period, as can be seen in Figure 1. We note that the dataset contains
more active projects than inactive projects for the time duration.

The Kaplan-Meier (K-M) survival estimator is an important tool
to analyze and compare survival probabilities. It is a nonparametric
estimation technique and a widely used method for estimating the
survival function, in the presence of censored values [8], where the
survival function is the probability that the duration of a project is
longer than time t [19]. The K-M estimator produces a curve which
approaches the true survival function for the data. This allows us
to compare survival probabilities of OSS projects, with different at-
tributes, even though some data is censored. While the K-M curves
give us a visual representation of the survival of projects with
varying attributes over time, the Cox Proportional-Hazards model
allows us to fit a regression model to investigate the association
between the health of projects and key project attributes. There are
various parametric models available for modeling the relationship
of duration with other attributes but the Cox Proportional-Hazards
model allows estimation of effect parameters without consideration
of the hazard function, which describes how the risk of event occur-
ring changes over time [6]. We apply both the K-M estimator and
the Cox Proportional-Hazards model on the data to estimate the
effects of attributes on the overall health of an open source project.
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Figure 2: Kaplan-Meier estimations of the survival functions when comparing projects based on selected attributes

4 RESULTS
We use the following attributes of a project as estimators of survival
rate over time:

• majorReleases whether releases were published by the
project developers

• hostType type of hosting service used for the project repos-
itory

• authorCount total unique developers that have committed
a revision to the repository

• multipleRepositories whether the project is hosted on
multiple version control systems

We now discuss the results of running K-M curves and fitting
Cox Proporitional-Hazard models on the data.

4.1 Kaplan-Meier Survival Curves
We generate separate K-M curves, with confidence intervals, for all
four factored attributes described above. Figure 2 shows the survival
probabilities of projects when grouped on the categorical values
of each attribute. We also show the p-values from the log-rank
test, with results indicating that each set of projects is significantly
different in terms of survival, for each attribute tested. Just 5.73% of
projects published at least one release; a revision that consolidates
several commits and brings major updates to the project, and we
observe that having at least one release significantly increased the
chances of a project’s survival at the end of the 165 month period, as
seen in Figure 2a. Official releases are a way to show that significant
changes and additions have been made to a project, so much so that
they can be consolidated as a single version of the software. It also
signifies that developers are meeting targets and the project will
continue to remain active. The right tail of the curve for projects
that had releases plateaus at 85% survival probability around the
80 month mark implying the presence of long-term survivors [7],

while projects with zero releases end up with below 30% survival
rate at the end of the study duration.

Figure 2b implies the significance of using different hosting ser-
vices for open source projects. GitHub is the largest social coding
platform where all commits, issues, code changes, and requests are
archived publicly [25], and has become the standard for OSS devel-
opment. This attract a lot of developers to use GitHub as the host
for their repositories, while Debian and PyPI are package reposito-
ries where developers host their projects for distribution. Projects
hosted on GitHub come out on top in the survival race compared to
the other two hosting services. Though it should be noted that both
Debian and PyPI based projects have a higher survival rate during
the first 55 months, which is within the average duration of projects
hosted on all three services (50-57 months). When a project is ready
for distribution, specifically for the Debian operating system or as a
library for Python, it is traditionally added to the Debian and PyPI
package repositories. This implies that an open source project has
made significant developments and is very active. But we see that
once the average duration threshold is passed, both sets of projects,
hosted on Debian and PyPI significantly drop in survival probabil-
ity. Figure 2c signifies this fact. We see that projects that do host
their repositories on multiple services, for distribution purposes,
have a very healthy survival rate of 80% compared to below 20%
for projects that use only one package repository system, by the
end of the analysis duration.

Publishing major releases or distributing the project on different
repositories is a nod to the healthy development cycle for an open
source project. If a project has version releases, then it can be
viable for distribution across different systems. And we see that
this characteristic of a project significantly increases its probability
of survival over time. But a very important component of a healthy
open source project is the network of developers, that actually
produces these releases and distributions. Even when a project is
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Table 1: Hazards Ratio of categorical attributes of projects
with count and confidence intervals for ratios

Attribute Value N Ratio
releases Yes 118 reference (1)

