Analytic Verification at NASA
A View from the Trenches

Willem C. Visser

July 31, 1999

Autonomous software is considered a major enabling technology for NASA in
order to achieve the goal of their slogan: “better, cheaper, faster”. As software
systems become more independent from human intervention, the consequences of
errors in the interactions between different systems increases. For example, in a
recent experiment (called RAX') where autonomous software was used during an
actual flight (as part of the DEEP SPACE-1 mission) a deadlock occurred which
meant valuable hours were lost and the system had to be reset from earth. The
software used in this case was rigorously tested, but the deadlock never occurred
during testing. Current testing techniques cannot reliably find errors that are due
to subtle interactions between concurrent components, since these interactions are
often time dependent.

The Automated Software Engineering® (ASE) group at NASA Ames Research
Center is developing analytic verification techniques to augment traditional testing
to ensure the reliability of the software being developed at NASA. Specifically we
are using a technique called model checking which allows one to check whether a
behavioral property is satisfied by a system. Model checking has had much success in
the area of design verification, specifically hardware design verification. However,
very few people have tried model checking of software systems. Model checking
software systems has been one of the main focus areas of the ASE group for the
past two years.

In this presentation the lessons we have learned from applying model checking
to software systems will be discussed as well as how we have refined our goals
accordingly. A major component of the presentation will highlight the success
stories we have had so far, e.g. finding 5 errors in sections of the RAX software
before flight and then also finding the actual deadlock (that occurred in a part that
we had not model checked before!) in a 2 day experiment after the flight. The
JAVA PathFinder, a model checker that can check properties of JAVA programs
directly on the source code of the program, will be discussed and a demo shown
(time permitting). Since software often have (potentially) infinite state spaces we
use abstraction techniques to reduce the size of the systems to make it amenable
to model checking. Currently we are working on ways to automatically abstract a
JAVA program when given as input a function mapping concrete data domains to
abstract domains, for example mapping integers to an abstract signs domain where
there are only three values positive, negative and zero. Some of our most recent
results in this area will be presented.

The talk will be concluded by showing the group’s future research directions.

IThis software won the “Software of the Year” award at NASA in 1999. url: rax.arc.nasa.gov
2yrl: ase.arc.nasa.gov



