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Synopsis

An interesting problem in universal algebra is the connection between the internal struc-
ture of an algebra and the identities which it satisfies. The study of varieties of algebras
provides some insight into this problem. Here we are concerned mainly with lattice vari-
eties, about which a wealth of information has been obtained in the last twenty years.

We begin with some preliminary results from universal algebra and lattice theory. The
second chapter presents some properties of the lattice of all lattice subvarieties. Here we
also discuss the important notion of a splitting pair of varieties and give several charac-
terizations of the associated splitting lattice. The more detailed study of lattice varieties
splits naturally into the study of modular lattice varieties and nonmodular lattice varieties,
dealt with in the third and fourth chapter respectively. Among the results discussed there
are Freese’s theorem that the variety of all modular lattices is not generated by its finite
members, and several results concerning the question which varieties cover a given variety.
The fifth chapter contains a proof of Baker’s finite basis theorem and some results about
the join of finitely based lattice varieties. Included in the final chapter is a characterization
of the amalgamation classes of certain congruence distributive varieties and the result that
there are only three lattice varieties which have the amalgamation property.
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Introduction

The study of lattice varieties evolved out of the study of varieties in general, which was
initiated by Garrett Birkhoff in the 1930’s. He derived the first significant results in this
subject, and further developments by Alfred Tarski and later, for congruence distributive
varieties, by Bjarni Jonsson, laid the groundwork for many of the results about lattice
varieties. During the same period, investigations in projective geometry and modular
lattices, by Richard Dedekind, John von Neumann, Garrett Birkhoff, George Gratzer,
Bjarni Jénsson and others, generated a wealth of information about these structures,
which was used by Kirby Baker and Rudolf Wille to obtain some structural results about
the lattice of all modular subvarieties. Nonmodular varieties were considered by Ralph
McKenzie, and a paper of his published in 1972 stimulated a lot of research in this direction.

Since then the efforts of many people have advanced the subject of lattice varieties in
several directions, and many interesting results have been obtained. The purpose of this
book is to present a selection of these results in a (more or less) self-contained framework
and uniform notation.

In Chapter 1 we recall some preliminary results from the general study of varieties of
algebras, and some basic results about congruences on lattices. This chapter also serves
to introduce most of the notation which we use subsequently.

Chapter 2 contains some general results about the structure of the lattice A of all
lattice subvarieties and about the important concept of “splitting”. We present several
characterizations of splitting lattices and Alan Day’s result that splitting lattices generate
all lattices. These results are applied in Chapter 4 and 6.

Chapters 3 6 each begin with an introduction in which we mention the important
results that fall under the heading of the chapter.

Chapter 3 then proceeds with a review of projective spaces and the coordinatization
of (complemented) modular lattices. These concepts are used to prove the result of Ralph
Freese, that the finite modular lattices do not generate all modular lattices. In the sec-
ond part of the chapter we give some structural results about covering relations between
modular varieties.

In Chapter 4 we concentrate on nonmodular varieties. A characterization of semidis-
tributive varieties is followed by several technical lemmas which lead up to an essentially
complete description of the “almost distributive” part of A. We derive the result of Bjarni
Jonsson and Ivan Rival, that the smallest nonmodular variety has exactly 16 covers, and
conclude the chapter with results of Henry Rose about covering chains of join-irreducible
semidistributive varieties.

Chapter 5 is concerned with the question which varieties are finitely based. A proof of
Kirby Baker’s finite basis theorem is followed by an example of a nonfinitely based variety,

ix



X INTRODUCTION

and a discussion about when the join of two finitely based varieties is again finitely based.

In Chapter 6 we study amalgamation in lattice varieties, and the amalgamation prop-
erty. The first half of the chapter contains a characterization of the amalgamation class
of certain congruence distributive varieties, and in the remaining part we prove that there
are only three lattice varieties that have the amalgamation property.

By no means can this monograph be regarded as a full account of the subject of
lattice varieties. In particular, the concept of a congruence variety (i.e. the lattice variety
generated by the congruence lattices of the members of some variety of algebras) is not
included, partly to avoid making this monograph too extensive, and partly because it was
felt that this notion is somewhat removed from the topic and requires a wider background
of universal algebra.

For the basic concepts and facts from lattice theory and universal algebra we refer the
reader to the books of George Gritzer [GLT], [UA]| and Peter Crawley and Robert P.
Dilworth [ATL]. However, we denote the join of two elements a and b in a lattice by a +b
(rather than a vV b) and the meet by a-b, or simply ab (instead of a A b; for the meet of two
congruences we use the symbol N). When using this plus, dot notation, it is traditionally
assumned that the meet operation has priority over the join operation, which reduces the
apparent complexity of a lattice expression.

As a final remark, when we consider results that are applicable to wider classes of
algebras (not only to lattices) then we aim to state and prove them in an appropriate
general form.



Chapter 1

Preliminaries

1.1 The Concept of a Variety

Lattice varieties. Let £ be a set of lattice identities (equations), and denote by Mod &£
the class of all lattices that satisfy every identity in €. A class V of lattices is a lattice
variety if

Y = Mod &
for some set of lattice identities £. The class of all lattices, which we will denote by L, is of
course a lattice variety since £ = Mod ). We will also frequently encounter the following
lattice varieties:

T = Mod{z = y} all trivial lattices,
D =Mod{zy+ 2z = x(y + z)} all distributive lattices,
M = Mod{zy + 2z = 2(y + z2)} all modular lattices.

