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Abstract. We consider various classes of algebras obtained by expanding idempotent

semirings with meet, residuals and Kleene-∗. An investigation of congruence properties (e-

permutability, e-regularity, congruence distributivity) is followed by a section on algebraic

Gentzen systems for proving inequalities in idempotent semirings, in residuated lattices,

and in (residuated) Kleene lattices (with cut). Finally we define (one-sorted) residuated

Kleene lattices with tests to complement two-sorted Kleene algebras with tests.

Keywords: Semirings, Kleene algebras, residuated lattices, Kleene algebras with test, ac-

tion algebras, congruence properties, Gentzen systems.

1. Introduction

The aim of this paper is to give an overview of some classes of algebras related
to residuated lattices. Starting with (bounded) idempotent semirings (also
known as join-semilattice ordered monoids) we consider the classes obtained
by expanding these algebras with a meet operation, with residuals, and/or
with a Kleene-∗ operation.

After recalling some known results about Kleene-algebras, residuated
Kleene-algebras, and residuated Kleene lattices, we present some data about
enumerations of finite members in these classes of algebras. Examples are
given to show that idempotent semirings, and hence Kleene algebras, are
not congruence (e-)permutable, congruence (e-)regular or congruence dis-
tributive. However the join-semilattice structure makes them congruence
meet-semidistributive, and with some mild additional assumptions one ob-
tains subclasses that are congruence distributive.

We present an algebraic Gentzen system for proving inequalities in idem-
potent semirings, in residuated lattices, and in (residuated) Kleene lattices.
In the latter case the Gentzen system is not known to be cut-free.

In the final section we consider residuated Kleene lattices with tests as
a one-sorted alternative to Kleene algebras with tests.
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2. Definitions and terminology

An algebra (A,∨, 0, ·, e) is a semiring with 0 and e (or just semiring for short)
if (A, ·, e) is a monoid, (A,∨, 0) is a commutative monoid and x(y ∨ z) =
xy ∨ xz, (y ∨ z)x = yx ∨ zx, and x0 = 0 = 0x. Here we are writing x · y
as xy, and consider this operation to have priority over ∨. The class of all
semirings is denoted by SR. Since it is defined by identities, this class forms
a variety.

Semirings are common generalizations of rings (where (A,∨, 0) is an
abelian group) and bounded distributive lattices (where · is commutative,
and x(x ∨ y) = x = x ∨ xy).

A semiring is called idempotent if x ∨ x = x. In this case (A,∨, 0) is a
lower-bounded join-semilattice, and as usual one defines a partial order x ≤ y
by x ∨ y = y. It follows from the distributivity that · is order preserving.
The variety of idempotent semirings is denoted by ISR.

We will consider expanding the members of ISR with one or more of the
following:

• A meet operation ∧, i. e. (A,∧) is a meet-semilattice, and x∧(x∨y) =
x = x ∨ (x ∧ y). This defines the variety ML of multiplicative lattices,
also known as lattice ordered monoids with 0.

• Residuals \, / of the multiplication, i. e. for all x, y, z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z and xy ≤ z ⇐⇒ x ≤ z/y.

This defines the class RISR of residuated idempotent semirings, also
known as residuated join-semilattices with 0.

• Kleene-∗, a unary operation that satisfies

(∗0) e ∨ x ∨ x∗x∗ = x∗

(∗1) xy ≤ y =⇒ x∗y = y

(∗2) yx ≤ y =⇒ yx∗ = y

This defines the quasivariety KA of Kleene algebras.

Further classes are obtained by considering combinations of the expan-
sions above (see Figure 1 and Table 1).

Kleene algebras and many related classes were studied by Conway [4],
Kozen [9] and others, since they provide an algebraic framework for reg-
ular languages (sets of strings accepted by automata) and for sequential
programs.

Briefly, given programs p, q,
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Figure 1. Some expansions of semirings

SR = semirings = rings (∨, 0, ·, e) without additive inverses
ISR = idempotent semirings = SR with ∨ idempotent
ML0 = multiplicative lattices with 0 = ISR with meet ∧
RISR = residuated idempotent semirings = ISR with residuals \, /
KA = Kleene algebras = ISR with Kleene-∗
RL0 = residuated lattices with 0 = ML0 with residuals
KL = Kleene lattices = KA with meet
RKA = residuated Kleene algebras = KA with residuals
RKL = residuated Kleene lattices = RL0 with Kleene-∗
RLT = residuated lattices with tests = RL0 with {x|x ≤ e} a Bool. alg.
RKLT = residuated Kleene lattices with test = RLT with Kleene-∗

Table 1.
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• pq means running p followed by q,

• p ∨ q means running p or q,

• p∗ means running p repeatedly 0 or more times.

