##
Unscramble the following definitions
. Let $A$ and $B$ be sets. #$R$ is a
relation from $A$ to $B$
$\Leftrightarrow$ $R\subseteq A\times B$ #$R$ is a
binary relation on $A$
$\Leftrightarrow$ $R\subseteq A\times A$ ##Let $R$ and $S$ be binary relations on $A$. #$R$ is
reflexive
$\Leftrightarrow$ $\forall x\in A\ (x,x)\in R$ #$R$ is
irreflexive
$\Leftrightarrow$ $\forall x\in A\ (x,x)\notin R$ #$R$ is
symmetric
$\Leftrightarrow$ $\forall x,y\ [(x,y)\in R\to (y,x)\in R]$ #$R$ is
antisymmetric
$\Leftrightarrow$ $\forall x,y\ [(x,y)\in R\wedge (y,x)\in R\to x=y]$ #$R$ is
asymmetric
$\Leftrightarrow$ $\forall x,y\ [(x,y)\in R\to (y,x)\notin R]$ #$R$ is
transitive
$\Leftrightarrow$ $\forall x,y,z\ [(x,y)\in R\wedge (y,z)\in R\to (x,z)\in R]$ #$R$
composed with
$S=S\circ R$ $=\{(x,y)\ |\ \exists y\ [(x,y)\in R\wedge (y,z)\in S]\}$ #$(x,z)\in S\circ R$ $\Leftrightarrow$ $\exists y\ [(x,y)\in R\wedge (y,z)\in S]$ #$R^{-1}$ $=\{(y,x)\ |\ (x,y)\in R\}$ #For $n>0$, $R^n$ is defined by $R^1=R$ and $R^{n+1}=R^n\circ R$ #$(x,y)\in R^n$ $\Leftrightarrow$ $\exists x_0,x_1,\ldots,x_n\ [x_0=x\wedge x_n=y\wedge (x_i,x_{i+1})\in R$ for $i