Let J be the (countable) set of all lattice identities. For any class K of lattices, we
denote by Id K the set of all identities which hold in every member of K. A set of identities
& C J is said to be closed if

E=1dK

for some class of lattices K. It is easy to see that for any lattice variety V, and for any
closed set of identities &,

V=ModIdV and & =1d Mod¢,

whence there is a bijection between the collection of all lattice varieties, denoted by A,
and the set of all closed subsets of J. Thus A is a set, although its members are proper
classes.
A is partially ordered by inclusion, and for any collection {V; : ¢ € I} of lattice varieties
(Vi = Mod | J1dV;
1€l el
is again a lattice variety, which implies that A is closed under arbitrary intersections.
Since A also has a largest element, namely £, we conclude that A is a complete lattice
with intersection as the meet operation. For any class of lattices K,

KY =Mod ldK = {V e A: K CV}

1



2 CHAPTER 1. PRELIMINARIES

is the smallest variety containing K, and we call it the variety generated by K. Now the
join of a collection of lattices varieties is the variety generated by their union. We discuss
the lattice A in more detail in Section 2.1.

Varieties of algebras. Many of the results about lattice varieties are valid for varieties
of other types of algebras, which are defined in a completely analogous way. When we
consider a class K of algebras, then the members of K are all assumed to be algebras of
the same type with only finitary operations. We denote by

HK  the class of all hornomorphic images of members of K
SK  the class of all subalgebras of members of K
PK — the class of all direct products of members of K

PsK  the class of all subdirect products of members of K.

(Recall that an algebra A is a subdirect product of algebras A; (¢ € I) if there is an
embedding f from A into the direct product );c;A; such that f followed by the ith
projection m; maps A onto A; for each 7 € I.)

The first significant results in the general study of varieties are due to Birkhoff [35],
who showed that varieties are precisely those classes of algebras that are closed under the
formation of homomorphic images, subalgebras and direct products, i.e.

V is a variety if and only if HY =SV =PV = V.
Tarski [46] then put this result in the form
KY = HSPK
and later Kogalovskil [65] showed that
KY = HPsK

for any class of algebras K.

1.2 Congruences and Free Algebras

Congruences of algebras. Let A be an algebra, and let Con(A) be the lattice of all
congruences on A. For a,b € A and 6 € Con(A) we denote by:

a/§  the congruence class of ¢ modulo
A/0  the quotient algebra of A modulo 0
0,1 the zero and unit of Con(A)
con(a,b) — the principal congruence generated by (a,b)
(i.e. the smallest congruence that identifies @ and b).

Con(A) is of course an algebraic (= compactly generated) lattice with the finite joins
of principal congruences as compact elements. (Recall that a lattice element ¢ is compact
if whenever ¢ is below the join of set of elements C then ¢ is below the join of a finite
subset of C. A lattice is algebraic if it is complete and every element is a join of compact
elements.)
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For later reference we recall here a description of the join operation in Con(A).

LEMMA 1.1 Let A be an algebra, x,y € A and C C Con(A). Then
¢(3.C)y ifand only if x = zoU1z1U222+ 2n 1Unz, =y

for some n € w, P1,v¥2,...,¢, € C and 29,21,...,2, € A.

The connection between congruences and homomorphisms is exhibited by the homo-
morphism theorem: for any homomorphism h : A — B the image h(A) is isomorphic to
A/kerh, where

kerh = {(a,a’) € A? : h(a) = h(a’)} € Con(A).

We will also make use of the second isomorphism theorem which states that for (fixed)
6 € Con(A) and any ¢ € Con(A) containing @ there exists a congruence (¢/0) € Con(A/0),
defined by
a/0(¢p/0)b/0 if and only if  a¢b,

such that (A/6)/(¢/0) is isomorphic to A/¢. Furthermore the map ¢ — ¢/ defines an
isomorphism from the principal filter [8) = {¢ € Con(A) : 0 < ¢} to Con(A/0).

The homomorphism theorem implies that an algebra A is a subdirect product of quo-
tient algebras A/6; (6; € Con(A)) if and only if the meet (intersection) of the 6; is the 0
of Con(A). An algebra A is subdirectly irreducible if and only if A satisfies anyone of the
following equivalent conditions:

(i) whenever A is a subdirect product of algebras A; (¢ € I) then A is isomorphic to
one of the factors A;;

(ii) the 0 of Con(A) is completely meet irreducible;
(iii) there exist a,b € A such that con(a,b) is the smallest non-0 element of Con(A).

A is said to be finitely subdirectly irreducible if whenever A is a subdirect product of
finitely many algebras Aj,..., A, then A is isomorphic to one of the A4; (1 < ¢ < n), or
equivalently if the 0 of Con(A) is meet irreducible.

For any variety V of algebras we denote by

Vsr the class of all subdirectly irreducible members of V
VEsr the class of all finitely subdirectly irreducible members of V.

We can now state Birkhoff’s [44] subdirect representation theorem: Every algebra is
a subdirect product of its subdirectly irreducible homomorphic images.