No 1941 3.00 (1.70-5.31)***
multiple repos. Yes 188 reference

No 1871 3.30 (2.24-4.87)***
developers > 20 Yes 535 reference

No 1524 5.95 (4.53-7.82)***
hosting service Git 734 reference

PyPI 368 0.21 (0.16-0.28)***
Debian 957 0.28 (0.22-0.34)***

*** p < 0.001

popular, if lead developers leave the project, it becomes in danger
of getting abandoned, as analyzed by Sentas et al. [21]. So it is
important that major development changes are not maintained by
a select few developers. In our data set, 28.8% projects had revisions
made by just one developer. If that developer were to leave the
project, it could pose serious problems for the project to continue
to remain active. The K-M curve in figure 2d highlights this issue
where we show survival rate of projects that have had at least 20
different committers (to revisions) versus those that do not. Twenty
was chosen as a threshold because that number will include the core
group of developers as well as a small secondary group. It becomes
apparent that a good network of developers, where the task to make
commits and revisions is shared between many developers, end up
having a survival rate of above 65% which is significantly different
from projects that maintain a small team of lead developers, with
around 20% survival rate after 165 months.

4.2 Cox Proportional-Hazards Model
We fit the categorical attributes that we used in the Kaplan-Meier
analysis to a Cox Proportional-Hazards model to estimate the effect
of these attributes on the health of open source projects. We use
projects that published major releases, had repositories on mul-
tiple hosting services, had more than 20 unique developers who
published revisions, and used GitHub/GitLab as their main hosting
service as the baseline. This baseline acts as the control or reference
group for the hazard ratio [22].

Table 1 gives the hazards ratios for each attribute. We show
that all ratios are statistically significant and that projects with
no releases are 3 times more likely to become inactive compared
to those that do have periodic releases. Similarly, projects with
a single hosted repository are 3.3 times more likely to become
inactive than those with multiple repositories. As seen with the K-
M curve in Figure 2 where we show a significant difference between
projects when comparing the number of unique developers who
made revisions, projects with that count below 20 are 5.95 times
more likely to become abandoned. For the type of hosting service
used, we see that projects hosting their repositories on PyPI or
Debian are less likely to be abandoned compared to those that are
hosted on GitHub/GitLab. This observation goes along with the
insight that developers will only host repositories on PyPI and

Debian when they are ready to distribute their software and have
thus made significant progress with the software development.

The two survival analysis techniques applied to the data high-
lights the importance of routine updates and a good network of
developers for an OSS project. It is possible that these characteris-
tics are associated with unseen variables such as private funding for
a project or high demand for a software tool. It is also possible that
developers are paid to work on the project, exceeding the 20 unique
author count that we used for our analysis, and that a project be-
comes abandoned because of a sudden cut in funding. However,
this analysis shows a clear association between the chances of a
project’s survival and diversity of developers and routine releases.
While survival analysis is commonly used in medical studies, to
estimate survival of living beings, open source projects too act like
organisms, which remain healthy when all components work well
and continue to nourish and grow as time passes. But neglect, in the
form of low revision rate and too much reliance on a small group
of developers, is associated with inactivity over time.

5 RELATEDWORK
Health analysis of software repositories using survival analysis
techniques is relatively new. Schweik et al. [20] applied logistic
regression on open source projects to find that adding more devel-
opers raised the chances of a project to be successful. Subramaniam
et al. [23], who investigated the longitudinal effects of project spe-
cific characteristics on the success of open source projects, found
that developer interest and project activity affected the project suc-
cess measures. Our work explores these findings further and uses
survival analysis to not only emphasize the role of these attributes
to an open source project over time, but also estimates the measure
of the effect of what VCS are used by the projects.

For related work that uses survival analysis for estimating health
of open source projects, Miller et al. [13] fit a hazard model to
estimate the effects of covariates on disengagement of developers
and found that long working hours and job transitions increased
the chances of disengagement from an open source project. Valiev
et al. [24] did a study on comparing different attributes of OSS
projects on long term activity, along with interview insights, and
were able to conclude the positive effect of organizational support,
and coding competitions, on the health of open source projects.
While they were not able to measure the effect of the size of the
core team, we find that having a good diversity of developers who
author revisions significantly increases the survival rate of projects.

6 CONCLUSION
Our research aims to investigate the effects of attributes of open
source project to its overall health using survival analysis. We find
that while the percentage of projects that do have major releases is
relatively low, the survival rate for such projects was significantly
higher than the projects that did not publish noteworthy revisions.
We also show the effect of using multiple hosting repositories as
well as the type of service used on the projects in the long run.
Finally, using Cox Proportional-Hazards model, we estimate that
projects with a small core team is around six times more likely to
become inactive compared to those that boast a diverse set of core
team developers.
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