
EMBEDDING THEOREMS FOR CLASSES OF GBL-ALGEBRAS

P. JIPSEN AND F. MONTAGNA

Abstract. The poset sum construction is used to derive embedding theorems

for several classes of generalized basic logic algebras (GBL-algebras). In par-
ticular it is shown that every n-potent GBL-algebra is embedded in a poset
sum of finite n-potent MV-chains, and every normal GBL-algebra is embed-

ded in a poset sum of totally ordered GMV-algebras. Representable normal
GBL-algebras have poset sum embeddings where the poset is a forest. We
also give a Conrad-Harvey-Holland-style embedding theorem for commutative
GBL-algebras, where the poset summands are the real numbers extended with

−∞. Finally, an explicit construction of a generic commutative GBL-algebra is
given, and it is shown that every normal GBL-algebra embeds in the conucleus
image of a GMV-algebra.

1. Introduction

Generalized BL-algebras (GBL-algebras for short, cf [JT02], [GT05]) are divis-
ible residuated lattices, that is, residuated lattices such that if x ≤ y, then there
exist z, u such that zy = yu = x. These algebras constitute a generalization of
several important classes of algebras. First of all, GBL-algebras include (zero-free
subreducts of) Heyting algebras, which are the algebraic counterpart of intuition-
istic logic. Moreover, as the name suggests, GBL-algebras are a generalization of
(the zero free subreducts of) BL-algebras, which constitute the variety generated
by the commutative and integral residuated lattices with ([0, 1],max,min, 0, 1) as
lattice reduct, and with a monoid operation which is continuous on [0, 1], called
continuous t-norm, cf [Haj], [Ha98], [CEGT]. BL-algebras have been introduced by
Hàjek in [Haj] as a general semantics for fuzzy logics. Indeed BL-algebras include
Chang’s MV-algebras [CDM], product algebras [Haj] and Gödel algebras (i.e., rep-
resentable Heyting algebras, cf [Haj]). But GBL-algebras are also a generalization
of ℓ-groups, which are structures arising from classical algebra, cf [AF] and [Gla].
Indeed, an ℓ-group is a divisible residuated lattice, with residuals x\y = x−1y and
y/x = yx−1. Divisibility follows from the observation that for all x, y, if z = xy−1

and u = y−1x then zy = yu = x. Thus GBL-algebras constitute a bridge between
algebraic logic and classical algebra.

In this paper we prove several embedding theorems for classes of GBL-algebras.
By embedding theorem we mean a theorem stating that every algebra of a given class
C embeds into an algebra in C having a special form. A typical example is a naive
version of Stone’s theorem stating that every boolean algebra embeds into a powerset
boolean algebra. Embedding theorems are weak versions of representation theorems.
By this terminology we mean theorems stating that every algebra of a given class C is
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isomorphic to an algebra in C having a special form. An example of a representation
theorem is the strong version of Stone’s theorem, which says that every boolean
algebra is isomorphic to the algebra of closed and open sets of a totally disconnected
and compact topological space. The list of all important representation theorems
in algebraic logic (often expressed in terms of an equivalence of categories) would
be too long to be included in this introduction. We will only mention a few of them,
which are closely related to GBL-algebras, namely, Mundici’s equivalence Γ between
MV-algebras and abelian ℓ-groups with strong unit [Mu86], recently extended by
Dvurečenskij [Dv03] to the non-commutative case, the ordinal sum representation
of totally ordered BL-algebras [AM03], also extended by Dvurečenskij [Dvu] to the
non-commutative case, or even the representation of finite GBL-algebras as finite
poset sums of finite MV-algebras, proved in [JM]. But in the literature of ℓ-groups
we also find embedding theorems, for instance Holland’s theorem stating that every
ℓ-group embeds into the ℓ-group of automorphisms of a totally ordered set, with
composition as group operation and with lattice operations defined pointwise, or
even the Conrad-Harvey-Holland embedding of any abelian ℓ-group into the abelian
ℓ-group of functions from a root system into the reals, cf [AF], [Gla] (in fact, the
embedding is an isomorphism if the ℓ-group is divisible in the sense that for every
element x and for every positive integer n there is a y such that yn = x, but it is
not an isomorphism in general).

Coming to the content of this paper, our aim is to generalize the ordinal sum
decomposition of [AM03] or of [Dvu] to classes of GBL-algebras. To this purpose
we will use the poset sum construction introduced in [JM], which is a common
generalization of ordinal sums and of direct products. The paper is organized as
follows: in Section 3 we give a general sufficient condition for embeddability into
a poset sum of a family of GBL-algebras. Then in Section 4 we use this condition
in order to prove that every n-potent GBL-algebra embeds into the poset sum
of a family of finite n-potent MV-chains. Heyting algebras occur as a particular
case, because they are just 1-potent bounded GBL-algebras. In Section 5 we prove
that every normal1 GBL-algebra embeds into a poset sum of totally ordered GMV-
algebras, and that every commutative GBL-algebra embeds into the poset sum of
totally ordered MV-algebras and totally ordered abelian ℓ-groups. In Section 6 we
show that representable normal GBL-algebras correspond to poset sums in which
the poset is a forest, and we characterize various classes of GBL-algebras in terms
of poset sum embeddability. In Section 7 we combine the previous embedding
theorems with Hahn’s embedding theorem of totally ordered abelian groups, thus
proving that the above mentioned classes of GBL-algebras embed into algebras
of functions taking values in R ∪ {−∞}, whose structure is induced only by the
structure of the reals and by some orderings. Finally, in Section 8 we give an
explicit construction of a strongly generic commutative GBL-algebra, that is, of
a GBL-algebra which generates the full variety of commutative GBL-algebras as
a quasivariety. Of course, the countably generated free algebra would be such an
example, but our construction is more concrete and explicit.

2. Basic notions

In this section we review some definitions and some known results about resid-
uated lattices, GBL-algebras, GMV-algebras and ordinal sums.

1a residuated lattice is said to be normal iff every filter of it is a normal filter
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2.1. Residuated lattices.

Definition 2.1. A residuated lattice (cf e.g. [BT03], [JT02]) is an algebra of the
form (L,∨,∧, ·, \, /, e) where (L,∨,∧) is a lattice, (L, ·, e) is a monoid and \ and /
are binary operations that are left and right residuals of ·, i.e., for all x, y, z ∈ L

x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

In the sequel the symbol · will often be omitted.

Definition 2.2. A residuated lattice is: commutative if it satisfies xy = yx; inte-
gral if it satisfies x ≤ e; bounded if it has a minimum m (and hence a maximum
m/m) and if the signature has (besides the symbols of operations and constants
for residuated lattices) an additional constant symbol interpreted as m; divisible
iff x ≤ y implies y(y\x) = (x/y)y = x; cancellative if uxv = uyv implies x = y;
representable if it is isomorphic to a subdirect product of totally ordered residuated
lattices.

Note that ℓ-groups (cf [AF], [Gla]) can be presented as residuated lattices satis-
fying x(x\e) = e. Indeed, given an ℓ-group we obtain a cancellative and divisible
residuated lattice letting x\y = x−1y and y/x = yx−1. Conversely, from a residu-
ated lattice satisfying x(x\e) = e we obtain an ℓ-group by letting x−1 = x\e = e/x.

In a commutative residuated lattice the operations x\y and y/x coincide and are
denoted by x → y.

2.2. GBL-algebras and GMV-algebras.

Definition 2.3. A GBL-algebra (cf [JT02] and GT) is a divisible residuated lattice.
A GMV-algebra is a GBL-algebra satisfying the equation y/((x\y)∧ e)) = ((y/x)∧
e)\y = x ∨ y. An MV-algebra is a commutative, integral and bounded GMV-
algebra. A pseudo BL-algebra (psBL-algebra for short, cf [DGJ02]) is an integral and
bounded GBL-algebra satisfying (x\y) ∨ (y\x) = (y/x) ∨ (x/y) = e. A BL-algebra
(cf [Haj]) is a commutative, integral, bounded and representable GBL-algebra. A
Heyting algebra is a bounded GBL-algebra satisfying x · y = x∧ y. A Gödel algebra
is a representable Heyting algebra.

Definition 2.4. The negative cone of a residuated lattice L is the algebra L− whose
domain is {x ∈ L : x ≤ e}, whose lattice operations and whose monoid operation
are the restrictions to L− of the corresponding operations in L and whose residuals
\− are and /− are defined by x\−y = (x\y)∧ e and y/−x = (y/x)∧ e, where \ and
/ denote the residuals of L. Thus in particular in the negative cone of an ℓ-group
G the residuals are x\y = (x−1y) ∧ e and y/x = (yx−1) ∧ e.

In [BCGJT] it is shown that the class of negative cones of ℓ-groups, the class of
cancellative and integral GMV-algebras and the class of cancellative and integral
GBL-algebras coincide.

Proposition 2.5. (cf [GT05]). Any integral GMV-algebra satisfies the equation
x\y ∨ y\x = y/x ∨ x/y = e. Thus every integral and bounded GMV-algebra is a
psBL-algebra.

The next proposition shows that any integral GMV-algebra can be represented
by means of a negative cone of an ℓ-group and a nucleus. Recall that a nucleus on
a residuated lattice R is a unary operator γ satisfying the following conditions:
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• If x ≤ y, then γ(x) ≤ γ(y).
• x ≤ γ(x).
• γ(γ(x)) = γ(x).
• γ(xy) = γ(γ(x)γ(y)).

Proposition 2.6. (cf [GT05]).

(a) If G− is the negative cone of an ℓ-group and γ is a nucleus on G−, then
the image γ(G−) of G− under γ is a GMV-algebra with respect to the
operations: x∨γ y = γ(x∨ y), x∧γ y = x∧ y, x ·γ y = γ(x · y), x\γy = x\y
and x/γy = x/y. The monoid unit is γ(e). Moreover since G− is a GMV-
algebra, by [GT05], Theorem 3.4, we have that γ(e) = e and γ preserves
finite joins.

(b) ([GT05], Theorem 3.12). For every integral GMV-algebra A, there are
a negative cone G− of an ℓ-group and a nucleus γ on G−, such that
A = (γ(G−),∨γ ,∧γ , ·γ , \γ , /γ , γ(e)), with ·γ ,∨γ ,∧γ , /γ , \γ defined as in
(a). Moreover γ(G−) is a lattice filter of G−, that is, it is closed upwards
and it is closed under ∧. Finally, by [GT05], Theorem 3.11, G− is gener-
ated by γ(G−) as a monoid.

