##Let $p$ and $q$ be propositions, i.e. statements that have a definite truth value, either $T$ (true) or $F$ (false). #$p \wedge q$ is true $\Leftrightarrow$ both $p$ and $q$ are true
#$p \vee q$ is true $\Leftrightarrow$ at least one of $p$ or $q$ is true
#$\neg p$ is true $\Leftrightarrow$ $p$ is false
#$p \to q$ is true $\Leftrightarrow$ it is not the case that $p$ is true and $q$ is false
#$p \leftrightarrow q$ is true $\Leftrightarrow$ $p$ and $q$ have the same truth value
#$p \oplus q$ is true $\Leftrightarrow$ exactly one of $p$ or $q$ is true
##Let $P(x)$ be a predicate, i.e. some statement that becomes a proposition when the variable $x$ is assigned a value (from some implicit universe $U$ of discourse) #$\forall xP(x)$ is true $\Leftrightarrow$ $P(a)$ is true for all $a\in U$
#$\exists xP(x)$ is true $\Leftrightarrow$ $P(a)$ is true for at least one $a\in U$
#$\neg \forall x P(x)$ $\Leftrightarrow$ $\exists x \neg P(x)$
#$\neg \exists x P(x)$ $\Leftrightarrow$ $\forall x \neg P(x)$