Residuated Kleene algebras and residuated Kleene lattices have also been
called action algebras by Pratt [16] and action lattices by Kozen [10] respec-
tively, and they are algebraic versions of action logic. The standard example
of a Kleene algebra is given by the collection of regular sets on an alphabet Σ
under the natural set-theoretic operations of union, concatenation and iter-
ated concatenation. This is in fact a residuated Kleene lattice, and moreover
is distributive and closed under complementation.

Any join-complete idempotent semiring with completely join-preserving
multiplication can be expanded to a residuated Kleene lattice: it suffices to
define

x ∧ y =
∨

{z : z ≤ x and z ≤ y}

x\y =
∨

{z : xz ≤ y} x/y =
∨

{z : zy ≤ x}

x0 = e xn = xxn−1 x∗ =
∨

n∈ω

xn

In particular, any finite idempotent semiring expands to a unique finite
residuated Kleene lattice.

Note that (∗0) says that x∗ is reflexive ( e ≤ x∗ ), transitive ( x∗x∗ ≤ x∗)
and x ≤ x∗. Suppose y has the same properties: e ∨ x ∨ yy = y. Then

x ≤ y =⇒ xy ≤ yy ≤ y
(∗1)
=⇒ x∗y ≤ y =⇒ x∗ ≤ x∗e ≤ x∗y ≤ y.

Therefore x∗ is the smallest reflexive transitive element above x, i. e. the
reflexive transitive closure of x.

Motivation for adding residuals to Kleene algebras

Let Σ∗ be the free monoid on a set Σ, and consider the powerset algebra
(℘(Σ∗),∪,∅, ·, {λ},∗ ), where X · Y = {xy | x ∈ X, y ∈ Y } and X∗ =
⋃

n ∈ ω X
n. Define A = {0, e, a, 1} and h : ℘(Σ∗) → A by h(∅) = 0,

h({λ}) = e, h(X) = a for any finite set X, and h(X) = 1 otherwise. Then
A is a homomorphic image of ℘(Σ∗), but (∗1) fails in A: aa ≤ a, since
a∗a = 1a = 1 � a. The algebra A displays Conway’s “leap” since a∗ “leaps”
to 1 even though a is transitive and reflexive.
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This is the standard example that shows KA is not closed under homo-
morphic images and hence is not a variety. However, h does not preserve
residuals: X/X = {λ} for any finite set X, but a/a = a in A. In fact Pratt
showed that expanding KA with residuals eliminates this problem.

Theorem 2.1. [16] RKA is a variety defined by the identities for residuated
semirings together with e ∨ x ∨ x∗x∗ = x∗, x∗ ≤ (x ∨ y)∗ and (y/y)∗ ≤ y/y.

Proof. (∗1) iff x ≤ y/y =⇒ x∗ ≤ y/y, which implies (y/y)∗ ≤ y/y.
Conversely, suppose (y/y)∗ ≤ y/y holds. Then x ≤ (y/y) =⇒ x∗ ≤
(y/y)∗ ≤ y/y, so xy ≤ y =⇒ x∗y ≤ y.

Even better, with residuals we have that (∗1) and (∗2) are equivalent.
We have already seen that (∗1) implies the quasiequation e ∨ x ∨ yy ≤
y =⇒ x∗ ≤ y, so it suffices to show that this quasiequation implies (∗2):
yx ≤ y =⇒ yx∗ = y.

We always have e ≤ y\y and (y\y)(y\y) ≤ y\y, so if yx ≤ y then also
x ≤ y\y. Hence by the quasiequation we conclude that x∗ ≤ y\y, i. e.
yx∗ ≤ y.

Motivation for adding meet to RKA: Matrix algebras

For a semiring A, consider the set An×n of all n×n matrices. Let Mn(A) =
(An×n,∨, 0n, ·, en) be the semiring of matrices, where 0n is the zero matrix,
en is the identity matrix,

[xij ] ∨ [yij] = [xij ∨ yij] and [xij ] · [yij] = [
n
∨

k=1

xikykj]

Thus ∨ and · are the usual matrix addition and multiplication. Note
that if A is idempotent, then so is Mn(A). Furthermore, if A has a Kleene-∗
defined on it, this induces a Kleene-∗ on Mn(A):

Let X =

[

S T
U V

]

be a block matrix partitioning of X ∈ An×n, and

let W = S ∨ TV ∗U . It can be shown that the following definition of X∗ is
independent of the chosen partition.

