Function terminology. Let $f:A\to B$ be a function, i.e. a map that associates with each $x \in A$ a unique $f(x) \in B$. In single variable Calculus, usually $A$ is a subset of $\m R$ and $B=\m R$.
The domain of $f$ is the set $A$
The codomain of $f$ is the set $B$
The range of $f$ is $\{f(x)\ |\ x \in A\}$
The graph of $f$ is $\{(x,f(x))\ |\ x\in A\}$
A curve in the $xy$-plane is the graph of a function if and only if no vertical line intersects the curve more than once (the vertical line test).
Two functions $f$ and $g$ are equal if they have the same domain and $f(x)=g(x)$ for all $x\in A$
$f$ is even if $f(-x)=f(x)$ for all $x\in A$
$f$ is odd if $f(-x)=-f(x)$ for all $x\in A$
$f$ is increasing on an interval $I$ if for all $x_1 < x_2$ in $I$ we have $f(x_1) < f(x_2)$
$f$ is decreasing on an interval $I$ if for all $x_1 < x_2$ in $I$ we have $f(x_1) > f(x_2)$