##Theorem: $\lim_{x\to a}\ f(x)=L$ if and only if $\lim_{x\to a^-}\ f(x)=L$ and $\lim_{x\to a^+}f(x)=L$.Proof: First we suppose that $\lim_{x\to a}\ f(x)=L$. This means for all $\epsilon>0$ there exists a $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$. We want to show that $\lim_{x\to a^-}\ f(x)=L$ (the argument for $x\to a^+$ will be very similar). Consider any $\epsilon >0$. We must find a $\delta>0$ such that if $00$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$. This $\delta$ will work for the desired conclusion since if $0 Now suppose that $\lim_{x\to a^-}\ f(x)=L$ and $\lim_{x\to a^+}\ f(x)=L$. This means for all $\epsilon>0$ there exists a $\delta_1>0$ such that if $00$. We must find a $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$. Take $\delta=\text{min}(\delta_1,\delta_2)$ and assume $0<|x-a|<\delta$. Now either $x-a<0$ or $x-a\ge 0$. In the first case, $|x-a|=-(x-a)=a-x$, hence $0