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Classical propositional logic is one of the earliest formal systems of logic, with its
origins in the work of Boole and De Morgan. The algebraic semantics of this logic
is given by Boolean algebras. Both, the logic and the algebraic semantics have been
generalized in many directions over the last 150 years. In this talk we primarily
take the algebraic point of view, but we will also use the powerful framework of
algebraic logic to clarify the close relationship between algebra and logic.

In various applications (such as fuzzy logic) the properties of Boolean conjunction
are too stringent, hence a new binary connective ·, usually called fusion, is intro-
duced. In Boolean algebra the relationship between conjunction and implication is
given by the residuation equivalences

x ∧ y ≤ z ⇐⇒ x ≤ y → z ⇐⇒ y ≤ x → z.

These equivalences imply many of the properties of ∧ and → (such as com-
mutativity of ∧, distributivity of ∧ over ∨, left-distributivity of → over ∨ and
right-distributivity of → over ∧) so one wishes to retain some aspects of these
equivalences, but with conjunction replaced by fusion. To avoid imposing commu-
tativity on the fusion operation one has to introduce two implications:

x · y ≤ z ⇐⇒ x ≤ y → z ⇐⇒ y ≤ x� z.

Since the residuals →, � are generalized division operations, it is convenient to
use the following alternative notation:

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

Thus \ is another name for �, and x → y = y/x. One advantage is that this
notation allows the formulation of a simple mirror image principle: Any statement
about residuated structures has an equivalent mirror image obtained by reading
terms backwards (i.e. replacing x · y by y · x and interchanging x/y with y\x),
hence it suffices to state results in only one form.

In the most general setting a residuated poset 〈P, ·, \, /,≤〉 is a partially ordered
set 〈P,≤〉 with three binary operations that satisfy the above equivalences. In
many applications to logic there exists additional structure, such as a constant 1 to
denote true, and suprema and infima for finite subsets of P . Since fusion is usually
assumed to be at least associative, we settle on a common foundation of Dilworth’s
residuated lattices [Di39], i.e., algebras of the form 〈L,∨,∧, ·, 1, \, /〉 such that

• 〈L,∨,∧〉 is a lattice (i.e. ∨, ∧ are commutative, associative and mutually
absorbtive),

• 〈L, ·, 1〉 is a monoid (i.e. · is associative, with identity element 1),
• xy ≤ z ⇐⇒ x ≤ z/y and xy ≤ z ⇐⇒ y ≤ x\z for all x, y, z ∈ L.
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Since the first two properties are defined by identities, it is important to note that
this can also be done for the third: the equivalences are captured by x(x\z∧y) ≤ z,
y ≤ x\(xy ∨ z) and their mirror images. Note that in the absence of parenthesis,
we assume that · is performed first, followed by \, / and finally ∨,∧. Moreover we
use the notation s ≤ t as abbreviation for the equivalent identity s = s ∧ t. Hence
residuated lattices form a variety (also called equational class), denoted by RL. A
general introduction to varieties of universal algebras can be found in [BS81].

Note that in particular we do not assume that L is bounded or that 1 is the
top element or that · is commutative. These additional assumptions are handled
by expanding the language with an additional constant 0, and/or adding further
identities.

A residuated lattice with a constant 0 (which can denote any element) is called
a full Lambek algebra or FL-algebra for short, and the variety of all such algebras
is denoted by FL. A good introduction to FL and its associated logic can be found
in [On03].

Much of the research on generalizations of BL-algebras can be viewed as inves-
tigations of certain subvarieties of FL and RL. We list here some of the important
ones, together with their various names.
Some subvarieties of FL.

• FLw-algebras [On03]: FL-algebras that satisfy 0 ≤ x and x ≤ 1.
• FLe-algebras [On03]: FL-algebras that satisfy x · y = y · x (or equivalently
x\y = y/x). In this case one usually writes x → y instead of x\y or y/x.

• DFL = distributive FL-algebras : FL-algebras that satisfy x ∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z).

• RFL = representable FL-algebras : FL-algebras that are subdirect products
of linearly ordered FL-algebras, or equivalently satisfy the identity 1 ≤
u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v.

• psMTL = pseudo monoidal t-norm algebras, or weak-pseudo-BL algebras
[FGI01]: FLw-algebras that satisfy prelinearity (x\y ∨ y\x = 1 and x/y ∨
y/x = 1).

• FLew-algebras [KO01]: algebras that are both FLe-algebras and FLw-algebras.
• MTL = monoidal t-norm algebras [EG01]: FLew-algebras that satisfy pre-

linearity.
• psBL = pseudo BL-algebras [FGI01], [DGI02]: FLw-algebras that satisfy

divisibility (x ∧ y = x(x\y) = (y/x)x).
• BL = basic logic algebras [Ha98]: MTL-algebras that satisfy divisibility, or

equivalently, commutative prelinear pseudo BL-algebras.
• HA = Heyting algebras [BD74]: FL-algebras that satisfy x ∧ y = xy, or

equivalently FLw-algebras that are idempotent (xx = x).
• psMV = pseudo MV-algebras [GI01]: pseudo BL-algebras that satisfy x∨y =
x/(y\x) = (x/y)\x.