(c) Every GBL-algebra (hence, every GMV-algebra) is a direct product of an
ℓ-group and an integral GBL-algebra (respectively GMV-algebra).

Proposition 2.6 (c) allows us to concentrate on integral GBL-algebras.

Corollary 2.7. Any totally ordered GMV-algebra is either an ℓ-group, or a bounded
and integral GMV-algebra, or the negative cone of an ℓ-group.

Proof. By Proposition 2.6 (c), any GMV-algebra A decomposes as a product of
an ℓ-group and an integral GMV-algebra. Thus if A is totally ordered, it is either
an ℓ-group or an integral GMV-algebra. In the latter case, by Proposition 2.6 (b),
there are a negative cone G− of an ℓ-group G and a nucleus γ on G− such that
A = γ(G−) and G− is generated by A as a monoid. Moreover, γ(G−) is a lattice
filter of G−.

We claim that G− is totally ordered. First note that G− is an integral GMV-
algebra, therefore by Proposition 2.5 it satisfies (x\y) ∨ (y\x) = e. Thus in order
to prove that G− is totally ordered, it suffices to show that e is join irreducible in
G−. Now suppose x, y ∈ G− and x, y < e. Then by Proposition 2.6 (b) x and y
can be written as products of elements of A, say x =

∏n
i=1 xi and y =

∏m
j=1 yj ,

where at least one xi and one yj are less than e. Moreover x ≤ xi and y ≤ yj , since
G− is integral, therefore x ∨ y ≤ xi ∨ yj < e, because A is totally ordered.

We continue the proof of Corollary 2.7. If γ(G−) = G−, then A = G− is the
negative cone of an ℓ-group. Otherwise, there is c such that c ∈ G− \ γ(G−). Since
G− is totally ordered, and A is upward closed, c is a lower bound of A. Now for all
x ∈ G−, γ(x) is the smallest y ∈ γ(G−) such that x ≤ y. Thus γ(c) is the minimum
of A, and A is a bounded integral GMV-algebra. �

Another connection between GMV-algebras and negative cones of ℓ-groups is

the following: let G− be the negative cone of an ℓ-group G, let G
−

be the domain
of G− and let ′ be a bijection between G− and a set G′ disjoint from G−. Let
GMV(G−) denote the following structure:

• The domain of GMV(G−) is G− ∪ G′.
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• Let ·,∨,∧, \, /, denote the operations of G− and let e denote its neutral
element. Then, observing that every element of G− ∪ G′ is either in G−

or has the form x′ for some (uniquely determined) x ∈ G−, the operations
·′,∨′,∧′, \′, /′ of GMV(G−) are defined as follows, for all x, y ∈ G−:

x ·′ y = x · y, x′ ·′ y = (y\x)′, x ·′ y′ = (y/x)′, x′ ·′ y′ = e′;
x ∨′ y = x ∨ y, x ∨′ y′ = y′ ∨′ x = x, x′ ∨′ y′ = (x ∧ y)′;
x ∧′ y = x ∧ y, x ∧′ y′ = y′ ∧′ x = y′, x′ ∧′ y′ = (x ∨ y)′;
x\′y = x\y, x\y′ = (y · x)′, y′\x = e, x′\y′ = x/y;
y/′x = y/x, y′/x = (x · y)′, x/y′ = e, y′/x′ = y\x.

Finally, e is both the top element and the neutral element of GMV(G−)
and e′ is its bottom element.

Proposition 2.8. (cf [DDT]). If G− is the negative cone of an ℓ-group, then
GMV(G−) is an integral and bounded GMV-algebra. Moreover GMV(G−) is
totally ordered iff G− is totally ordered. Finally G− is both a subalgebra and a
normal filter of GMV(G−).

2.3. Ordinal sums of integral GBL-algebras. Let H1 and H2 be two integral
GBL-algebras, and assume that e is join irreducible in H1 and that H1∩H2 = {e}.
Then the ordinal sum of type (a), H1 ⊕ H2, of H1 and H2 is defined as follows:

The domain of H1 ⊕ H2 is H1 ∪ H2.
The operations in H1 ⊕ H2 are as follows:

x · y =







x ·i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

x\y =







x\iy if x, y ∈ Hi (i = 1, 2)
e if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

y/x =







y/ix if x, y ∈ Hi (i = 1, 2)
e if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

x ∧ y =







x ∧i y if x, y ∈ Hi (i = 1, 2)
x if x ∈ H1 \ {e} , y ∈ H2

y if y ∈ H1 \ {e} , x ∈ H2

x ∨ y =







x ∨i y if x, y ∈ Hi (i = 1, 2)
x if y ∈ H1 \ {e} , x ∈ H2

y if x ∈ H1 \ {e} , y ∈ H2

If e is not join-irreducible in H1 and H2 has a minimum m then H1⊕H2 is defined
as above with the exception of the join. Indeed, if x ∨1 y = e in H1, then the least
upper bound of x and y in H1 ⊕ H2 is the minimum of H2. Therefore the join
operation in H1 ⊕ H2 is defined as follows:

x ∨ y =























x ∨2 y if x, y ∈ H2

x ∨1 y if x, y ∈ H1 and x ∨1 y < e
m if x, y ∈ H1 and x ∨1 y = e
x if y ∈ H1 \ {e} , x ∈ H2

y if x ∈ H1 \ {e} , y ∈ H2
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In this case we say that the ordinal sum is of type (b). It is readily seen that in all
cases H1 ⊕ H2 is an integral GBL-algebra if H1 and H2 are (verification is left to
the reader).

Note that if e is not join irreducible in H1 and H2 has no minimum, then the
ordinal sum of type (a) of H1 and H2 is not a residuated lattice (it is not even a
lattice, because the operation ∨ defined as in ordinal sums of type (a) is not a join).
In this case, an “extended” ordinal sum may be obtained by taking the ordinal sum
of (H1 ⊕ W1) ⊕ H2, where W1 is the MV-algebra with two elements, the ordinal
sum H1 ⊕ W1 is of type (b) and the ordinal sum (H1 ⊕ W1) ⊕ H2 is of type (a).

A filter of a residuated lattice A is an upward closed subset F of A which is
closed under the monoid operation and the meet operation, and which contains e.
A filter F is said to be normal if whenever x ∈ F and y ∈ A, then y\(xy) ∈ F
and (yx)/y ∈ F . A normal filter F is said to be a value if there exists a ∈ A such
that F is maximal among all normal filters not containing a. Note that values are
precisely the completely meet-irreducible elements in the lattice of normal filters.
As an easy consequence of [GOR], we have that an integral GBL-algebra is normal
iff for all x, y there is a natural number n such that xyn ≤ yx and ynx ≤ xy, cf
also [JM]. A GBL-algebra is said to be n-potent if it satisfies xn+1 = xn, where
xn = x · . . . · x (n times). Note that n-potent GBL-algebras are normal.

In every residuated lattice, the lattice of normal filters is isomorphic to the
congruence lattice: to any congruence θ one associates the normal filter Fθ =
↑ {x : (x, e) ∈ θ}. Conversely, given a normal filter F , the set θF of all pairs (x, y)
such that x\y ∈ F and y\x ∈ F is a congruence such that the upward closure of
the congruence class of e is F . In particular, the variety of residuated lattices is
congruence regular at e.

In [JM] the following result is proved.

Proposition 2.9. (i) Every subdirectly irreducible integral and normal GBL-
algebra is the ordinal sum (either of type (a) or of type (b)) of a proper
subalgebra of it and of a non-trivial integral subdirectly irreducible GMV-
algebra.

(ii) Every n-potent GBL-algebra is commutative and integral.

Ordinal sums of type (a) can be generalized in an obvious way to the case of
infinitely many summands. In this case we consider a totally ordered set I of
indices, and for all i ∈ I we consider an integral GBL-algebra Hi such that for
i 6= j, Hi ∩ Hj = {e} and for all i, e is join irreducible in Hi. Then the ordinal
sum

⊕

i∈I Hi is defined as follows:

• The universe of
⊕

i∈I Hi is
⋃

i∈I Hi, and the monoid operation is defined
by

x · y =







x ·i y if x, y ∈ Hi (i ∈ I)
x if x ∈ Hi \ {e} , y ∈ Hj with i < j
y if y ∈ Hi \ {e} , x ∈ Hj with i < j

• The partial order on
⊕

i∈I Hi is the unique partial order ≤ such that e
is the top element with respect to ≤, the partial order ≤i on Hi is the
restriction of ≤ to Hi, and if i < j, then every element of Hi \{e} precedes
every element of Hj .

• The lattice operations and the residuals are uniquely determined by ≤ and
by ·.
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The following representation theorem is proved in [AM03].

Proposition 2.10. Every totally ordered integral and commutative GBL-algebra H

can be represented as an ordinal sum
⊕

i∈I Hi of commutative, integral and totally
ordered GMV-algebras. Moreover H is a BL-algebra iff I has a minimum i0 and
Hi0 is bounded.

Recently Dvurečenskij has shown that Proposition 2.10 extends to the non-
commutative case.

Proposition 2.11. (cf [Dvu]). Every totally ordered integral GBL-algebra H can
be represented as an ordinal sum

⊕

i∈I Hi of an indexed family of integral and
totally ordered GMV-algebras. Moreover H is a psBL-algebra iff I has a minimum
i0 and Hi0 is bounded.

Notation. In the sequel, given a normal filter F of an integral residuated lattice
A, A/F denotes the quotient of A modulo the congruence θF determined by F
and for every a ∈ A, a/F denotes the equivalence class of a modulo θF . Moreover
for all G ⊆ A, G/F denotes the set {a/F : a ∈ G}. This notation, as well as
the use of \ to denote set-theoretic difference, conflicts with the notation used for
residuals. However, we believe that this should not create confusion, as elements of
a residuated lattices are usually denoted by lowercase letters and sets, filters, etc.
are usually denoted by capital letters.

3. Poset sums and a general condition for poset sum embeddability

In the sequel, given a poset P = (P,≤), its dual, denoted by Pd, is defined as
the poset (P,≥). The next definition is taken from [JM].

