$\lim_{x\to a}\ f(x)=L$
|
$\Leftrightarrow$ for all $\epsilon>0$ there exists a $\delta>0$ such that
if $0< |x-a|< \delta$ then $|f(x)-L|< \epsilon$
|
$\lim_{x\to a^-}\ f(x)=L$
|
$\Leftrightarrow$ for all $\epsilon>0$ there exists a $\delta>0$ such that
if $0< a-x< \delta$ then $|f(x)-L|< \epsilon$
|
$\lim_{x\to a^+}f(x)=L$
|
$\Leftrightarrow$ for all $\epsilon>0$ there exists a $\delta>0$ such that
if $0< x-a< \delta$ then $|f(x)-L|< \epsilon$
|
$\lim_{x\to a}\ f(x)=\infty$
|
$\Leftrightarrow$ for all $M>0$ there exists a $\delta>0$ such that
if $0< |x-a|< \delta$ then $f(x)>M$
|
$\lim_{x\to a}\ f(x)=-\infty$
|
$\Leftrightarrow$ for all $N>0$ there exists a $\delta>0$ such that
if $0< |x-a|< \delta$ then $f(x)< N$
|