• MV = multi-valued logic algebras, or �Lukasiewicz algebras [CDM00]: BL-
algebras that satisfy ¬¬x = x or equivalently, commutative pseudo MV-
algebras.

• GA = Gödel logic algebras, or linear Heyting algebras [Ha98]: BL-algebras
that satisfy x · x = x or equivalently, Heyting algebras that satisfy prelin-
earity.
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Figure 1. Some subvarieties of FL ordered by inclusion

• Π = product logic algebras [Ha98] [Ci01]: BL-algebras that satisfy ¬¬x ≤
(x → xy) → y(¬¬y).

• BA = Boolean algebras : Heyting algebras that satisfy ¬¬x = x, or equiv-
alently, MV-algebras that are idempotent (xx = x). BAn = subdirect
products of the linearly ordered n + 2-element Heyting algebra.

Some subvarieties of RL.

• DRL = distributive residuated lattices : Residuated lattices that satisfy x ∧
(y ∨ z) = (x ∧ y) ∨ (x ∧ z).

• IRL = integral residuated lattices : Residuated lattices that satisfy x ≤ 1.
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Figure 2. Some subvarieties of RL ordered by inclusion

• CRL = commutative residuated lattices [HRT02]: Residuated lattices that
satisfy x · y = y · x (or equivalently x\y = y/x). In this case one usually
writes x → y instead of x\y or y/x.

• RLC = representable residuated lattices [BT]: Residuated lattices that are
subdirect products of residuated chains, or equivalently satisfy the identity
1 ≤ u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v.

• GBL = generalized BL-algebras [JT02]: Residuated lattices that satisfy x∧
y = x(x\(x ∧ y)) = ((x ∧ y)/x)x.
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• GMV = generalized MV-algebras [JT02] [Ga03]: Residuated lattices that
satisfy x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x.

• Fleas [Ha]: Integral residuated lattices that satisfy prelinearity (x\y∨y\x =
1 and x/y ∨ y/x = 1).

• GBH = IGBL = generalized basic hoops, pseudo hoops : Residuated lattices
that satisfy x ∧ y = x(x\y) = (y/x)x. It follows that they are integral.

• BH = basic hoops [AFM]: Commutative representable generalized basic
hoops, i. e., commutative representable residuated lattices that satisfy
divisibility (x ∧ y = x(x\y)).

• WH = Wajsberg hoops : Commutative integral generalized MV-algebras.
• CanRL = cancellative residuated lattices [BCGJT]: Residuated lattices that

satisfy x = (x/y)y = y(y\x). These identities are equivalent to cancellativ-
ity of fusion.

• LG = lattice-ordered groups or �-groups [AF88] [GH89]: Residuated lattices
that satisfy 1 = x(x\1). NLG = normal-valued �-groups, defined by (x ∧
1)2(y ∧ 1)2 ≤ (y ∧ 1)(x ∧ 1). RLG = representable �-groups, defined by
1 ≤ (e\x)yx ∨ 1\y. CLG = commutative �-groups.

• LG− = negative cones of lattice-ordered groups [JT02]: Cancellative integral
generalized BL-algebras. NLG− = negative cones of normal-valued �-groups,
defined by x2y2 ≤ yx relative to LG−. RLG− = negative cones of repre-
sentable �-groups, defined as cancellative integral representable generalized
BL-algebras. CLG− = negative cones of commutative �-groups, defined as
cancellative basic hoops.

• Br = Brouwerian algebras : Residuated lattices that satisfy x ∧ y = xy.
RBr = representable Brouwerian algebras : Brouwerian algebras that satisfy
prelinearity, or equivalently, basic hoops that are idempotent (xx = x).

• GBA = generalized Boolean algebras : Brouwerian algebras that satisfy x ∨
y = (x → y) → y, or equivalently, Wajsberg hoops that are idempotent
(xx = x). GBAn = generalized Boolean algebras of degree n, defined as
subdirect products of the linearly ordered n+2-element Brouwerian algebra.

Many further varieties can be obtained from these by combining some of the
identities mentioned above. For example the prefixes C, D, I, are used to denote
the commutative, distributive and integral identities respectively. The relationships
between various subvarieties of RL and FL are shown in Figures 1 and 2. Note that
joins in these figures do not in general agree with joins in the lattice of subvarieties.

