Theorem: If   f   and   g   are differentiable then   ddx(f(x)g(x)) = ddx(f(x))g(x+ ddx(g(x))f(x)  
Proof: We apply the definition of   ddx, but then we need a trick, and we also use the result that if a function is differentiable then it is continuous.

  1.Insert here    = limh  0 1h(f(x + h)g(x + h- f(x)g(x))  

  2.Insert here    = limh  0(1h(f(x + h- f(x))g(x + h+ (g(x + h- g(x))f(x))  

  3.Insert here    = limh  0(1h(f(x + h- f(x))g(x + h+ 1h(g(x + h- g(x))f(x))  

  4.Insert here    = ddx(f(x))g(x+ ddx(g(x))f(x).

  5.Insert here    = limh  0 1h(f(x + h- f(x))g(x + h+ limh  0 1h(g(x + h- g(x))f(x)  

  6.Insert here   ddx(F(x)) = limh  0 1h(F(x + h- F(x))  

  7.Insert here    = limh  0 1h(f(x + h)g(x + h- f(x)g(x + h+ f(x)g(x + h- f(x)g(x))   (the trick!)

  8.Insert here Let   F(x= f(x)g(x). Then

  9.Insert here    = limh  0 1h(f(x + h- f(x))limh  0 g(x + h+ limh  0 1h(g(x + h- g(x))limh  0 f(x)  

In the last step we used the fact that   limh  0 g(x + h= g(limh  0(x + h)) = g(x)   since   g   is differentiable and hence continuous. Also   limh  0 f(x= f(x)   since   f(x)   is constant with respect to   h.

Time: 0 sec

Brief Instructions for solving this Text Puzzle: The puzzle pieces above have been shuffled, and your task is to move them around so that they end up in the correct position. Click a puzzle piece to select it, then click another puzzle piece to move (or swap) the selected piece to that particular position. When you think you are done, click on the Check button.


Text Puzzles by Peter Jipsen Chapman University