Definition 3.1. Let P = (P,≤) be a poset and let (Ap : p ∈ P ) be a collection
of residuated lattices. Up to isomorphism we can (and we will) assume that all
Ap share the same neutral element e and that all Ap which are bounded share the
same minimum element 0. Suppose that if p is not minimal, then Ap is integral and
if p is not maximal then Ap is bounded. The poset sum

⊕

p∈P
Ap is the algebra

defined as follows.

• The domain of
⊕

p∈P Ap is the set of all maps h on P such that for all
p ∈ P ,

(a) h(p) ∈ Ap and
(b) if h(p) 6= e, then for all q > p, h(q) = 0.

• The monoid operation and the lattice operations are defined pointwise.
• The residuals are defined by

(h\g)(p) =

{

h(p)\pg(p) if for all q < p h(q) ≤p g(q)
0 otherwise

(g/h)(p) =

{

g(p)/ph(p) if for all q < p h(q) ≤p g(q)
0 otherwise

where the subscript p denotes the realization of operations and of order in
Ap.

Note that the function on P that is constantly e is always an element of the
poset sum. Sometimes it is convenient to consider the dual poset sum, that is, the
poset sum

⊕

p∈Pd Ap of the same algebras but with respect to the dual poset Pd.

Note that in the dual poset sum condition (b) must be replaced by the following
condition.
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(b’) if h(p) 6= e, then for all q < p, h(q) = 0.

Moreover the definition of residuals becomes

(h\g)(p) =

{

h(p)\pg(p) if for all q > p h(q) ≤p g(q)
0 otherwise

(g/h)(p) =

{

g(p)/ph(p) if for all q > p h(q) ≤p g(q)
0 otherwise

.

In the sequel, we will often omit subscripts when there is no danger of confusion.
Note that poset sums generalize both ordinal sums (which occur when (P,≤) is
totally ordered) and direct products (which occur when ≤ is just equality on P ).
In [JM] the following is shown:

Proposition 3.2. (a) The poset sum of a collection of residuated lattices is a
residuated lattice, which is integral (divisible, bounded respectively) when all
summands are integral (divisible, bounded respectively).

(b) Every finite GBL-algebra can be represented as the poset sum of a finite
family of finite MV-chains.

Our aim is to extend Proposition 3.2 (b) to larger classes of GBL-algebras. As we
could not obtain a general representation theorem, we will present some embedding
theorems. To begin with, in this section we give a sufficient condition for poset sum
embeddability. Recall that by Corollary 2.7, a totally ordered integral GMV-algebra
A is either bounded or the negative cone of an ℓ-group. In the first case we set
A∗ = A and in the second case we set A∗ = GMV(A). Note that in either case
A∗ is a totally ordered and bounded GMV-algebra and that A is a subalgebra of
A∗, cf Proposition 2.8.

Theorem 3.3. Let A be an integral GBL-algebra, let ∆ be a collection of normal
filters of A, let � be a partial order on ∆, and let ∆ = (∆,�). Suppose that the
following conditions are satisfied.

(a) For every F ∈ ∆, A/F decomposes as an ordinal sum BF ⊕WF (of type (a)
or (b)), where BF is an integral GBL-algebra and WF is a totally ordered
and integral GMV-algebra.

(b) For every F,G ∈ ∆, if F ≺ G, then {a : a/F ∈ WF } ⊆ G.
(c) For every F ∈ ∆ and for every a /∈ F there exists G ∈ ∆ such that F � G

and a/G ∈ WG\ {e}.
(d)

⋂

∆ = {e}.

Then A embeds into the (dual) poset sum A∆
d

=
⊕

F∈∆d W∗
F .

Proof. First of all, note that if conditions (a), (b), (c) and (d) hold, then F � G im-
plies F ⊆ G. The claim is clear if F = G. If F ≺ G, then by (b), {a : a/F ∈ WF } ⊆
G. But if a ∈ F , then a/F = e ∈ WF . Thus a ∈ F implies a ∈ G and the claim
follows.

Now for every a ∈ A, let ha be the function on ∆ defined by

ha(F ) =

{

a/F if a/F ∈ WF

0 otherwise
.

We claim that the map Φ : a 7→ ha is an embedding of A into A∆
d

. We start

from the following observation. For F ∈ ∆ and for h, k ∈ A∆d

, let h ≤↑F k iff
h(G) ≤ k(G) for all G ≻ F .
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Lemma 3.4. For all a, b ∈ A and for all F ∈ ∆ we have

(i) a/F ∈ WF iff for all G ∈ ∆ with F ≺ G, ha(G) = e.
(ii) ha �↑F hb iff (a\b)/F ∈ WF (iff (b/a)/F ∈ WF ).

Proof. (i) If a/F ∈ WF , then by (b), G ≻ F implies a ∈ G, therefore ha(G) =
a/G = e. Conversely, if a/F /∈ WF , then a /∈ F , and by (c) there exists G � F
such that a/G ∈ WG\ {e}. Clearly, G 6= F , as a/F /∈ WF and a/G ∈ WG. Thus
G ≻ F and ha(G) = a/G < e.

(ii) If (a\b)/F ∈ WF , then by (b) we have a\b ∈ G for every G ≻ F . Thus for all
G ≻ F , a/G ≤ b/G and ha(G) ≤ hb(G). Conversely, suppose that (a\b)/F /∈ WF .
Then by the argument used in the proof of (i) we see that there exists G ≻ F such
that (a\b)/G ∈ WG\ {e}. By the definition of ordinal sum, this is only possible
if b/G ∈ WG\ {e}, a/G ∈ WG and a/G 6≤ b/G. Hence ha(G) 6≤ hb(G). This
concludes the proof of Lemma 3.4. �

Continuing with the proof of Theorem 3.3, we verify the following facts.

(1) For a ∈ A, Φ(a) = ha ∈ A∆d

. Indeed, for F ∈ ∆, ha(F ) is either an element
of WF or 0, therefore ha(F ) ∈ W∗

F . Moreover if ha(F ) > 0, then a/F ∈ WF , and
by Lemma 3.4 (i) ha(G) = e for all G ≻ F . Thus if ha(G) < e, then ha(F ) = 0 for
all F ≺ G.

(2) Φ is one-one. Indeed, suppose a 6= b. Without loss of generality, we may assume
a\b < e. Since

⋂

∆ = {e}, there exists G ∈ ∆ such that a\b /∈ G. Thus by (c)
there exists H � G such that (a\b)/H ∈ WH\ {e}, therefore ha(H) 6≤ hb(H) and
Φ(a) 6= Φ(b).

(3) Φ preserves ∨, ∧ and ·. Let us verify first that Φ preserves ∨. Let a, b ∈ A and
let F ∈ ∆. If (a∨b)/F ∈ WF \ {0}, then either a/F ∈ WF \ {0} or b/F ∈ WF \ {0},
and recalling that every element of WF is an upper bound of (A/F )\WF , we get

Φ(a ∨ b)(F ) = ha∨b(F ) = (a ∨ b)/F = a/F ∨ b/F = Φ(a)(F ) ∨ Φ(b)(F ).
If either (a∨b)/F /∈ WF or (a∨b)/F = 0, then Φ(a∨b)(F ) = Φ(a)(F ) = Φ(b)(F ) =
(Φ(a) ∨ Φ(b))(F ) = 0.
We verify that Φ preserves ·. If a/F, b/F ∈ WF , then (a · b)/F ∈ WF , and
Φ(a·b)(F ) = (a·b)/F = a/F ·b/F = (Φ(a)·Φ(b))(F ). Otherwise, if e.g. a/F /∈ WF ,
then (a · b)/F /∈ WF and Φ(a · b)(F ) = Φ(a)(F ) = (Φ(a) · Φ(b))(F ) = 0.
The proof for ∧ is similar.

(4) Φ preserves \ and /. We prove the claim for \, the proof for / being quite similar.
Suppose first that a\b ∈ F . Then Φ(a\b) = e, a/F ≤ b/F and Φ(a)(F ) ≤ Φ(b)(F ).
Moreover if F � G, then by the observation made at the beginning of the proof,
F ⊆ G, therefore a\b ∈ G and a/G ≤ b/G. Thus for all G ≻ F , Φ(a)(G) ≤ Φ(b)(G),
and by the definition of \ in a poset sum, (Φ(a)\Φ(b))(F ) = Φ(a)(F )\Φ(b)(F ) = e.
Next assume a\b /∈ F and (a\b)/F ∈ WF . Then Φ(a\b)(F ) = (a\b)/F . Moreover
(a\b)/F ∈ WF \ {e}, therefore by the argument used in the proof of Lemma 3.4,
(ii), a/F, b/F ∈ WF . Also, by Lemma 3.4, (ii), we have that for all G ≻ F ,
Φ(a)(G) ≤ Φ(b)(G), therefore

(Φ(a)\Φ(b))(F ) = Φ(a)(F )\Φ(b)(F ) = (a/F )\(b/F ) = Φ(a\b)(F ).

Finally, if (a\b)/F /∈ WF , then Φ(a\b)(F ) = 0. On the other hand, by Lemma 3.4,
(ii), there is G ≻ F such that Φ(a)(G) 6≤ Φ(b)(G), therefore by the definition of \
in a (dual) poset sum, (Φ(a)\Φ(b))(F ) = 0. This ends the proof. �
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4. A poset sum embedding theorem for n-potent GBL-algebras

In [DL03], Di Nola and Lettieri prove a representation theorem for finite BL-
algebras. These algebras can be presented as finite trees whose nodes are labeled
by finite MV-algebras. This result is extended to finite GBL-algebras in [JM] (in
this case one has to take posets instead of trees). In the current section we partially
extend the result to n-potent GBL-algebras. In fact we will prove the following
embedding theorem:

Theorem 4.1. Every n-potent GBL-algebra embeds into the (dual) poset sum of a
family of finite and n-potent MV-chains.