This can be deduced from the following result concerning decompositions in algebraic
lattices:

THEOREM 1.2 ([ATL] p.43). In an algebraic lattice every element is the meet of completely
meet irreducible elements.
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Relatively free algebras. Let K be a class of algebras, and let F’ be an algebra generated
by aset X C F. We say that F'is K-freely generated by the set X if any map f from the
set of generators X to any A € K extends to a homomorphism f: F — A. If, in addition,
F € K, then F'is called the K- free algebra on o = | X| generators or the a-generated free
algebra over K, and is denoted by Fi(X) or Fi(«). The extension f is unique (since X
generates F'), and it follows that Fx(«) is uniquely determined (up to isomorphism) for
each cardinal a.

However, Fx(a) need not exist for every class K of algebras. Birkhoff [35] found a
simple method of constructing K-freely generated algebras in general, and from this he
could deduce that for any nontrivial variety V and any cardinal a # 0, the V-free algebra
on a generators exists. We briefly outline his method below (further details can be found
in [UA]).

Let W(X) be the word algebra over the set X, i.e. W(X) is the set of all terms
(= polynomials or words) in the language of the algebras in K, with variables taken from
the set X, and with the operations defined on W (X ) in the obvious way (e.g. for lattices
the join of two terms p,¢ € W(X) is the term (p+ ¢) € W(X)). It is easy to check that,
for any class K of algebras, W(X) is K-freely generated by the set X. Other K-freely
generated algebras can be constructed as quotient algebras of W (X) in the following way:
Let

O =Tl{kerh|h: W(X) — Ais a homomorphism, A € £}
(= >Acon(p,q)|p,qg € W(X) and p = ¢ € 1dK}).

We claim that F' = W(X)/0k is K-freely generated by the set X = {2/6x : 2 € X}.
Indeed, given a map f : X — A € K, define f' : X — A by f'(z) = f(z/0k), then
[ extends to a homomorphism f’ : F — A. If K contains a nontrivial algebra, then
| X| = | X] (if not, then Ok identifies all of W (X), hence F is trivial), and by construction
F is a subdirect product of the algebras W (X)/kerh, which are all members of SK.
Consequently, if K is closed under the formation of subdirect products, then F € K,
whence Birkhoff’s result follows.

If an identity holds in every member of a variety V, then it must hold in Fy(n) for
each n € w, and if an identity fails in some member of V, then it must fail in some finitely
generated algebra (since an identity has only finitely many variables), and hence it fails
in Fy(n) for some n € w. Thus

V={F(n):necw},

and it now follows from Birkhoff’s subdirect representation theorem that every variety
is generated by its finitely generated subdirectly irreducible members. In fact, a similar
argument to the one above shows that

V= {Fy(w)},

whence every variety is generated by a single (countably generated) algebra. To obtain
an interesting notion of a finitely generated variety, we define this to be a variety that is
generated by finitely many finite algebras, or equivalently, by a finite algebra (the product
of the former algebras).
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1.3 Congruence Distributivity

An algebra A is said to be congruence distributive if the lattice Con(A) is distributive.
A variety V of algebras is congruence distributive if every member of V is congruence
distributive.

Congruence distributive algebras have factorable congruences. What is interest-
ing about algebras in a congruence distributive variety is that they satisfy certain condi-
tions which do not hold in general. The most important ones are described by Jonsson’s
Lemma (1.4) and its corollaries, but we first point out a result which follows directly from
the definition of congruence distributivity.

LEMMA 1.3 Suppose A is the product of two algebras A1, Ay and Con(A) is distributive.
Then Con(A) is isomorphic to Con(A;) x Con(As) (i.e. congruences on the product of
two algebras can be factored into two congruences on the algebras).

ProoF. Let L = Con(A;) x Con(Ay), and for 8 = (61,60) € L define a relation § on A by
(a1,a2)0(by,b2) if and only if a161b1 and az62b,.
One easily checks that § € Con(A), and that if ¢ = (¢1,12) € L, then
@ C v if and only if 6y C ¢y and 0y C 1.

Thus the map 6 — 6 from L to Con(A) is one-one and order preserving, so it remains to
show that it is also onto. Let ¢ € Con(A), and for ¢ = 1,2 define p; = ker7;, where ; is the
projection from A onto A;. Clearly pyNpy = 0in Con(A), hence ¢ = (¢+p1)N(¢+ p2) by
the distributivity of Con(A). Observe that for i = 1,2 p; C ¢+ p; and A/p; = A;, so from
the second isomorphism theorem we obtain 6; € Con(A4;) such that for a = (a1,a3),b =
(b1,b2) € A

a(¢p+pi)b if and ouly if a;0;b; (i € {1,2}).

Therefore agb iff a(¢+p1)b and a(P+p2)b iff a161by and azbyby. Letting 6 = (61,6;) € L,
we see that ¢ = 6. m|

A short review of filters, ideals and ultraproducts. Let L be a lattice and F a filter
in L (i.e. F is a sublattice of L, and for all y € L,if y > 2« € F then y € F). A filter F
is proper if F'# L, it is principal if F = [a) = {o € L : a < ¢} for some a € L, and F is
prime if v +y € F implies x € F or y € F for all x,y € L. An ultrafilter is a maximal
proper filter (maximal with respect to inclusion). In a distributive lattice the notions of a
proper prime filter and an ultrafilter coincide.