As indicated in Table 1, there is a close correspondence between certain subvari-
eties of FL and RL. In logic it is quite usual to have a constant 0 in the language to
denote falsity. From an algebraic perspective it is in some ways natural to consider
the slightly less expressive signature without 0 since, for example, the variety of
�-groups is not a subvariety of FL.

The notion of triangular norm has been studied extensively in the theory of
probabilistic measures. Since they give rise to generating algebras for several sub-
varieties, we recall the definition here. A pseudo-t-norm is an order-preserving
monoid operation on the unit interval [0, 1], with 1 as the identity. A t-norm is
a commutative pseudo-t-norm. It is said to be continuous if it is a continuous
function from [0, 1]2 to [0, 1] in the standard topology of the unit interval. Table 2
summarizes which varieties are generated by algebras based on specific t-norms.
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FL RL Defining identities

FLe CRL xy = yx

DFL DRL x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

RFL RLC 1 ≤ u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v

Below add 0 ≤ x for subvarieties of FL

FLw IRL x ≤ 1

FLew CIRL xy = yx, x ≤ 1

psMTL Fleas x\y ∨ y\x = 1 = x/y ∨ y/x

MTL CIRLC xy = yx, (x → y) ∨ (y → x) = 1

GBL x ∧ y = x(x\(x ∧ y)) = ((x ∧ y)/x)x

psBL IGBL x ∧ y = x(x\y) = (y/x)x

BL BH xy = yx, x ∧ y = x(x → y), (x → y) ∨ (y → x) = 1

GMV x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x
psMV IGMV x ∨ y = x/(y\x) = (x/y)\x
MV WH xy = yx, x ∨ y = (x → y) → y

HA Br x ∧ y = xy

GA RBr x ∧ y = xy, (x → y) ∨ (y → x) = 1

Π BL and ¬¬x ≤ (x → xy) → y(¬¬y)

BA GBA x ∧ y = xy, x ∨ y = (x → y) → y

Table 1. Definition and correspondence of subvarieties of FL and RL

FL RL Generated by

MTL CIRLC all residuated t-norms [JM02]

BL BH all continuous t-norms [Ha98] [CEGT00]

MV WH �Lukasiewicz xy = max{0, x + y − 1} [Ch59]

GA RBr Gödel xy = min{x, y} [Ha98]

Π Product xy = multiplication on [0, 1] [Ha98]

Table 2. Some varieties generated by t-norms

The subvarieties of RL are obtained if we do not specify 0 as a constant of the
algebra.

The relationship between subvarieties of FL and RL is illuminated by the following
reduct and expansion functors: R0 : FL → RL the forgetful functor that removes 0
from the signature, and E0 : RL → FL given by E0(A) = 0 ⊕ A, the ordinal sum
of {0} with A on top, and 0x = x0 = 0. Given a subvariety V of FL, we obtain a
subvariety of RL by defining R0V to be the variety generated by {R0A | A ∈ V}.
Similarly, a subvariety W of RL is mapped to a subvariety of FL by defining E0W
to be the variety generated by {E0B | B ∈ W}. Both maps preserve inclusions of
varieties.
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Any subvariety of RL or FL has a corresponding logic that is sound and com-
plete with respect to the algebraic semantics of the subvariety. Thus many logical
questions have algebraic counterparts and vice versa.

In the algebraic setting there are some semantic methods that can shed light
on the logical side. For example one can study the subdirectly irreducible mem-
bers of the variety, or ask about the finite embedding property [BvA02] [BvA],
equationally definable principal congruences (EDPC) [BP82], and the existence of
a discriminator term [Jo95].

We will see how the congruences in residuated lattices are ideal determined,
correspond to convex normal subalgebras, and how this characterization is used to
give equational bases for some subvarieties [GU84] [JT02] [vA02]. EDPC is related
to the deduction theorem in logic, and discriminator varieties are equivalent to
expansions with Baaz’s projection Δ [Ba96].

In the logical setting, there are syntactic methods such as cut-free Gentzen sys-
tems that have interesting consequences on the algebraic side, for example decid-
ability [OK85] [OT99] and joint embedding properties.

Finally, we will consider the categorical equivalence between lattice ordered
groups and cancellative integral generalized BL-algebras [JT02] [BCGJT] [vA], as
a special case of the very general Morita equivalence in universal algebra [McK96].
Further we will mention a recent generalization of Mundici [Mu86] and Dvurečenskij’s
[Dv02] categorical equivalences regarding (pseudo) MV-algebras to an equivalence
between lattice ordered groups expanded with a nucleus and generalized MV-algebras.
The latter result is due to N. Galatos [Ga03] where he used it to prove the decidabil-
ity of the equational theory of generalized MV-algebras. A recent implementation,
using the decision procedure for lattice ordered groups, due to Holland and Mc-
Cleary [HM79], can be found at [www.chapman.edu/∼jipsen/].
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