Let $F(x)=cf(x)$. Then
$\frac{d}{dx}(F(x))=\lim_{h\to 0}\ \frac{1}{h}(F(x+h)\ -\ F(x))$
$=\lim_{h\to 0}\ \frac{1}{h}(cf(x+h)\ -\ cf(x))$
$=\lim_{h\to 0}\ \frac{c}{h}(f(x+h)\ -\ f(x))$
$=c\lim_{h\to 0}\ \frac{1}{h}(f(x+h)\ -\ f(x))$
$=c\ \frac{d}{dx}(f(x))$