The notion of a (proper / principal / prime) ideal is defined dually, and principal
ideals are denoted by (a]. Let ZL be the collection of all ideals in L. Then ZL is closed
under arbitrary intersections and has a largest element, hence it is a lattice, partially
ordered by inclusion. Dually, the collection of all filters of L, denoted by FL, is also a
lattice. The order on F L is reverse inclusion i.e. FF < G iff F O G. With these definitions
it is not difficult to see that the map « — [z) (z — (z]) is an embedding of L into FL
(ZL), and that FL and ZL satisfy the same identities as L. It follows that whenever L is
a member of some lattice variety then so are 7L and ZL.
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For an arbitrary set I we say that F is a filter over I if F is afilter in the powerset lattice
PI (= the collection of all subsets of I ordered by inclusion). Since PI is distributive,
a filter ¢ is an ultrafilter if and only if ¢/ is a proper prime filter, and this is equivalent
to the condition that whenever I is partitioned into finitely many disjoint blocks, then ¢/
contains exactly one of these blocks.

Let A = )(;c;A: be a direct product of a family of algebras {A; : 7 € I}. If F is a filter
over I (i.e. a filter in the powerset lattice PI), then we can define a congruence ¢ on A
by

aprb ifand only if {ie€l:a;=0b}eF

where a; is the ith coordinate of a.

If Ais a direct product of algebras A; (¢ € I) and U is an ultrafilter over I, then the
quotient algebra A/¢y is called an wltraproduct. For any given class of algebras K, we
denote by

PyK  the class of all ultraproducts of members of K.

Jonsson’s Lemma. We are now ready to state and prove this remarkable result.

LEMMA 1.4 (Jousson [67]). Suppose B is a congruence distributive subalgebra of a direct
product A = ¥;c;A;, and 6 € Con(B) is meet irreducible. Then there exists an ultrafilter
U over I such that ¢y|B C 6.

Proor. We will denote by [J) the principal filter generated by a subset J of I, and to
simplify the notation weset ¢; = ¢[7)|B. Clearly ai;bif and only if J C {1 € [ : a; = b;},
fora,be B C A. If § =1 € Con(B) then any ultrafilter over I will do. So assume 6 < 1
and let C be the collection of all subsets J of I such that ¥y C 0. We claim that C has
the following properties:

(i) TeC,0¢C;
(i) £ D J € C implies K € C;
(iii) J UK € C implies J € C or K € C.

(i) and (ii) hold because 17, 1y are the zero and unit of Con(B), and K D J implies
i < 1g. To prove (iii), observe that J U K € C implies

0 =0+ vk =0+ WsNvK)=(0+1s)N(0+vK)

by the distributivity of Con(B), and since 6 is assumed to be meet irreducible, it follows
that 6 = 0 4+ 15 or § = 0 + ¥, whence J € C or K € C.

C itself need not be a filter, but using Zorn’s Lemma we can choose a filter ¢ over I,
maximal with respect to the property U« C C. It is easy to see that

oulB= ] vsCH
Jeu

so it remains to show that ¢/ is an ultrafilter. Suppose the contrary. Then there exists a
set H C I such that neither H nor I — H belong told. If HNJ € C for all J € U, then by
(i) and (i) Y U{ H } would generate a filter contained in C, contradicting the maximality of
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U, and similarly for I — H. Hence we can find J, K € U such that HNJ, (I - H)NK ¢ C.
But J N K €U, and

JNK=HNJNK)U({-H)NnJNK)
which contradicts (iii). This completes the proof. a

COROLLARY 1.5 (Jénsson [67]). Let K be a class of algebras such that V = KV is
congruence distributive. Then

(i) Vsr € Vrsi € HSPyK;
(i) V = PsHSPyK.

Proor. (i) We always have Vgr C Vpgr. Since V = HSPK, every algebra in V is
isomorphic to a quotient algebra B/6#, where B is a subalgebra of a direct product A =
icrAi and {A; : ¢ € [} C K. If B/ is finitely subdirectly irreducible, then 6 is meet
irreducible, hence by the preceding lemma there exists an ultrafilter & over I such that
¢ = ¢y|B C 6. Thus B/ is a homomorphic image of B/¢, which is isomorphic to
a subalgebra of the ultraproduct A/¢y. (ii) follows from (i) and Birkhoff’s subdirect

representation theorem. O

To exhibit the full strength of Jonsson’s Lemma for finitely generated varieties, we
need the following result:

LEMMA 1.6 (Frayne, Morel and Scott [62]). If K is a finite set of finite algebras, then
every ultraproduct of members of K is isomorphic to a member of K.

PrOOF. Let A = K;c74; be a direct product of members of K, and define an equivalence
relation ~ on I by 7 ~ j if and only if A; = A;. Since K is finite, ~ partitions I into
finitely many blocks Ig, I, ..., I,. If U is an ultrafilter over I, then U contains exactly one
of these blocks, say J = I. Let U = {U NJ : U € U} be the ultrafilter over J induced by
U, and let A = ¥, ;A4;. We claim that

Aloy = Aléd,, = B

where B is an algebra isomorphic to each of the A; (j € J), and hence to a member of K
as required.