X∗ =

[

W ∗ W ∗TV ∗

V ∗UW ∗ V ∗ ∨ V ∗UW ∗TV ∗

]

This construction has been used to prove several fundamental results
about Kleene algebra (e.g. [9]). The following results are from [10].
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Lemma 2.2. Let A be a residuated idempotent semiring. Then Mn(A) is
residuated if and only if A has finite meets.

In fact, [xij ]\[yij ] = [
∧n

k=1 xki\ykj] and [xij ]/[yij ] = [
∧n

k=1 xik/yjk]. On
the other hand, if M2(A) is residuated and a, b ∈ A, then there exist largest
elements x, y, z, w such that

[

x y
x y

]

=

[

e 0
e 0

] [

x y
z w

]

≤

[

a a
b b

]

i. e., x is the largest element such that x ≤ a and x ≤ b, hence x = a ∧ b.

Theorem 2.3. [10] If A is a residuated (Kleene) lattice then Mn(A) is also
a residuated (Kleene) lattice.

This matrix semiring construction deserves to be studied closely for resid-
uated lattices and RKL.

Problem 2.4. What varieties of residuated lattices are closed under the
construction of matrix algebras?

3. Congruence properties of (expansions of) idempotent
semirings

Recall that an algebra is congruence permutable if θ ◦ ψ = ψ ◦ θ for all
congruences θ, ψ. It is congruence 3-permutable if θ ◦ψ ◦ θ = ψ ◦ θ ◦ψ for all
congruences θ, ψ. An algebra with a constant e is congruence e-permutable
if e(θ ◦ ψ)x implies e(ψ ◦ θ)x for all elements x and all congruences θ, ψ.
It is e-regular if each congruence is determined by its e-congruence class
(i. e., the map θ 7→ [e]θ is injective). The previous two properties are of
interest since Gumm and Ursini [6] showed that a variety of algebras is
ideal determined (i. e. the e-congruence classes are characterized by being
closed with respect to certain “ideal terms”) if and only if each member is
congruence e-permutable and congruence e-regular.

If the congruence lattice of an algebra is distributive, modular, or meet-
semidistributive (θ ∧ψ = θ ∧φ =⇒ θ ∧ (ψ ∨φ) = θ ∧ψ) then the algebra is
said to be congruence distributive, congruence modular, or congruence meet-
semidistributive respectively. Finally, each of these congruence properties is
said to hold in a class of algebras if it holds for each member of the class.

It is well-known that lattices are congruence distributive, hence all classes
with lattice reducts (ML, RL, KL, RKL, RLT, RKLT) are congruence distribu-
tive. On the other hand bounded distributive lattices are not congruence
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(e-)permutable or congruence e-regular (where e is the top element), and
they can be interpreted into the classes ML, KL, KA, ISR and SR by taking
x ∧ y = x · y and x∗ = e. It therefore follows that these classes are not
congruence (e-)permutable or congruence e-regular.

The variety RL and its expansions RKL, RLT, RKLT are congruence per-
mutable and e-regular by a result of Blount and Tsinakis [3] (see also [7]).

Freese and Nation [5] showed that semilattices are congruence meet-
semidistributive. Since idempotent semirings have semilattice reducts, the
same result applies to ISR. Jónsson [8] showed that 3-permutable congru-
ence lattices are modular. For meet-semidistributive lattices, modularity
implies distributivity (since the 5-element modular lattice M3 is not meet-
semidistributive and is a sublattice of any nondistributive modular lattice).
Hence we have the following result:

Theorem 3.1. A congruence 3-permutable class of semilattice expansions is
congruence distributive. In particular, any congruence 3-permutable member
of ISR, RISR, KA, or RKA is congruence distributive.

We now give two examples of finite (expansions of) idempotent semirings
that show the status of the congruence properties in some of the remaining
classes of algebras from Table 1. These examples are the smallest possible,
and were found by enumerating finite members in these classes and comput-
ing their congruence lattices.

