Let $F(x)=f(x)+g(x)$. Then
$\frac{d}{dx}(F(x))=\lim_{h\to 0}\ \frac{1}{h}(F(x+h)\ -\ F(x))$
$=\lim_{h\to 0}\ \frac{1}{h}(f(x+h)+g(x+h)\ -\ (f(x)+g(x)))$
$=\lim_{h\to 0}\ \frac{1}{h}(f(x+h)\ -\ f(x)+g(x+h)\ -\ g(x))$
$=\lim_{h\to 0}(\frac{1}{h}(f(x+h)\ -\ f(x))+\frac{1}{h}(g(x+h)\ -\ g(x)))$
$=\lim_{h\to 0}\ \frac{1}{h}(f(x+h)\ -\ f(x))+\lim_{h\to 0}\ \frac{1}{h}(g(x+h)\ -\ g(x))$
$=\frac{d}{dx}(f(x))+\frac{d}{dx}(g(x))$