Proof. Let ∆(A) be the set of all values of A, and let ∆(A) denote the poset
(∆(A),⊆), that is, ∆(A) ordered with respect to set-theoretic inclusion. Then for
F ∈ ∆(A), A/F is subdirectly irreducible, because if b ∈ A is such that F is
maximal among the filters not containing b, then the minimum non-trivial filter of
A/F is the filter generated by b/F . By Proposition 2.9, A/F decomposes as an
ordinal sum A/F = BF ⊕WF , where BF is a proper subalgebra of A/F and WF is
a non-trivial subdirectly irreducible n-potent GMV-algebra. Now by [JM], Lemma
18, WF , being n-potent and subdirectly irreducible, is (the reduct of) an n-potent
MV-chain with ≤ n + 1 elements. In particular, WF is bounded and W∗

F = WF .

Now consider the dual poset sum A∆(A)d

=
⊕

G∈∆(A)d WF . Then by Proposition

2.9, A∆(A)d

is a commutative and integral GBL-algebra. Moreover since product

is defined pointwise in a poset sum, it is readily seen that A∆(A)d

is n-potent. We

claim that A embeds into A∆(A)d

. To this end, it suffices to verify that ∆(A) and
the indexed family (BF ,WF : F ∈ ∆(A)) satisfy the assumptions (a), (b), (c) and
(d) of Theorem 3.3.

(a) Clear.
(b) For every F ∈ ∆(A), WF is simple and is a filter of A/F . Hence it is the

minimum filter of A/F . Thus if F ⊂ G, then G/F ⊇ WF , therefore G contains all
elements a such that a/F ∈ WF .

(c) Let F ∈ ∆(A) and a /∈ F . Let G be a filter which is maximal with respect
to the properties G ⊇ F and a /∈ G (such a filter exists by Zorn’s Lemma). Then
G ∈ ∆(A) and G ⊇ F . Moreover since WG is the minimum filter of A/G and a/G
belongs to this filter, a/G ∈ WG\ {e}.

(d) By Zorn’s Lemma, for every a < e, there is a filter F which is maximal
with respect to the property that a /∈ F . Then F ∈ ∆(A) and a /∈ F , therefore
a /∈

⋂

∆(A), and the claim is proved.
This ends the proof. �

Remark. Theorem 4.1 is an embedding theorem but not a representation theorem,
in the sense that not all n-potent GBL-algebras are isomorphic to a poset sum of
n-potent MV-algebras. Indeed, any such poset sum has a minimum (the constantly
zero function), whereas not all n-potent GBL-algebras are bounded. More generally,
any poset sum of bounded residuated lattices is bounded, and this fact imposes a
limitation on the class of GBL-algebras which are representable as a poset sum.

Remark. Clearly, 1-potent GBL-algebras are commutative, integral and idem-
potent residuated lattices, that is, zero-free subreducts of Heyting algebras (note
that in 1-potent residuated lattices, product and meet coincide). Thus Theorem 4.1
reduces to an embedding theorem for Heyting algebras and its zero-free subreducts,
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that is, every Heyting algebra embeds into a poset sum of a family of two-elements
Boolean algebras.

5. A poset sum embedding theorem for integral and normal

GBL-algebras and for commutative GBL-algebras

The poset sum construction in the previous section does not extend to arbitrary
integral and normal GBL-algebras A. Indeed, it is possible that for some F,G ∈
∆(A) with F ⊂ G and for some a ∈ A, one has a/F ∈ WF \ {0, e} and a/G ∈
WG\ {0, e} (this is the case if WF is not simple), therefore F ⊂ G, ha(G) < e and
ha(F ) > 0, which is incompatible with the definition of (dual) poset sum.

In order to overcome this problem, we will still consider the set ∆(A) of values
of A, but with a different partial order. More precisely, we set F � G iff either
F = G or G ⊇ {a : a/F ∈ WF }. Clearly � is a partial order. In the sequel ∆(A)
will denote the poset (∆(A) �). (This notation does not conflict with the notation
used for n-potent GBL-algebras, because if A is an n-potent GBL-algebra, then
the relations � and ⊆ on ∆(A) coincide).

Another difference with the n-potent case is that in general if F is a value
and we decompose A/F as an ordinal sum A/F = BF ⊕ WF , it is possible that
WF is unbounded and therefore W∗

F 6= WF . But with the adjustment to ∆(A)
introduced above, it is still possible to get a poset sum embedding theorem. We
begin with the following result.

Lemma 5.1. Every subdirectly irreducible and normal GMV-algebra C is totally
ordered.

Proof. We can assume without loss of generality that C is integral, because an ℓ-
group is subdirectly irreducible (normal, totally ordered respectively) iff its negative
cone is subdirectly irreducible (normal, totally ordered respectively). Thus suppose
that C is integral. We first prove that e is join irreducible in C. Indeed suppose by
contradiction that a, b < e and a∨ b = e. Let c < e be a generator of the minimum
non-trivial filter F of C. Then c belongs both to the filter generated by a and to
the filter generated by b (note that such filters are normal, because C is normal).
Then for some n, an ≤ c and bn ≤ c. Now (a∨ b)2n ≤ an ∨ bn, because · distributes
over ∨, and therefore (a∨ b)2n is a join of products of 2n factors of which, for some
i ≤ 2n, i factors are equal to a and 2n − i are equal to b. Since either i ≥ n or
2n− i ≥ n, we have that each factor is bounded above by an ∨ bn. Then we deduce
e = (a∨ b)2n ≤ an ∨ bn ≤ c < e, which is a contradiction. Thus e is join irreducible.

Now by Proposition 2.5, C satisfies the identity (a\b)∨ (b\a) = e. Since e is join
irreducible, we conclude that either a\b = e and a ≤ b or b\a = e and b ≤ a. Thus
C is totally ordered and Lemma 5.1 is proved. �

Note that there are totally ordered GMV-algebras that are not normal, see for
example Clifford’s o-group (cf [Dar], p. 57).

Lemma 5.2. The class of normal GBL-algebras is closed under quotients, subal-
gebras and finite products.

Proof. Let B be a normal GBL-algebra. Without loss of generality, we may assume
that B is integral (if it is not, then we can safely replace it by its negative cone).
Then every quotient of B is determined by a (necessarily normal) filter F . Now
let G be any filter of B/F and let G′ = {a ∈ B : a/F ∈ G}. It is readily seen that
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G′ is a filter of B. Thus G′ is normal. Next, let a/F ∈ G and b/F ∈ B/F . Then
a ∈ G′, therefore b\(ab) ∈ G′. It follows that (b/F )\(a/F · b/F ) = (b\(ab))/F ∈ G.
Similarly we see that ((b/F ) · (a/F ))/(b/F ) ∈ G, and G is normal.

The closure under subalgebras and finite products follows from the earlier ob-
servation that a GBL-algebra is normal iff for all x, y ≤ e there exists n such that
xyn ≤ yx and ynx ≤ xy. �

An ℓ-group example showing that normality is not preserved under arbitrary
products can be found in [Dar] (p. 325; note that the property of normality for
ℓ-groups is called Hamiltonian).

Theorem 5.3. (i) Let A be any integral normal GBL-algebra, and let ∆(A)
and WF (F ∈ ∆(A)) have the usual meaning. Then WF is totally ordered

and A embeds into the dual poset sum A∆(A)d

=
⊕

F∈∆(A)d W∗
F . Thus

every integral normal GBL-algebra embeds into a (dual) poset sum of totally
ordered, integral and bounded GMV-algebras.

(ii) Every normal GBL-algebra embeds into a (dual) poset sum of totally ordered
integral and bounded GMV-algebras and totally ordered ℓ-groups.

Proof. (i) By Proposition 2.9 (i) for all F ∈ ∆(A), A/F decomposes as A/F =
BF⊕WF , where BF is an integral GBL-algebra and WF is a non-trivial subdirectly
irreducible integral GMV-algebra. Note that WF is normal, because a filter of WF

is also a filter of A/F , which is normal, since A is normal and normality is preserved
under quotients. Thus by Lemma 5.1, WF is totally ordered. By Corollary 2.7,
it is either a totally ordered integral and bounded GMV-algebra or the negative
cone of a totally ordered ℓ-group. In both cases, W∗

F is a totally ordered, integral
and bounded GMV-algebra. Thus in order to derive the claim it suffices to prove
that the poset ∆(A) and the indexed family (BF ,WF : F ∈ ∆(A)) defined above
satisfy conditions (a), (b), (c) and (d) of Theorem 3.3.

(a) Clear.
(b) This follows from the definition of �.
(c) Let F ∈ ∆(A) and a /∈ F . If a/F ∈ WF , then a/F ∈ WF \ {e} and we

are done. Otherwise, let G0 = {x ∈ A : x/F ∈ WF }. Then G0 is a normal filter,
F ⊂ G0 and a /∈ G0. By Zorn’s Lemma there is a normal filter G which is maximal
with respect to the property that that G0 ⊆ G and a /∈ G. Then G ∈ ∆(A),
a/G 6= e and F � G. Moreover a/G is in the minimum normal filter of A/G. Since
WG is a normal filter of A/G, a/G ∈ WG\ {e}.

(d) Clear.

This ends the proof of (i).

(ii) By Proposition 2.6, any GBL-algebra A decomposes as a product of a com-
mutative and integral GBL-algebra B and an abelian ℓ-group G. Now by (i), B

embeds into an algebra of the form
⊕

F∈∆(B)d W∗
F , where ∆(B) is the set of values

of B partially ordered by the relation � defined just before Theorem 5.3 and each
W∗

F is a totally ordered integral and bounded GMV-algebra. Moreover G, being
a quotient of A, is normal, as normality is preserved under quotients. By Lemma
5.1, G has a subdirect embedding into an algebra of the form

∏

i∈I Gi, where each
Gi is a totally ordered ℓ-group. Without loss of generality we may assume that
I ∩ ∆(B) = ∅. Now consider the poset P = (∆(B) ∪ I,⊑), where ⊑ is defined by
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x ⊑ y iff either x = y or x, y ∈ ∆(B) and x � y. Thus every element of I is compara-
ble only with itself. Now let for x ∈ ∆(B)∪I, Ax = W∗

x if x ∈ ∆(B) and Ax = Gx

if x ∈ I. Then is readily seen that
⊕

x∈Pd Ax = (
⊕

F∈∆(B)d WF ) × (
∏

i∈I Gi),

therefore A embeds into
⊕

x∈Pd Ax. This ends the proof. �

Corollary 5.4. (i) Every commutative and integral GBL-algebra embeds into
a (dual) poset sum of an indexed family of totally ordered MV-algebras.