The algebra in Figure 2. is a residuated idempotent semiring with a 4-
element congruence lattice that is not a chain. It is easily checked that
the two non-comparable congruences θ and ψ (see Figure 2) are not e-
permutable. Since ψ has a trivial e-congruence class, it follows also that
RISR is not e-regular. The same example can be expanded with a Kleene-∗

that is definable by a term x∗ = (x∨ e)n. Hence RKA is also not congruence
(e-)permutable or congruence e-regular.

The algebra in Figure 3. is an idempotent semiring that is not congruence
distributive. The congruence lattice is shown to the right of the operation
table, with the elements labeled by the nontrivial congruence classes.

The results of this section are summarized in Table 2. It follows that
residuated lattices and their expansions are the only classes studied here
that are ideal determined in the sense of [6].

Problem 3.2. Decide whether RISR or RKA are congruence distributive.

If we consider varieties that satisfy x∨ e = e, then the term m(x, y, z) =
x(x\y) ∨ y(y\z) ∨ z(z\x) is a median term (i. e., satisfies m(x, x, y) =
m(x, y, x) = m(y, x, x) = x) from which congruence distributivity follows.
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b
a

0

e

T
· 0 a e b T

0 0 0 0 0 0
a 0 a a 0 a
e 0 a e b T
b 0 0 b b b
T 0 a T b T

\ 0 a e b T

0 T T T T T
a b T T b T
e 0 a e b T
b a a a T T
T 0 a a b T

θ-classes = {{0, b}, {a, e, T}} ψ-classes = {{0, a}, {e}, {b, T}}

Figure 2. A non-e-permutable residuated idempotent semiring

ba

0

c

e
· 0 a b c e

0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 c
e 0 a b c e {ac} {bc}

{abc}{0b}{ac}

{0abc}

{0a}{bc}

{0abce}

Figure 3. A non-congruence distributive idempotent semiring

SR ISR ML RISR KA RL KL RKA RKL RLT RKLT

Cong. permutable × × × × × X × × X X X

Cong. e-permutable × × × × × X × × X X X

Cong. e-regular × × × × × X × × X X X

Cong. distributive × × X × X X X X X

Table 2.
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4. A Gentzen system for RKL and some reducts

Gentzen systems are usually defined for logics, and use pairs of sequences of
formulas (called sequents) to specify the deduction rules of the logic. Here
we take an algebraic approach.

An algebraic Gentzen system is a set G of quasi-inequalities of the form
s1 ≤ t1 & . . .& sn ≤ tn =⇒ s0 ≤ t0, where si, ti are terms. These
implications are usually referred to as Gentzen rules and are written in the

form
s1 ≤ t1 . . . sn ≤ tn

s0 ≤ t0
.

For example, a Gentzen system for idempotent semirings is given by the
rules below.

x ≤ x u0v ≤ w

u ≤ x v ≤ y

uv ≤ xy

u ≤ x

u ≤ x ∨ y

u ≤ y

u ≤ x ∨ y

uxv ≤ w uyv ≤ w

u(x ∨ y)v ≤ w

Rather than using sequences of terms, we are assuming here that · is asso-
ciative, and we identify xe and ex with x.

For residuals and meet we add the following rules.

uy ≤ x

u ≤ x/y

x ≤ y uzv ≤ w

u(z/y)xv ≤ w

xu ≤ y

u ≤ x\y

x ≤ y uzv ≤ w

ux(y\z)xv ≤ w

u ≤ x u ≤ y

u ≤ x ∧ y

uxv ≤ w

u(x ∧ y)v ≤ w

uyv ≤ w

u(x ∧ y)v ≤ w

Note that all the rules above are valid quasi-inequalities for residuated lat-
tices.

A proof-tree for the Gentzen system G is a finite rooted tree in which
each element is an inequality, and if s1 ≤ t1, . . . , sn ≤ tn are the covers of
s0 ≤ t0 then the corresponding quasi-inequality is a substitution instance of
a member of G. An inequality s ≤ t is Gentzen provable if there exists a
proof-tree with s ≤ t as the root.

Theorem 4.1. (Ono and Komori [15]) An inequality s ≤ t holds in all
residuated lattices if and only if s ≤ t is Gentzen provable from the rules
above.

Since the premises of each of these rules are determined by the conclusion
(i. e., they have the subterm property), it is decidable whether an inequality
is Gentzen provable.
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Corollary 4.2. The equational theory of residuated lattices is decidable.

An algebraic proof of this result can be found in [7], and a general ap-
proach to algebraic Gentzen systems is presented in [2].