Consider the epimorphism A : A — Z/cbﬁ given by h(a) = a/¢y, where @ is the
restriction of @ to J. We have

akerh b iff aggb iff {jeJ:a;=0b} el
iff {iel:aq;=0b}eld iff aoybd

so ker h = ¢y, whence the first isomorphism follows. To establish the second isomorphism,
observe that A 2 BY and therefore Z/éa is isomorphic to an ultrapower Bj/éa over the
finite algebra B. In this case the canonical embedding B — BJ/oﬁzj, given by b — l;/céﬁ
(b= (b,b,...) € BY), is always onto (hence an isomorphism) because for each ¢ € B7 we
can partition J into finitely many blocks J., = {j € J : ¢; = b} (one for each b € B), and
then one of these blocks, say J.p must be in ¢/, hence b’ — ¢/ by a
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COROLLARY 1.7 (J6nsson [67]). Let K be a finite set of finite algebras such that V = KV
is congruence distributive. Then

(i) Vsr C Vrsr C HSK;
(ii) V has up to isomorphism only finitely many subdirectly irreducible members, each
one finite;
(iii) V has only finitely many subvarieties;

(iv) if A, B € Vg are nonisomorphic and |A| < |B|, then there is an identity that holds
in A but not in B.

Proor. (i) follows immediately from 1.5 and 1.6, and (ii) follows from (i), since HSK
has ounly finitely many non isomorphic members. (iii) holds because every subvariety is
determined by its subdirectly irreducible members, and (iv) follows from the observation
that if both A and B are finite, nonisomorphic and |A| < |B|, then B ¢ HS{A}, which
implies B ¢ {A}Y by part (i). O

Lattices are congruence distributive algebras. This is oune of the most important
results about lattices, since it means that we can apply Jonsson’s Lemma to lattices. We
first give a direct proof of this result.

THEOREM 1.8 (Funayama and Nakayama [42]). For any lattice L, Con(L) is distributive.

ProoF. Let 8,1, ¢ € Con(L) and observe that the inclusion (6N¥)+(6N¢) C ON (Y + )
holds in any lattice. So suppose for some z,y € L the congruence 8 N (¢ + ¢) identifies =
and y. We have to show that (6 N ¢) 4 (0 N ¢) identifies z and y. By assumption zfy and
z(1+¢)y, hence by Lemma 1.1

T = 20021022023024 - 2n, = Y

for some zg, 21, ...,2, € L. If we can replace the elements z; by 2!, which all belong to the
same f-class as ¢ and y, then

v = (0N V)01 0)H(00 L)AON )2, =y,

whence z(0NY)+ (0N ¢@)y follows. One way of making this replacement is by taking
z} = xz; + yz; + xy (the median polynomial), then any congruence which identifies z; with
Zit1, also identifies 2] with 2/, ,, and (since L is a lattice) zy < 2/ < x +y, whence 2] € = /6
forallz =0,1,...,n. a
Consequently every lattice variety is congruence distributive. Notice that the proof
appeals to the lattice properties of I only in the last few lines.
Jonsson polynomials.The next theorem is a generalization of the above result.
THEOREM 1.9 (Jousson [67]). A variety V of algebras is congruence distributive if and
only if for some positive integer n there exist ternary polynomials tg,t1,...,%t, such that
forv=0,1,...,n, the following identities hold in V:
to(.’ll,y,Z):.’Ii, tn(.’li,’y,Z):Z, tl('l'vyv‘l’):”l‘
(%) ti(e,x,2) = tip1(w,z, 2) for i even
ti(z,z,2) = tiya1(z, 2, 2) for i odd.
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ProoOF. Suppose V is congruence distributive and consider the algebra Fy({a,b,c}).
Define 6§ = con(a,c), ¢ = con(a,b) and ¥ = con(b,c). Then (a,c) € 0N (¢ + ) =
(6N ¢)+ (0Ne). By Lemma 1.1 there exist do,dy,...,d, € A such that

a=doNodi0NyYdaneodsédny---d, =c.

Fach d; is of the form d; = t;(a,b,c) for some ternary polynomial ¢;, and it remains to
show that the identities (x) are satisfied for « = a, y = b and z = ¢ in Fy({a,b,c}), since
then they must hold in every member of V. The first two identities follow from the fact
that do = a and d,, = c¢. For the third identity let ' : Fy({a,b,c¢}) — Fy({a,b}) be the
homomorphism induced by the map a,c — a, b — b. Then h(a) = h(c) implies 8 C kerh
and since each d; = t;(a,b, ¢) is O-related to a we have

a = h(a) = h(t;(a,b,¢)) = t;(a,b,a).

Now suppose 7 is even and consider h : Fy({a,b,c}) — Fy({a,c}) induced by the map
a,b— a, c— c. Then ¢ C kerh, and since

ti(a,b,c) ¢ tiy1(a,b,c)
it follows that
ti(av a, C) = h(ti(av b, C)) = h(ti+1(a7 b, (')) = ti+1(a7 a, C).
The proof for odd ¢ is similar.
Now assume the identities (x) hold in V for some ternary polynomials ty,1;,...,1,, let
A€Vand0,0,7 € Con(A). To prove that V is congruence distributive it suffices to show

that 6N (¢ + ) C (0N @)+ (0 NY). Let (a,¢) € 6N (¢ + ). Then (a,c) € 6 and by
Lemma 1.1 there exist bg,b1,...,b,, € A such that

a = bo@blwbgéb3¢bm = C.
So for each 2 = 0,1,...,n we have
t,’(a,bo,c) ¢ ti(avblvc) l/J ti(a7b276) ¢ 'ti(avbmvc)'