(ii) Every commutative GBL-algebra embeds into a (dual) poset sum of an in-
dexed family of totally ordered MV-algebras and totally ordered abelian ℓ-
groups.

6. Poset sum embedding theorems for classes of GBL-algebras

It is clear that a normal GBL-algebra is integral iff it embeds into a (dual)
poset sum of integral totally ordered, normal and bounded GMV-algebras and that
a GBL-algebra is commutative iff it embeds into a (dual) poset sum of totally
ordered MV-algebras and of totally ordered abelian ℓ-groups. In this section we
give similar characterizations for other classes of GBL-algebras. We start from
the class of representable GBL-algebras. Our characterization is in terms of poset
sum embeddability and not of dual poset sum embeddability. This characterization
involves the notion of forest. A forest is a poset (P,≤) such that for all p ∈ P the
set {q ∈ P : q ≤ p} is totally ordered. The dual of a forest is a root system, that is,
a poset (P,≤) such that for all p ∈ P the set {q ∈ P : p ≤ q} is totally ordered. We
prove:

Theorem 6.1. Let A be a GBL-algebra. The following are equivalent:
(i) A is representable.
(ii) A is embeddable in a poset sum

⊕

x∈P
Ax such that each Ax is a totally ordered

GMV-algebra and the poset P is a forest.

Proof. By Proposition 2.6 and along the lines of the proof of Theorem 5.3, (ii), we
can prove the theorem separately for integral GBL-algebras and for ℓ-groups. Thus
suppose first that A is integral.

(i) ⇒ (ii) Let us decompose A as a subdirect product of totally ordered integral
GBL-algebras (Ai : i ∈ I). Next let us apply Dvurečenskij’s Theorem 2.11, thus
getting an ordinal sum decomposition Ai =

⊕

j∈Ji
Wi,j , where each Wi,j is a

totally ordered integral GMV-algebra. Thus W∗
i,j is a totally ordered, integral and

bounded GMV-algebra. Now let P = {(i, j) : i ∈ I, j ∈ Ji}. Define a partial order
� on P by (i, j) � (i′, j′) iff i = i′ and j ≤ j′. Clearly P = (P,�) is a forest. We
associate to each a ∈ A the function ha on P , defined by

ha(i, j) =







e if ai ∈ Wi,h for some h > j
ai if ai ∈ Wi,j

0 if ai ∈ Wi,h \ {e} for some h < j

It is readily seen that the map Φ : a 7→ ha is an embedding of A into
⊕

(j,i)∈P
W⋆

j,i,

and this shows (i) ⇒ (ii)

(ii) ⇒ (i) Since representability is preserved under taking subalgebras, it suffices to
show that if for all p ∈ P , Ap is totally ordered and P = (P,≤) is a forest, then
the algebra AP =

⊕

p∈P
Ap is representable. For h, k ∈ AP and for p ∈ P , define

h ≡p k iff for all q ≤ p, h(q) = k(q). Note that in a poset sum, for every operation
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◦, (h ◦ k)(p) only depends on the restrictions of h and k to the set {q ∈ P : q ≤ p}.
It follows that ≡p is a congruence of AP. Moreover

⋂

{≡p: p ∈ P} is the minimum
congruence, because if h ≡p k for all p ∈ P , then h and k coincide. Thus AP

has a subdirect embedding into
∏

p∈P (AP/ ≡p), and it suffices to prove that each

AP/ ≡p is totally ordered. In other words, it suffices to prove that for every p ∈ P
and for every h, k ∈ AP , either h(q) ≤ k(q) for all q ≤ p or h(q) ≥ k(q) for all q ≤ p.
Suppose not. Then there are q, r ≤ p such that h(q) < k(q) and k(r) < h(r). Since
P is a forest, the set {q ∈ P : q ≤ p} is totally ordered, therefore either q < r or
r < q. Suppose e.g. q < r. Then h(q) < k(q) ≤ e, therefore by the definition
of poset sum, h(s) = 0 for all s > q. In particular, h(r) = 0 ≤ k(r), and a
contradiction has been reached.

The case where A is an ℓ-group is easy:

(i) ⇒ (ii) Suppose that A is representable. Consider a subdirect embedding of A

into
∏

i∈I Ai, where each Ai is a totally ordered ℓ-group. Define for i, j ∈ I, i ≤ j
iff i = j. Then I = (I,≤) is a forest and A embeds into

⊕

i∈I
Ai =

∏

i∈I Ai.

(ii) ⇒ (i) If an ℓ-group A is the poset sum
⊕

i∈I
Ai of an indexed family of totally

ordered GBL-algebras then it is readily seen that each Ai must be an ℓ-group. Now
a non-trivial ℓ-group is not integral, therefore the definition of poset sum implies
that every i ∈ I must be minimal. Hence for all i, j ∈ I one has i ≤ j iff i = j. Thus
⊕

i∈I
Ai =

∏

i∈I Ai, which is a representable ℓ-group. This ends the proof. �

Several classes of representable GBL-algebras, arising from many-valued logic,
have a simple characterization in terms of poset sum embeddability. We collect all
of them in the next theorem, whose easy proof is left to the reader.

Theorem 6.2. A GBL-algebra is

• a BL-algebra iff it is isomorphic to a subalgebra A of a poset sum
⊕

p∈P
Ap

such that
(a) each Ap is a totally ordered MV-algebra,
(b) P = (P,≤) is a forest and
(c) the function on P which is constantly equal to 0 is in A;

• an MV-algebra iff it is isomorphic to a subalgebra A of a poset sum
⊕

p∈P
Ap

such that conditions (a) and (c) above hold and
(d) P = (P,≤) is a poset such that ≤ is the identity on P ;

• an abelian ℓ-group iff it is isomorphic to a subalgebra A of a poset sum
⊕

p∈P
Ap such that each Ap is a totally ordered abelian ℓ-group and condi-

tion (d) above holds;
• n-potent iff it is embeddable into a poset sum of totally ordered n-potent

MV-algebras;
• a Heyting algebra iff it is isomorphic to a subalgebra A of a poset sum

⊕

p∈P
Ap where condition (c) holds and in addition

(e) every Ap is the two-element MV-algebra W1;
• a Gödel algebra iff it is isomorphic to a subalgebra A of a poset sum

⊕

p∈P
Ap where (b), (c) and (e) hold;

• a boolean algebra iff it is isomorphic to a subalgebra A of a poset sum
⊕

p∈P
Ap where (c), (d) and (e) hold.
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7. Conrad-Harvey-Holland-style embedding theorems for

commutative GBL-algebras

A simplified version of the Conrad-Harvey-Holland theorem says that every
abelian ℓ-group can be embedded into an ℓ-group of functions from a root sys-
tem into the set R of reals, with pointwise sum as group operation. In this section
we aim to extend the result to commutative GBL-algebras.

Definition 7.1. Let ∆ = (∆,≤) be a root system and for every function f from
∆ into R, let Supp(f) = {δ ∈ ∆ : f(δ) 6= 0}. We define a structure V (∆,R) as
follows:
(a) The universe of V (∆,R) is the set of all functions f from ∆ into R such that
every non-empty subset of Supp(f) has a maximal element.
(b) The group operation is pointwise sum (hence the neutral element is the con-
stantly 0 function 0 and the inverse operation −1 is defined, for f ∈ V (∆,R) and
for δ ∈ ∆, by (f−1)(δ) = −f(δ)).
(c) The positive cone of V (∆,R) consists of 0 together with all f ∈ V (∆,R) such
that f(δ) > 0 for each maximal element δ ∈ Supp(f).

Then we have:

Proposition 7.2. (Conrad-Harvey-Holland, simplified version, cf [Gla]).

(a) The algebra V (∆,R) is an ℓ-group with respect to the operations and to the
positive cone introduced in Definition 7.1.

(b) Every abelian ℓ-group G embeds into an ℓ-group of the form V (∆,R) for
a suitable root system ∆ = (∆,≤).

Note that lattice operations in V (∆,R) are induced by its positive cone. They
may be explicitly defined as follows: let f, g ∈ V (∆,R) and let δ ∈ ∆. If for all
ρ ≥ δ we have f(ρ) = g(ρ), then (f ∨ g)(δ) = (f ∧ g)(δ) = f(δ) = g(δ). Otherwise,
since ∆ is a root system and f, g ∈ V (∆,R), the set {ρ ∈ Supp(g − f) : δ ≤ ρ} has
a maximum element, δ0 say. Then if g(δ0) < f(δ0) we have (f ∨ g)(δ) = f(δ) and
(f ∧ g)(δ) = g(δ). Otherwise we have (f ∨ g)(δ) = g(δ) and (f ∧ g)(δ) = f(δ).

For totally ordered ℓ-groups G, the result was shown first by Hahn:

Proposition 7.3. (Hahn, simplified version, cf [Gla]).

(a) If ∆ = (∆,≤) is totally ordered, then V (∆,R) is a totally ordered abelian
ℓ-group.

(b) Every totally ordered abelian ℓ-group G embeds into an ℓ-group of the form
V (∆,R) for a suitable totally ordered set ∆.

Note that the proofs of both Hahn’s theorem and of the Conrad-Harvey-Holland
theorem provide for an explicit construction of the root system ∆. More precisely,
recall that a convex subgroup of an ℓ-group G is an ℓ-subgroup H of G such that
for all h, g ∈ G, if h ∈ H and g ∨ g−1 ≤ h ∨ h−1, then g ∈ H. We also recall
that a value of an abelian ℓ-group G is a convex subgroup H of G for which there
is a ∈ G such that H is maximal among all convex subgroups not containing a.
Then ∆ may be assumed to be the set ∆(G) of all values of G, partially ordered
by set-theoretic inclusion.

In order to extend the (simplified version of the) Conrad-Harvey-Holland embed-
ding theorem to commutative GBL-algebras, it suffices to extend it to poset sums
of totally ordered MV-algebras and totally ordered abelian ℓ-groups. To begin
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with, we give some embedding theorems for the summands of such poset sums. We
already have an embedding theorem for totally ordered abelian ℓ-groups, namely,
Hahn’s theorem. For totally ordered MV-algebras we will use a variant of Mundici’s
functor Γ. This functor allows us to represent any MV-algebra as an interval [e, u]
of an abelian ℓ group G such that u is a strong unit of G. However, since inte-
gral residuated lattices are regarded as negative cones and not as positive cones,
we prefer to represent MV-algebras as intervals of the form [u−1, e] and not of the
form [e, u].

