\documentstyle[12pt]{article} \title{Constructing distributive lattices with a given link lattice.} \author{Joanna Grygiel\\ Institute of Mathematics and Computer Science\\ Pedagogical University of Czestochowa, Poland} \date{ } \topmargin -0.7cm \textheight 20cm \sloppy \begin{document} \newcommand{\je}{{\bf 1}} \newcommand{\ze}{{\bf 0}} \newcommand{\bi}{{\cal B}} \newtheorem{tw}{Theorem} \newtheorem{lm}[tw]{Lemma} \newtheorem{pr}{Example} \newtheorem{wn}{Corollary} \maketitle Let $\langle K, \leq \rangle$ be a lattice and suppose that for each $x$ from $K$ there is a lattice $\langle K_x, \leq _x \rangle $ such that \begin{enumerate} \item if $y$ covers $x$ (i.e. $x \leq y$ and there is no $z$ such that $x < z < y$) in $\cal K$ then $K_x \cap K_y \not = \emptyset$; \item if $x \leq y$ and $K_x \cap K_y \not = \emptyset$ then $K_x \cap K_y$ is a filter of $K_x$ and an ideal of $K_y$. Moreover, the orderings $\leq _x$ and $\leq _y$ are identical on $K_x \cap K_y$; \item $K_x \cap K_y \subseteq K_{x \wedge y} \cap K_{x \vee y},$ for all $x, y$ from $K$. \end{enumerate} Herrmann proved [3] that if the above conditions hold then $\langle \bigcup _{x \in K} K_x, \leq \rangle$, where $\leq$ is a transitive closure of the sum of $\leq _x$ for $x \in K$, is a lattice, called $K$-sum of the family $\{ K_x \}_{x \in K}$. We shall call the lattice $K$ the link lattice of the lattice $\bigcup _{x \in K} K_x$. Moreover, every modular lattice not containing infinite chains is the $K$-sum of its atomistic intervals. In the distributive case it means that a finite distributive lattice $\cal D$ is the $K$-sum of its all maximal Boolean fragments. Thus, if $\cal D$ has a scarce decomposition [2] then $\cal D$ is the Wro/nski sum [7] and the Herrmann $K$-sum of the same components. It was also prooved by Herrmann [3] that every finite lattice is a link lattice of some finite distributive lattice. However the problem of dimensions of the maximal Boolean fragments of the finite distributive lattice with a given link lattice is still open. We are going to discuss some theorems concerning this problem. Moreover, we can prove the following theorem: \begin{tw} Let $K$ be a finite lattice. If ${\cal B}_0 \oplus {\cal B}_1$ is the Wro/nski sum of Boolean lattices $\bi _0$ and $\bi _1$ and there are mappings $f_0$ and $f_1$ such that $f_0$ is a $\vee$-homomorphism from $K$ into $B_0$, $f_1$ is a $\wedge$-homomorphism from $K$ into $B_1$ and \[f_0(0) = 0_0,\;f_0(1) = 0_1,\;f_1(0) = 1_0,\;f_1(1) = 1_1\] then $f_0$ and $f_1$ determine some distributive lattice with the link lattice $K$. Moreover, if the unit of $K$ is the join of atoms of $K$ and the zero of $K$ is the meet of coatoms of $K$ then the above construction determines all finite distributive lattice with the link lattice $K$. \end{tw} \vspace{.5cm} \begin{center} {\bf References} \end{center} \vspace{1cm} $[1]$ Gr\"atzer G., General Lattice Theory, Birkhauser Verlag, 1978.\\ $[2]$ Grygiel J., Wojtylak P., The uniqueness of the decomposition of distributive lattices into sums of Boolean lattices., Reports on Mathematical Logic, 31, 1997, 93-102.\\ $[3]$ Herrmann Ch., S-verklebte Summen von Verb\"anden, Math. Z. 130(1973), 255-274.\\ $[4]$ Ja/skowski S., Recherches sur le systeme de la logique intuitioniste, Actes du Congres International de Philosophe Scientifique, VI Philosophie des Mathematiques, Actualites Scientifiqies et Industrielles, 393 (1936), 58-61.\\ $[5]$ Kotas J., Wojtylak P., Finite distributive lattices as sums of Boolean algebras, Reports on Mathematical Logic, 29(1995), 35-40.\\ $[6]$ Troelstra A.S., On intermediate propositional logic, Indagationes Mathematicae, 27(1965), 141-152.\\ $[7]$ Wro/nski A., Remarks on intermediate logics with axioms containing only one variable, Reports on Mathematical Logic, 2(1974), 63-76.\\ \vspace{1cm} e-mail j.grygiel@wsp.czest.pl \end{document} \begin{center} \begin{picture}(0,200) \put(-100,180){\special{em:graph fig1zm.bmp}} \end{picture} \end{center} \begin{center} \begin{picture}(0,170) \put(-100,160){\special{em:graph fig2.bmp}} \end{picture} \end{center} \begin{center} \begin{picture}(0,230) \put(-100,220){\special{em:graph fig3.bmp}} \end{picture} \end{center}