The identity t;(z,y,z) = « together with (a,c) € § implies that the elements ¢;(a,b;,c) €
a/60 whence

ti(a,bo,c) 0N ¢ ti(a,br,c) N ti(a,by,c) 6NG---ti(a,by,c).
It follows that t;(a,a,c) (0 N @) + (6 N ) ti(a,c,c) holds for each i = 0,1,...,n and the
remaining identities now give (a,¢) € (6 N @)+ (6 N ). O

The polynomials %y, %y, . ..,1, are known as Jonsson polynomials, and will be of use in
Chapter 5. Here we just note that for lattices we can deduce Theorem 1.8 from Theorem 1.9
if we take n = 2, to(w,y,2) = z, t1(x,y,2) = 2y + zy + zz (the median polynomial) and
to(z,y,2) = 2.
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1.4 Congruences on Lattices

Prime quotients and unique maximal congruences. Let L be a lattice and u,v € L
with v < w. By a quotient u/v (alternatively interval [v,u]) we mean the sublattice
{z € L :v <z < u}. Wesay that u/v is nontrivial if w > v, and prime if u covers v
(i.e. u/v = {u,v}, in symbols: u > v). If L is subdirectly irreducible and con(u,v) is the
smallest non-0 congruence of L, then u/v is said to be a critical quotient.

LEMMA 1.10 Ifu/v is a prime quotient of L, then there exists a unique maximal congruence
0 that does not identify u and v.

Proor. Let C C Con(L) be the set of all congruences of L that do not identify u
and v. Take § = > C, and suppose @ identifies v and v. By Lemma 1.1 we can find
V1,09, ..., 0, € C and zg, 21, ..., 2, € L such that

U = 2001210222 * * " Zn_1VnZn = V.

Replacing z; by 2! = wz; + vz; + v we see that u = 2(1210225 -2, ¥pz, = v and
v <zl <wforall 2 =1,...,n. Since u/v is assumed to be prime, we must have z/ = u
or z; = v for all 7, which implies ui;v for some %, a contradiction. Thus 8 € C, and it is
clearly the largest element of C. a

Weak transpositions. Given two quotients r/s and w/v in L, we say that r/s transposes
weakly up onto uw/v (in symbols r/s /', u/v) if r + v = w and s < v. Dually, we say that
r/s transposes weakly down onto w/v (in symbols r/s N\, u/v) if su = v and r > u. We
write r/s ~,, u/v if r/s transposes weakly up or down onto u/v. The quotient /s projects
weakly onto u/v in n steps if there exists a sequence of quotients z;/y; in L such that

/S8 = Zo/Yo ~w T1/Y1 ~w « - ~w Tn/Yn = u/v.

Note that the symbols /', \\w and ~,, define nonsymimetric binary relations on the set
of quotients of a lattice. Some authors (in particular [GLT], [ATL] and Rose [84]) define
weak transpositions in terms of the inverses of the above relations, but denote these inverse
relations by the same symbols. Usually the phrase “transposes weakly into” (rather than
“onto”) is used to distinguish the two definitions.

The usefulness of weak transpositions lies in the fact that they can be used to charac-
terize principal congruences in arbitrary lattices.

LEMMA 1.11 (Dilworth [50]). Let r/s and u/v be quotients in a lattice L. Then con(r,s)
identifies w and v if and only if for some finite chain v = tg > t; > ... > t,, = v, the
quotient r/s projects weakly onto t;/t;yq1 (all e =0,1,...,m —1).

Notice that if u/v is a prime critical quotient of a subdirectly irreducible lattice L,
then by the above lemma every nontrivial quotient of L projects weakly onto u/v.
Bijective transpositions and modularity. We say that /s transposes up onto u/v (in
symbols r/s /" u/v) or equivalently u/v transposes down onto r/s (in symbols u/v \ r/s)
if r+v=wuand ro=s. We write r/s ~ u/v if either /s /" u/v or r/s \, u/v. Note that
~ is a symmetric relation, and that

1/$ ~y ufv and ufv ~, /s if and only if /s~ u/v.



1.4. CONGRUENCES ON LATTICES 11

Suppose r/s / u/v and, in addition, for every ¢t € r/s and t' € u/v we have
t=(t+v)r and t' =tr+ow.

Then the map ¢t — ¢ + v is an isomorphism from r/s to u/v, and in this case we say
that /s transposes bijectively up onto w/v (in symbols r/s /g u/v), or equivalently u/v
transposes bijectively down onto r/s (in symbols u/v \ g r/s). In a modular lattice every
transpose is bijective, since ¢ < r and modularity imply

(t+v)yr=t+or=t4+s=t

and similarly ¢’ = t'r 4+ v. It follows that for any sequence of weak transpositions zg/yo ~
T1/Y1 ~w - ~w Tn/Yyn wWe can find subquotients z!/y! of x;/y; (¢ = 0,1,...,n — 1) such
that

wo/yo 2 xo/yo ~ 1 /Y1 ~ -~ Tn/Yn-

In this case we say that the two quotients z(/yf and z,/y, are projective to each other,
and by Lemma 1.11 this concept is clearly sufficient for describing principal congruences
in modular lattices.

Congruence lattices of modular lattices. The symbol 2 denotes a two element lattice,
and a complemented distributive lattice will be referred to as a Boolean algebra (although
we do not include complementation, zero and unit as basic operations). We need the
following elementary result about distributive lattices:

LEMMA 1.12 Let D be a finite distributive lattice. If the largest element of D is a join of
atoms, then D is a Boolean algebra.

