##
Unscramble the following limit laws.
Let $f$ and $g$ be a function defined on some open interval that contains the number $a$, except possibly at $a$ itself, and suppose $\lim_{x\to a}\ f(x)$ and $\lim_{x\to a}\ g(x)$ exist. Let $c$ be a constant and $n$ a positive integer. #$\lim_{x\to a}\ (f(x)+g(x))$ $=\lim_{x\to a}\ f(x)+\lim_{x\to a}\ g(x)$ #$\lim_{x\to a}\ (f(x)\ -\ g(x))$ $=\lim_{x\to a}\ f(x)\ -\ \lim_{x\to a}\ g(x)$ #$\lim_{x\to a}\ (cf(x))$ $=c\cdot\lim_{x\to a}\ f(x)$ #$\lim_{x\to a}\ (f(x)g(x))$ $=\lim_{x\to a}\ f(x)\cdot\lim_{x\to a}\ g(x)$ #$\lim_{x\to a}\ (\frac{1}{g(x)})$ $=\frac{1}{\lim_{x\to a}\ g(x)}$ if $\lim_{x\to a}\ g(x)\ne 0$ #$\lim_{x\to a}\ (\frac{f(x)}{g(x)})$ $=\frac{\lim_{x\to a}\ \ f(x)}{\lim_{x\to a}\ g(x)}$ if $\lim_{x\to a}\ g(x)\ne 0$ #$\lim_{x\to a}\ (f(x))^n$ $=(\lim_{x\to a}\ f(x))^n$ #$\lim_{x\to a}\ c$ $=c$ #$\lim_{x\to a}\ x$ $=a$ #$\lim_{x\to a}\ x^n$ $=a^n$ #$\lim_{x\to a}\ ^n\sqrt{x}$ $=^n\sqrt{a}$ #$\lim_{x\to a}\ ^n\sqrt{f(x)}$ $=^n\sqrt{\lim_{x\to a}\ f(x)}$, assuming $\lim_{x\to a}\ f(x)>0$ for even $n$