We start from an analogue of Hahn’s theorem for negative cones.

Definition 7.4. Let ∆ = (∆,≤) be a totally ordered set. Let 0↓ be the set of
all f ∈ V (∆,R) such that either f = 0 or f(max(Supp(f))) < 0. We define a
structure V −(∆,R) as follows:

• The domain of V −(∆,R) is 0↓.
• The monoid operation is pointwise sum and the lattice operations are the

restrictions of the lattice operations on V (∆,R).
• The residual → is defined as follows: if g − f ∈ 0↓ (here g − f denotes the

pointwise difference of g and f), then f → g = g−f . Otherwise, f → g = 0.

Hahn’s theorem theorem immediately gives the following result.

Proposition 7.5. (a) If ∆ is a totally ordered set, then V −(∆,R) is the negative
cone of a totally ordered abelian ℓ-group.
(b) For every negative cone, G−, of a totally ordered abelian ℓ-group G, there is a
totally ordered set ∆ such that G− embeds into V −(∆,R).

Now we treat totally ordered MV-algebras. Recall that a strong unit of a lattice
ordered abelian group G with group operation + is an element u ∈ G such that
for all g ∈ G there is a positive integer n such that g ≤ u+ · · ·+u (n times). Then
after reversing the order, Mundici’s Γ functor can be rewritten as follows:

Definition 7.6. Let u be a strong unit of an abelian ℓ-group G with group op-
eration +, with neutral element 0 and with inverse operation −x. Then Γ(G,−u)
denotes the algebra A = (A,⊙,→,∨,∧,−u, 0) where:

• A = {x ∈ G : −u ≤ x ≤ 0} .
• The lattice operations ∨ and ∧ are the restriction of the lattice operations

in G.
• For x, y ∈ A, x ⊙ y = (x + y) ∨ (−u) and x → y = (y − x) ∧ 0.

After reversing the order and restricting our attention to totally ordered MV-
algebras, Mundici’s equivalence [Mu86] between MV-algebras and lattice ordered
abelian groups with a strong unit immediately implies the following result.

Proposition 7.7. For every totally ordered MV-algebra A there are a totally or-
dered abelian ℓ-group G and a strong unit u of G such that A is isomorphic to
Γ(G,−u). Hence for every totally ordered MV-algebra A there are a totally ordered
set ∆ and a strong unit u ∈ V (∆,R) such that A embeds into Γ(V (∆,R),−u).

Note that for every totally ordered abelian ℓ-group G it is possible to choose a
totally ordered set ∆ such that G is cofinal in V (∆,R), that is, every element of
V (∆,R) has an upper bound in G. This property implies that every strong unit
of G is a strong unit of V (∆,R). Moreover V (∆,R) has a strong unit iff ∆ has a
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maximum element. Indeed if u is a strong unit and δ = max(Supp(u)), then δ must
be the maximum of ∆, otherwise if σ > δ, then the function f such that f(σ) = 1
and f(ρ) = 0 for ρ 6= σ is such that f ∈ V (∆,R) and for every positive integer n,
f > u + · · · + u (n times). Moreover if δ = max(∆), then any u ∈ V (∆,R) such
that u(δ) > 0 is a strong unit of V (∆,R).

Remark. For a more general representation theorem of GMV-algebras by means
of an algebra of real valued functions, the reader is invited to consult [GRW03].

Since we want that all non-minimal summands in a poset sum share the same
minimum, and since 0 is already booked (it is the neutral element of the group of
the reals), we will replace −u by −∞ (where we assume that −∞ /∈ R and that
−∞ /∈ V (∆,R)), and we will call the resulting structure Γ′(V (∆,R),−u). Thus
Γ′(V (∆,R),−u) is defined as follows:

Definition 7.8. Let ∆ be a totally ordered set with maximum and let u be a
strong unit of V (∆,R). Let 0↓ be as in Definition 7.4 and let (−u)↑ = {f ∈
V (∆,R)\{−u} : max(Supp(f + u)) > 0}. Then Γ′(V (∆,R),−u) is defined as
follows:

• The domain of Γ′(V (∆,R),−u) is (0↓ ∩ (−u)↑) ∪ {−∞}.
• Lattice operations on 0↓ ∩ (−u)↑ are the restrictions of lattice operations

on V (∆,R), and for all f ∈ Γ′(V (∆,R),−u), f ∧ −∞ = −∞ ∧ f = −∞
and f ∨ −∞ = −∞∨ f = f .

• For all f ∈ Γ′(V (∆,R),−u), f · −∞ = −∞ · f = −∞. Moreover if
f, g ∈ 0↓ ∩ (−u)↑, then

f · g =

{

f + g if f + g ∈ (−u)↑
−∞ otherwise

.

• For all f ∈ Γ′(V (∆,R),−u), −∞ → f = 0 and if f 6= 0 and f 6= −∞, then
f → −∞ = −u − f . Moreover 0 → −∞ = −∞, and if f, g ∈ 0↓ ∩ (−u)↑,
then

f → g =

{

g − f if g − f ∈ 0↓
0 otherwise

.

Then we have:

Proposition 7.9. Every totally ordered MV-algebra embeds into an algebra of the
form Γ′(V (∆,R),−u) for some totally ordered set (∆,≤) with maximum and for
some strong unit u of V (∆,R).

It follows from Corollary 5.4 and from Propositions 7.3 and 7.9 that every com-
mutative GBL-algebra embeds into a (dual) poset sum

⊕

p∈Pd Ap of algebras Ap

having one of the forms V (∆p,R) or Γ′(V (∆p,R),−up) for some totally ordered
set ∆p and for some strong unit up of V (∆p,R). Such poset sums are uniquely
determined by the poset P = (P,≤), by the totally ordered sets ∆p, by the choice,
for each p, of one of the forms V (∆p,R) or Γ′(V (∆p,R),−up) and in the last
case, by the choice of the strong unit up of V (∆p,R), that is, of a function up

from ∆p into R such that every non-empty subset of Supp(up) has a maximum
and up(max(∆p)) > 0. Thus the only algebraic structure in the definition of such
algebras is the group structure of the reals, the rest of the construction essentially
depends on order. The algebras of the form shown above will be called real valued
GBL-algebras.

We want to describe real valued GBL-algebras more closely. First of all, every
element F of a real valued GBL-algebra

⊕

p∈Pd Ap is a function which associates
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to every p ∈ P either −∞ or a function Fp from ∆p into R. Up to isomorphism
we may safely replace such a function F by the function H from the set P∆ =
{(p, δ) : p ∈ P, δ ∈ ∆p} into R ∪ {−∞} defined by

H(p, δ) =

{

−∞ if F (p) = −∞
(F (p))(δ) otherwise

.

In the sequel, given a function H(p, δ) on P∆ such that for all p ∈ P , either for all
δ ∈ ∆p, H(p, δ) = −∞, or for all δ ∈ ∆p, H(p, δ) ∈ R, we define Hp as follows: if
for all δ ∈ ∆p, H(p, δ) = −∞, then we set Hp = −∞; otherwise we set Hp to be
the function on ∆p defined by Hp(δ) = H(p, δ). Then real valued GBL-algebras
can be defined as follows:

Definition 7.10. Let P = (P,≤) be a poset and let {PG, PMV } be a partition of
P such that every p ∈ PG is incomparable with the other elements with respect to
≤. Let us label each element of p ∈ PG by a totally ordered set ∆p = (∆p,≤p)
and each q ∈ PMV by a totally ordered set ∆q = (∆q,≤q) with maximum δq

and by a function uq ∈ V (∆q,R) such that u(δq) > 0. Then the real valued
GBL-algebra associated to the poset P, to the partition {PG, PMV } and to the
labeling ΛG = (∆p : p ∈ PG) and ΛMV = (∆q, uq : q ∈ PMV ) is the algebra
A = GBL(P, PG, PMV ,ΛG,ΛMV ) defined as follows:

• The domain of A is the set of all functions H from P∆ into R ∪ −{∞}
such that

– for all p ∈ PG, H(p, δ) ∈ R for all δ ∈ ∆p;
– for all p ∈ PMV we have that either H(p, δ) = −∞ for all δ ∈ ∆p or

H(p, δ) ∈ R for all δ ∈ ∆p;
– if p ∈ PG (p ∈ PMV respectively) then Hp ∈ V (∆p,R) (Hp ∈

Γ′(V (∆p,R),−up) respectively), and
– if for some δ ∈ ∆p, H(p, δ) 6= 0, then H(q, σ) = −∞ for all q < p and

for all σ ∈ ∆q.
• For every operation ◦ of commutative GBL-algebras, let ◦p denote its re-

alization in V (∆p,R) if p ∈ PG and in Γ′(V (∆p,R),−up) if p ∈ PMV .
Then

– for ◦ ∈ {∨,∧, ·}, for H,K ∈ A and for (p, δ) ∈ P∆, (H ◦ K)(p, δ) =
(Hp ◦p Kp)(δ);

– if for all q > p we have that Hq = −∞ implies Kq = −∞ and Hq,Kq 6=
−∞ implies that either Hq = Kq or max(Supp(Hq − Kq)) < 0, then
(H → K)(p, δ) = (Hp →p Kp)(δ); otherwise (H → K)(p, δ) = −∞.

The next theorem is a almost a rephrasing of the results of the previous section
for commutative GBL-algebras, in terms of embeddability into real-valued GBL-
algebras. We use the notation A ⊆ B to indicate that A is a subalgebra of B.

Theorem 7.11. Every commutative GBL-algebra embeds into a real-valued GBL-
algebra of the form GBL(P, PG, PMV ,ΛG,ΛMV ), cf Definition 7.10.