Proor. It suffices to show that D is complemented. Let ¢ € D and define @ to be the
join of all atoms that are not below a. By assumption ¢ + @ = 1p and by distributivity
aa = Op, whence @ is the complement of a. a

A chain C' is a linearly ordered subset of a lattice, and if |C| is finite then the length
of C' is defined to be |C'| — 1. A lattice L is said to be of length n if there is a chain in L
that has length n and all chains in L are of length < n. Recall the Jordan-Holder Chain
condition ([GLT] p.172): if M is a (semi-) modular lattice of finite length then any two
maximal chains in M have the same length. In such lattices the length is also referred to
as the dimension of the lattice.

LEMMA 1.13 Let M be a modular lattice.

(i) Ifu/v is a prime quotient of M, then con(u,v) is an atom of Con(M).

(ii) If M has finite length m, then Con(M ) is isomorphic to a Boolean algebra 2™, where
n < m.

Proor. (i) If con(u,v) 2 con(r,s) for some r # s € M, then u/v and a prime subquotient
of r+s/rs are projective to each other, which implies that con(u,v) = con(r,s). It follows
that con(u,v) is an atom.

(ii) Let zg < z1 < ... < 2, be a maximal chain in M. Then the principal congruences
con(zi, zig1) (¢ =0,1,...,m—1) are atoms (not necessarily distinct) of Con(M), and since
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their join collapses the whole of M, the result follows from the distributivity of Con(M)
and the preceding lemma. |
As a corollary we have that every subdirectly irreducible modular lattice of finite length

is simple (i.e. Con(M) = 2).



Chapter 2

(General Results

2.1 The Lattice A

A is a dually algebraic distributive lattice. In Section 1.1 it was shown that the
collection A of all lattice subvarieties of £ is a complete lattice, with intersection as meet.
A completely analogous argument shows that this result is true in general for the collection
of all subvarieties of an arbitrary variety V of algebras. We denote by

Ay the lattice of all subvarieties of the variety V.

(If V = £ then we usually drop the subscript V.)

Call a variety V' € Ay finitely based relative to V if it can be defined by some finite set
of identities together with the set 1d V. If V is finitely based relative to the variety Mod ()
(= the class of all algebras of the same type as V) then we may omit the phrase “relative
to V7.

THEOREM 2.1 For any variety V of algebras, Ay is a dually algebraic lattice, and the
varieties which are finitely based relative to V are the dually compact elements.

ProOF. Let V', V; (i € I) be subvarieties of V, and suppose that V' O N/ Vi =
Mod(U;e; 1dV;). If V' is finitely based relative to V, then V' = V N Mod& for some finite
set £ C IdV'. It follows that & C (J;c;IdV;, and since € is finite, it will be included
in the union of finitely many IdV;. Clearly the finite intersection of the corresponding
subvarieties is included in V', whence V' is dually compact.

Conversely, suppose V' is dually compact. We always have

(x) V' =ModIdV' =Vn () Mod{c},
celdy’

so by dual compactuness V' = VN[i=; Mod{e;} for some finite set £ = {e1,...,¢,} CIdV".
Hence V' is finitely based relative to V.
Finally (*) implies that every element of Ay is a meet of dually compact elements, and
so Ay is dually algebraic. a
Let Cy(V’) denote the collection of all varieties in Ay that cover V. We say that
Cy(V') strongly covers V' if any variety that properly contains V', contains some member

of Cy(V’).

13
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Recall that a lattice L is weakly atomic if every nountrivial quotient of L contains a
prime subquotient. An algebraic (or dually algebraic) lattice L is always weakly atomic,
since for any nontrivial quotient w/v in L we can find a compact element ¢ < u, ¢ £ v and
using Zorn’s Lemma we can choose a maximal element d of the set {o € L :v < d < ¢+v},
which then satisfies v < d < ¢+ v < u. In particular, if u is compact, then there exists
d € L such that v < d < u.

THEOREM 2.2 Let V' be a subvariety of a variety V.
(i) If V' is finitely based relative to V then Cy(V') strongly covers V'.
(ii) If Cy(V') is finite and strongly covers V' then V' is finitely based relative to V.

Proor. (i) V' is dually compact, so by the remark above, any variety which contains V',
contains a variety that covers V'.

(ii) Suppose Cy(V') = {V1,...,V,} for some n € w. Then for each ¢ = 1,...,n there
exists an identity ¢; € Id V' such that ¢; fails in V;. Let V" = VN Mod{¢; : ¢ = 1,...,n}.
We claim that V' = V.

Since each ¢; holds in V', we certainly have V' C V", If V' # V" then the assumption
that Cy(V') strongly covers V' implies that V; C V" for some ¢ € {1,...,n}. But thisis a
contradiction since ¢g; fails in V;. a

We now focus our attention on congruence distributive varieties, since we can then
apply Jonsson’s Lemma to obtain further results.

THEOREM 2.3 (J6nsson [67]). Let V be a congruence distributive variety of algebras and
let V', V" € Ay. Then

(1) (V'+V")sr = Vg U Vg
(ii) Ay is a distributive lattice;
(iii) if V' is finitely generated, then V' + V" /V" is a finite quotient in Ay.

