$\lim_{x\to 0}\ \frac{3x}{x}=$
$3$
|
$\lim_{x\to 0}\ \frac{x^2}{x}=$
$0$
|
$\lim_{x\to 0^+}\ \frac{x}{x^2}=$
$\infty$
|
$\lim_{x\to 0^-}\ \frac{x}{x^2}=$
$-\infty$
|
$\lim_{x\to 0}\ \frac{x}{x^2}=$
does not exist
|
$\lim_{x\to 0^+}\ \frac{|x|}{x}=$
$1$
|
$\lim_{x\to 0^-}\ \frac{|x|}{x}=$
$-1$
|
$\lim_{x\to 0}\ \frac{|x|}{x}=$
does not exist
|
$\lim_{x\to 0}\ \frac{cx}{x}=$
$c$
|
$\lim_{x\to 1}\ \frac{(x^2-1)}{(x-1)}=$
$2$
|
$\lim_{x\to 1}\ \frac{(\sqrt{x}-1)}{(x-1)}=$
$\frac{1}{2}$
|
$\lim_{x\to a}\ \frac{(x^2-a^2)}{(x-a)}=$
$2a$
|
These examples show that a $\frac{0}{0}$ limit can have any value. An
expression that produces $\frac{0}{0}$ when $x=a$ is substituted, is
called an