Moreover, a commutative GBL-algebra is

• integral iff it embeds into an algebra GBL(P, PG, PMV ,ΛG,ΛMV ) in which
(a) PG = ΛG = ∅;

• an ℓ-group iff it embeds into some GBL(P, PG, PMV ,ΛG,ΛMV ) in which
(b) PMV = ΛMV = ∅;

• representable iff it embeds into some GBL(P, PG, PMV ,ΛG,ΛMV ) in which
(c) P is a forest;
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• a BL-algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )
in which (a) and (c) hold and

(d) the constantly −∞ function is in A;
• an MV-algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )

in which (a) and (d) hold and
(e) any two distinct elements of P are incomparable with respect to ≤;

• a Heyting algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )
in which (a) and (d) hold and

(f) for all H ∈ A and for all (p, δ) ∈ P∆, H(p, δ) ∈ {−∞, 0};
• a Gödel algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )

in which (a), (c), (d) and (f) are satisfied;
• a boolean algebra iff it is isomorphic to some A ⊆ GBL(P, PG, PMV ,ΛG,ΛMV )

in which (a), (d), (e) and (f) are satisfied. �

8. Explicit constructions of generic commutative GBL-algebras

We say that an algebra A of a variety V is generic for V if it generates V as
a variety, and strongly generic for V if it generates V as a quasivariety. In this
section we present a commutative and integral countable GBL-algebra which is
strongly generic for the variety of commutative and integral GBL-algebras and a
commutative GBL-algebra which is strongly generic for the variety of commutative
GBL-algebras. Of course, countably generated free algebras do the job, but here
we are looking for an explicit and concrete description. We start with commutative
and integral GBL-algebras.

Lemma 8.1. Every finite GBL-algebra A embeds into a poset sum
⊕

p∈P
Ap where

each Ap is a finite MV-chain and P = (P,�) is a finite root system.

Proof. By Proposition 3.2, we know that A is isomorphic to an algebra of the form
⊕

d∈D
Bd where D = (D,≤) is a finite poset and for all d ∈ D, Bd is a finite

MV-chain. Now let P be the set of all finite non-empty sequences (d1, . . . , dn) of
elements of D such that d1 is a maximal element of D and for i = 1, . . . , n − 1,
di is a cover of di+1, that is, di+1 < di and for all z if di+1 ≤ z ≤ di, then either
z = di or z = di+1. For p, p′ ∈ P , define p � p′ iff p is an end extension of p′, that
is, if either p = p′ or there is a finite sequence σ of elements of D such that p is
the juxtaposition of p′ and σ. Clearly, P = (P,�) is a root system. Now let for
p = (d1, . . . , dn) ∈ P , Ap = Bdn

. We define a map Φ from
⊕

d∈D
Bd into

⊕

p∈P
Ap

letting for h ∈
⊕

d∈D
Bd and for p = (d1, . . . , dn) ∈ P , Φ(h)(p) = h(dn). We claim

that Φ is an embedding of
⊕

d∈D
Bd into

⊕

p∈P
Ap. The proof follows from the

claims listed below.

Claim (a) If h ∈
⊕

d∈D
Bd, then Φ(h) ∈

⊕

p∈P
Ap.

Proof of claim (a). For p = (d1, . . . , dn) ∈ P , Φ(h)(p) = h(dn) ∈ Bdn
= Ap.

Moreover if Φ(h)(p) = h(dn) < e and p ≺ p′ = (d1, . . . , di), then di > dn, therefore
Φ(h)(p′) = h(di) = 0. This ends the proof of claim (a).

Claim (b) Φ is one-one and preserves ·, ∨ and ∧.

Proof of claim (b). If h, k ∈
⊕

d∈D
Bd and h 6= k, then h(d) 6= k(d) for some d ∈ D.

Clearly there is p = (d1, . . . , dn) ∈ P such that dn = d. Therefore Φ(h)(p) = h(d) 6=
k(d) = Φ(k)(p). Thus Φ is one-one. Moreover for ◦ ∈ {·,∨,∧} we have that for
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p = (d1, . . . , dn) ∈ P , Φ(h◦k)(p) = (h◦k)(dn) = h(dn)◦k(dn) = Φ(h)(p)◦Φ(k)(p).
This ends the proof of claim (b).

Claim (c). Φ preserves →.

Proof of claim (c). Let h, k ∈
⊕

d∈D
Bd and let p = (d1, . . . , dn) ∈ P . We first

compute Φ(h → k)(p). Distinguish two cases:
(c1) If for all d < dn h(d) ≤ k(d), then Φ(h → k)(p) = (h → k)(dn) = h(dn) →

k(dn);
(c2) Otherwise, Φ(h → k)(p) = 0.

Now we compute (Φ(h) → Φ(k))(p). Again, distinguish two cases:
(c1’) If for all p′ ≺ p, Φ(h)(p′) ≤ Φ(k)(p′), then (Φ(h) → Φ(k))(p) = Φ(h)(p) →

Φ(k)(p) = h(dn) → k(dn).
(c2’) Otherwise (Φ(h) → Φ(k))(p) = 0.

Thus it suffices to show that (c1) and (c1’) are equivalent. Now (c1’) reads: for
all p′ = (d1, . . . , dn, . . . , d) ∈ P , h(d) ≤ k(d), which is clearly equivalent to: for
all d ∈ D with d < dn, h(d) ≤ k(d), that is, to (c1). This concludes the proof of
Lemma 8.1. �

Definition 8.2. A final segment of a poset P = (P,≤) is a subset F of P such
that if x ∈ F , y ∈ P and x ≤ y, then y ∈ F .

Notation. In the sequel we denote by MV(Q) the MV-algebra with domain
[−1, 0]∩Q (Q is the set of rationals), with max and min as lattice operations, with
monoid operation x · y = max {x + y,−1} and residual x → y = min {y − x, 0}.

Lemma 8.3. Let A =
⊕

p∈P
Ap be a poset sum of integral residuated lattices, and

let F be a final segment of P. Let F be the subposet of P determined by F , and let
B =

⊕

p∈F
Ap. Then:

(a) The map Φ defined, for all h ∈ B and for all p ∈ P , by

Φ(h)(p) =

{

h(p) if p ∈ F
e otherwise

is an embedding of B into A.
(b) Let for h ∈ A, Nh = {p ∈ P : h(p) 6= e} and let Afin = {h ∈ A : Nh is finite}.

Then Afin is the domain of a subalgebra of A.
(c) If for p ∈ P , Bp is a subalgebra of Ap, then

⊕

p∈P
Bp is a subalgebra of

⊕

p∈P
Ap.

Proof. (a) First of all, we prove that Φ maps B into A. Let h ∈ A and p ∈ P . Then
clearly Φ(h)(p) ∈ Ap. Moreover if p < q and Φ(h)(p) < e, then p ∈ F and q ∈ F ,
as F is a final segment. Hence Φ(h)(q) = h(q) = 0. It follows that Φ(h) ∈ A.
That Φ is one-one and that it preserves ·, ∨ and ∧ is clear, as these operations
are defined pointwise. Now we prove that Φ preserves \. Let h, k ∈ A and p ∈ P
be given. If p /∈ F , then Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = e. If p ∈ F and for all
q ∈ F such that q < p we have h(q) ≤ k(q), then for all q ∈ P with q < p we
have Φ(h)(q) ≤ Φ(k)(q), because if q /∈ F , then Φ(h)(q) = Φ(k)(q) = e. Thus in
this case, Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = Φ(h)(p)\Φ(k))(p). If there is q ∈ F such
that q < p and h(q) 6≤ k(q), then Φ(h\k)(p) = (Φ(h)\Φ(k))(p) = 0. This shows
compatibility with \. The proof that Φ is compatible with / is symmetric, and part
(a) is proved.
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(b) Just note that Nh·k = Nh∧k = Nh ∪ Nk, Nh∨k = Nh ∩ Nk, Nh\k ⊆ Nk and
Nk/h ⊆ Nk. Thus if h, k ∈ Afin, then h · k, h ∧ k, h ∨ k, h\k and k/h are in A and
Nh·k, Nh∧k, Nh∨k, Nh\k and Nk/h are all finite. Thus h · k, h ∧ k, h ∨ k, h\k and
k/h are in Afin. Clearly the function which is constantly equal to e is in Afin and
(b) is proved.

(c) Almost trivial. �

Remark. The image of B under the embedding Φ defined in the proof of Lemma
8.3 (a) is the subalgebra of A consisting of all h ∈ A such that h(p) = e for all
p /∈ F . This subalgebra will be denoted by A(F ) and will be called the relativization
of A to F .

Notation. In the sequel, given a poset P, Q(P) will denote the algebra
⊕

p∈P
Ap

with Ap = MV(Q) for every p ∈ P . Moreover, given a poset sum A =
⊕

p∈P
Ap,

Afin will denote the subalgebra of A whose domain is the set of all h ∈ A such that
Nh is finite, cf Lemma 8.3, (b).

Theorem 8.4. Let P = (P,�) be a poset such that every finite root system is
isomorphic to a final segment of it. Then every finite GBL-algebra embeds into
Q(P)fin. Therefore by Proposition 2.9 (iii), Q(P)fin generates the variety of com-
mutative and integral GBL-algebras as a quasivariety.

Proof. Let A be any finite GBL-algebra. By Proposition 3.2 and by Lemma 8.1, A

embeds into a poset sum
⊕

d∈D
Ad such that D = (D,≤) is a finite root system,

and for d ∈ D, Ad is a finite MV-chain. Now D is isomorphic to a final segment
of P. Since any finite MV-chain embeds into MV(Q), by Lemma 8.3 (a) and
(c),

⊕

d∈D
Ad is a subalgebra of Q(P). Moreover, after identifying each element

h ∈
⊕

d∈D
Ad with its image under the embedding Φ defined in Lemma 8.3, we have

that for h ∈
⊕

d∈D
Ad, Nh ⊆ D, therefore Nh is finite and

⊕

d∈D
Ad is a subalgebra

of Q(P)fin. Since A is a subalgebra of
⊕

d∈D
Ad, the claim is proved. �

By Theorem 8.4, a strongly generic algebra for the variety CIGBL of commu-
tative an integral GBL-algebras is given by Q(P)fin, where P is a poset such that
every finite root system embeds in it as a final segment. An example of such a
poset is given by the set ω<ω of all finite non-empty sequences of natural numbers,
partially ordered by the relation � defined by σ � τ iff either σ = τ or σ is an
end extension of τ . Let Ω = (ω<ω,�). Then, recalling that the variety of abelian
ℓ-groups is generated as a quasivariety by the ℓ-group Z of integers, by Theorem
8.4 and by Proposition 2.6, we have:

Theorem 8.5. (a) Q(Ω)fin is a countable strongly generic algebra for the va-
riety CIGBL.