To obtain a Gentzen system for (residuated) Kleene algebras (lattices)
we add the rules below.

u ≤ e

u ≤ x∗
u ≤ x

u ≤ x∗
u ≤ x∗ v ≤ x∗

uv ≤ x∗

u ≤ y xy ≤ y

x∗u ≤ y

u ≤ y yx ≤ y

ux∗ ≤ y

x ≤ u u ≤ y

x ≤ y

The first three rules are equivalent to (∗0), and the next two are equivalent to
(∗1) and (∗2). However the last rule is the cut rule which lacks the subterm
property, so the decidability of the equational theory of KA, RKA and RKL

does not follow.

Problem 4.3. Can the cut rule be eliminated?

Kozen [9] has shown by different methods that the equational theory of
KA is decidable (in fact PSPACE complete).

Problem 4.4. Is the equational theory of RKA or RKL decidable?

For RKL, this should be compared to the result that the equational theory
of intuitionistic linear logic algebras (ILL = residuated lattices with storage)
is undecidable (Lincoln et al [14]).

5. Interpreting Kleene algebras with tests

In order to use Kleene algebras for the analysis of sequential programs, it
is useful to have a translation from standard programming constructs to
Kleene algebra terms. We briefly recall the basic ideas of relational seman-
tics. Relations on a set of states are used to model the input-output relation
of a program. Let S be the set of states that occur during a computation.
E.g. a state could be a vector of the current values for the variables that
are used in the program. A program p is modeled by a set of pairs of states.
The expression 〈s1, s2〉 ∈ p means that running program p when in state s1
may produce the state s2. Programs are allowed to be nondeterministic, so
there can be more than one output state for a given input state.

An atomic program is a single statement like a := a + 1, which corre-
sponds to the relation with pairs of state vectors 〈s1, s2〉, that differ only in
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the value for the variable a, with this value being one greater in state s2.
The program e is the identity relation on S, and running it has no effect
on the state. The program 0 is the empty relation, and it corresponds to
aborting the computation.

A boolean test is a program b that contains pairs 〈s, s〉 for every state s
in which the test is true. E.g. the test a > 3 contains 〈s, s〉 whenever s is a
state in which the variable a is greater than 3.

The negation ¬b of a boolean test is the relation {〈s, s〉 : 〈s, s〉 /∈ b}. The
standard compound statements of sequential programs are:

• pq which is already a Kleene algebra term

• “if b then p else q” which is translated as bp ∨ (¬b)q and

• “while b do p” which is translated as (bp)∗(¬b).

Kozen [11] defines Kleene algebras with tests to be two-sorted algebras
(K,B,∨, ·,∗ , 0, e,¬) where B ⊆ K and ¬ is a unary operation only de-
fined on B such that (K,∨, ·,∗ , 0, e) is a Kleene algebra and (B,∨, ·,¬, 0, e)
is a Boolean algebra (with e as largest element).

These algebras are used in several papers to give equational proofs of
correctness of program transformations, compiler optimizations and secure
code certification [12][13].

In the remainder of this section we illustrate a one-sorted approach to
Kleene algebras with tests. Define ¬x = ((x ∧ e)\0) ∧ e and consider the
identities ¬¬x = x ∧ e and (x ∧ e)(y ∧ e) = x ∧ y ∧ e.

The variety of residuated lattices with 0 that satisfy these identities is
referred to as residuated lattices with tests. If we also include the ∗-operation,
we obtain the variety RKLT of residuated Kleene lattices with tests.

Theorem 5.1. Let A be in RKLT, and let B = {x ∈ A : x ≤ e}. Then
(A,B,∨, ·,∗ , 0, e,¬) is a Kleene algebra with test. Moreover, the standard
model for relational semantics is in RKLT.

While much of the analysis of residuated lattices has focused on the
integral case or concerns the negative cones of residuated lattices, members
of RKLT are at the opposite end of the spectrum since they have Boolean
negative cones.

Problem 5.2. Is the variety of residuated lattices with tests or the variety
RKLT decidable?
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The standard relational model also satisfies the distributive law since it
is a subalgebra of (a reduct of) a relation algebra.

Let R be the class of all algebras isomorphic to ones whose elements are
binary relations and whose operations are union, intersection and composi-
tion. Andreka [1] proved that R is not a variety, but it generates the finitely
based variety of distributive lattice-ordered semigroups. Can this result be
extended to show that the positive reducts of relation algebras generate the
variety of all distributive residuated lattices with tests?
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