(b) Q(Ω)fin ×Z is a countable strongly generic algebra for the variety CGBL of
commutative GBL-algebras. �

We now investigate strongly generic models for some notable subvarieties of
CIGBL. Strongly generic models for the variety of MV-algebras and for the variety
of BL-algebras are easy to obtain: for the variety of MV-algebras, just take MV(Q),
which corresponds to Qfin(P) with P the one-element poset. For the variety of BL-
algebras, it follows from [AM03] that a strongly generic model is given by the
ordinal sum of ω copies of MV(Q). This ordinal sum corresponds to the poset sum
Q(N)fin, where N = (ω,≤) is the poset of natural numbers with the usual order.
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We now consider the variety of Heyting algebras. This variety is also generated as
a quasivariety by their finite members. These are poset sums of copies of the two-
element MV-algebra W1. Now let for every n > 0, Wn denote the MV-chain with
n + 1 elements, and let Wn(Ω) =

⊕

σ∈Ω
Aσ with Aσ = Wn. Then by Lemma

8.3 we have that every finite Heyting algebra embeds into W1(Ω)fin, therefore
W1(Ω)fin is strongly generic for the variety of Heyting algebras. By a similar
argument we have that the variety GBL2 of 2-potent GBL-algebras is generated as
a quasivariety by W2(Ω)fin. This depends on the fact that every 2-potent MV-
chain is a subalgebra of W2. However, it is not true that for every n the algebra
Wn(Ω)fin is strongly generic for the variety GBLn of n-potent GBL-algebras. For
instance, let x′ = x → x3 and 2x = (x′ · x′)′. Then the identity x ∨ x′ = 2(x ∨ x′)2

is not valid in the 3-potent MV-algebra W2, but is valid in W3(Ω)fin.

A countable strongly generic algebra for GBLn is obtained as follows: let for every
natural number k, r(k) denote the remainder of the division of k by n, and let
w(k) = r(k) + 1. Let for every σ = (k1, . . . , kn) ∈ ω<ω, Aσ = Ww(kn) and let
W≤n(Ω) =

⊕

σ∈Ω
Aσ. Then we have:

Theorem 8.6. W≤n(Ω)fin is strongly generic for GBLn.

Proof. It suffices to show that any finite n-potent GBL-algebra A embeds into
W≤n(Ω)fin. By Proposition 3.2 and by Lemma 8.1, we can embed A into a poset
sum

⊕

p∈P
Ap where P is a finite root system and for p ∈ P , Ap is an MV-chain

with cardinality ≤ n + 1. We prove by induction on the cardinality n of P that
there is a one-one map Ψ from P into ω<ω such that for every p ∈ P the following
conditions hold:

(a) If p is maximal with respect to ≤, then Ψ(p) has length 1 (hence it is a
maximal element in Ω).

(b) If p′ is a cover of p, then Ψ(p′) is a cover of Ψ(p) (thus in particular, p ≤ p′

iff Ψ(p) � Ψ(p′)).
(c) Let m be the last element of the sequence Ψ(p). Then Ap = Ww(m).

For n = 1, the claim is easy: let p be the unique element of P , let h ≤ n be such
that Ap = Wh, and let Ψ(p) = (h − 1) (the sequence whose unique element is
h − 1). Since w(h − 1) = h, (a), (b) and (c) are satisfied.

Now suppose that the claim is true for every root system of cardinality less than
n (with n > 1) and consider a root system P of cardinality n. Let p be a minimal
element of P , and consider the subposet (P ′,≤) with domain P ′ = P\ {p}. By the
induction hypothesis there is a map Ψ′ on (P ′,≤) satisfying (a), (b) and (c). We
distinguish two cases:

(i) If p is also maximal (thus p is incomparable with the remaining elements),
then let h such that Ap = Wh, let k be big enough such that the one-element
sequence (kn + h − 1) is not in the range of Ψ′ and extend Ψ′ to a function Ψ on
P letting

Ψ(x) =

{

Ψ′(x) if x 6= p
(kn + h − 1) if x = p

.

It is readily seen that Ψ meets our requirements.
(ii) If p is not maximal, then since P is a finite root system, there is a unique

cover p′ of p. Let Ψ(p′) = (k1, . . . , kr) and let k be big enough so that the sequence
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(k1, . . . , kr, kn + h − 1) is not in the range of Ψ′. Now extend Ψ′ to a function Ψ
on P letting

Ψ(x) =

{

Ψ′(x) if x 6= p
(k1, . . . , kr, kn + h − 1) if x = p

.

It is readily seen that Ψ meets our requirements.
Now by (a) and (b) the image Ψ[P ] of P under Ψ is a final segment of Ω which is

isomorphic to P. Moreover by (c) we have Ap = AΨ(p), therefore the relativization
W≤n(Ω)(Ψ[P ]) of W≤n(Ω) to Ψ([P ]) (cf Lemma 8.3) is a subalgebra of W≤n(Ω)fin

which is isomorphic to
⊕

p∈P
Ap. Therefore A embeds into W≤n(Ω)fin. This ends

the proof. �

9. Normal GBL-algebras and GMV-algebras with a conucleus.

It is well known that every Heyting algebra can be represented as the algebra
of open elements of a boolean algebra with an interior operator. In this section
we partially extend this result to normal GBL-algebras. More precisely, we show
that every normal GBL-algebra embeds into the image of a GMV-algebra under a
conucleus.

Definition 9.1. A conucleus on a residuated lattice A is a unary operation σ on
A such that for all x, y ∈ A the following conditions hold:

x ≤ y implies σ(x) ≤ σ(y)
σ(x) ≤ x
σ(x) = σ(σ(x))
σ(σ(x) · σ(y)) = σ(x) · σ(y)
σ(e) = e.

Definition 9.2. Let A be a residuated lattice and σ be a conucleus on A. Then
σ(A) denotes the structure (σ(A), ·σ,∨σ,∧σ, \σ, /σ, e), where σ(A) is the image of
A under σ, and for all x, y ∈ σ(A), the operations ·σ,∨σ,∧σ, \σ and /σ are defined
as follows:
(x ·σ y) = x ·y, x∨σ y = x∨y, x∧σ y = σ(x∧y), x\σy = σ(x\y) and x/σy = σ(x/y).

The next lemma is proved in [MT].

Lemma 9.3. (cf [MT]). If A is a residuated lattice and σ is a conucleus on A,
then σ(A) is a residuated lattice (in particular, σ(A) is closed under ·σ,∨σ,∧σ, \σ

and /σ).

Lemma 9.4. Let A =
⊕

p∈P
Ap be a poset sum of a family of integral and bounded

residuated lattices with common top element e and with common bottom element 0,
and let B =

∏

p∈P Ap. Define for all f ∈ B and for all p ∈ P

σ(f)(p) =

{

f(p) if f(q) = e for all q < p
0 otherwise.

Then σ is a conucleus and A = σ(B).

Proof. Clearly, properties (1), (2), (3) and (5) of conuclei are satisfied by σ. We
verify property (4), that is, we prove that for all f, g ∈ B and for all p ∈ P we
have σ(σ(f) · σ(g))(p) = (σ(f) · σ(g))(p). The claim is clear if either σ(f)(p) = 0
or σ(g)(p) = 0. If σ(f)(p) 6= 0 and σ(g)(p) 6= 0, then for all q < p we have
(σ(f)·σ(g))(q) = e, therefore by the definition of σ it follows that σ(σ(f)·σ(g))(p) =
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(σ(f) · σ(g))(p). Thus σ is a conucleus. Now note that for all f ∈ B we have that
f ∈ A iff f = σ(f). It follows that

⊕

p∈P
Ap = σ(B) and for all f ∈ B, σ(f) is the

greatest element g of A such that g ≤ f . Thus since the order on A is the restriction
to A of the order on B, σ(B) and A have the same order, and therefore they have
the same lattice operations. Moreover, the monoid operation is defined pointwise
in both σ(B) and A. Hence σ(B) and A coincide as lattice ordered monoids. It
follows that residuals in σ(B) and A also coincide, and the claim is proved. �

Theorem 9.5. Every normal GBL-algebra A embeds into a GBL-algebra of the
form σ(B) for some GMV-algebra B and for some conucleus σ on B.

Proof. By Proposition [GT05], A can be represented as A = C × G for some
integral and normal GBL-algebra A and for some ℓ-group G. Moreover C embeds
into a poset sum of the form D =

⊕

p∈P
Dp where for every p ∈ P , Dp is an

integral GMV-algebra. Now by Lemma 9.4, there is an integral GMV-algebra H

and a conucleus τ on H such that D = τ(H). Clearly A embeds into D×G. Now
let F = H × G and let for (x, y) ∈ H × G, σ(x, y) = (τ(x), y). Clearly F is a
GMV-algebra, σ is a conucleus on F, D × G = σ(F) and A embeds into σ(F), as
desired. �

Note that the converse of Theorem 9.5 does not hold, that is, the image σ(B) of
a GMV-algebra B under a conucleus σ need not be a GBL-algebra. For instance,
let B be the algebra MV(Q) defined in Section 8. Define a map σ on B as follows:

σ(x) =

{

1 if x = 1
x ∧ 1

2 otherwise
.

It is readily seen that σ is a conucleus on B. However σ(B) is not a GBL-algebra,
because 1

4 = 1
2 ∧σ

1
4 , but 1

2 ·σ ( 1
2 →σ

1
4 ) = 1

2 · ( 3
4 ∧ 1

2 ) = 1
2 · 1

2 = 0. Of course for
every GMV-algebra B and for every conucleus σ on B, we have that σ(B) is a
GBL-algebra iff it satisfies the translation of the divisibility condition, namely the
equation
(divσ) σ(x) ·σ (σ(x)\σσ(y)) ∧σ e) = (σ(y)/σσ(x)) ∧σ e) ·σ σ(x) = σ(x) ∧σ σ(y).

This remark and Theorem 9.5 can be summarized as follows:

Theorem 9.6. (1) Let A be a normal residuated lattice. Then the following
are equivalent:
(a) A is a GBL-algebra.
(b) A embeds into an algebra of the form σ(B) where B is a GMV-algebra
and σ is a conucleus on B such that (divσ) holds.
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