Proor. (i) We always have Vi U VY C (V' 4+ V")g. Conversely, if A € (V' + V")g
then Jonsson’s Lemma implies that A € HSPy (V' U V”). 1t is not difficult to see that
HSPy(V'UV”) = HSPyV' UHSPyV” = V' UV”, and since A is subdirectly irreducible,
we must have 4 € Vi or A € V.

(ii) If V1,V3, Vs € Ay, then (i) implies that every subdirectly irreducible member of
V1N(V2+Vs3) belongs to either ViNV; or ViNVs, whence ViN(Va+Vs) C (ViNV2)+(VinVs).
The reverse inclusion is always satisfied.

(iii) By Corollary 1.7(iii), the quotient V'/V'N V" is finite, and it transposes bijectively
up onto V' 4+ V"/V" since Ay is distributive. a

The fact that, for any congruence distributive variety V, the lattice Ay is dually alge-
braic and distributive can also be derived from the following more general result, due to
B. H. Neumann [62]:

THEOREM 2.4 For any variety V of algebras, Ay is dually isomorphic to the lattice of all
fully invariant congruences on Fy(w).

(A congruence # € Con(A) is fully invariant if afb implies f(a)@f(b) for all endomor-
phisms f: A — A). However, we will not make use of this result.
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Some properties of the variety £. For any class K of algebras, denote by
Kg the class of all finite members of K.
The variety V = L of all lattice varieties has the following interesting properties:

(P1) V is generated by its finite (subdirectly irreducible) members (i.e. V = (Vg)Y).
(P2) Every member of V can be embedded in a member of Vg (i.e. V C SVg).

(P3) Every finite member of V can be embedded in a finite member of Vgy.

That £ satisfies (P1) was proved by Dean [56], who showed that if an identity fails in
some lattice, then it fails in some finite lattice (see Lemma 2.23). In Section 2.3 we prove
an even stronger result, namely that £ is generated by the class of all splitting lattices
(which are all finite). (P2) follows from the result of Whitman [46] that every lattice can
be embedded in a partition lattice, which is simple (hence subdirectly irreducible, see also
Jénsson [53]). (P3) follows from the analogous result for finite lattices and finite partition
lattices, due to Pudlak and Tuma [80].

THEOREM 2.5 (McKenzie [T2]). Let V be a variety of algebras and consider the following
statements about a subvariety V' of V:
i) V' is completely join prime in Ay (i.e. V' <> . ;V; implies V' < V; some 1 € I);
el
ii) V' can be generated by a finite subdirectly irreducible member;
g Y Y )
(iii) V' is completely join irreducible in Ay;
iv) V' can be generated by a finitely generated subdirectly irreducible member;
g Y y & Y )
v) V' can be generated by a (single) subdirectly irreducible member;
g g
)

(vi

Then we always have (iii)=(iv)=(v). If (P1) holds, then (i)=(ii), and if V is congruence
distributive then (ii)=-(iii) and (v)=-(vi).

V' is join irreducible in Ay;

Proor. (iii)=>(iv) Every variety is generated by its finitely generated subdirectly irre-
ducible members, so if V' is completely join irreducible, then it must be generated by one
of them. (iv)=-(v) is obvious.

Suppose now that V = (Vg)V (i.e. (P1) holds). Then V is the join of all its finitely
generated subvarieties. If V' C V is completely join prime, then it is included in one of
these, and therefore V' is itself finitely generated. This means that V' can be generated by
finitely many finite subdirectly irreducible algebras, and since it is also join irreducible, it
must be generated by just one of them, i.e. (ii) holds.

If V is congruence distributive and (ii) holds, then Theorem 2.3(i) implies that V' is
join irreducible, and by Corollary 1.7(iii), V' has ounly finitely many subvarieties, hence it
is completely join irreducible. (v)=-(vi) also follows from Theorem 2.3(i). O

Thus for V = £ we have (i)=(ii)=(iii)=>(iv)=(v)=(vi). McKenzie also gives examples
of lattice varieties which show that, in general, none of the reverse implications hold. If
V' is assumed to be finitely generated, then of course (ii) (vi) are equivalent.



16 CHAPTER 2. GENERAL RESULTS

THEOREM 2.6 (Jousson [67]). Let V be a congruence distributive variety of algebras.
Then

(i) (P1) implies that every proper subvariety of V has a cover in Ay;
(ii) (P2) implies that V is join irreducible in Ay;
(iii) (P1) and (P2) imply that V has no dual cover.

ProoOF. (i) If V' is a proper subvariety of V = (Vg)V, then there exists a finite algebra
A € V such that A ¢ V'. By Theorem 2.3(iii) the quotient {A}Y + V'/V’ is finite and
therefore contains a variety that covers V'.

(ii) If V' and V" are proper subvarieties of V, then there exist algebras A’ and A” in
V such that A’ ¢ V' and A” ¢ V. Assuming that V C SVg;, we can find a subdirectly
irreducible algebra A € V which has A’ x A” as subalgebra. Then A ¢ V' and A ¢ V", so
Theorem 2.3(i) implies that A ¢ V' 4+ V" whence V' + V" #£ V.

(iii) Again we let V' be a proper subvariety of V. By (P1) there exists a finite algebra
A €V such that A ¢ V'. Now (P2) implies that {A}Y # V, whence by (ii) V properly
contains V' + {A}Y which in turn properly contains V. Consequently V' is not a dual
cover of V. a

The cardinality of A. Let 7 be the (countable) set of all lattice identities. Since every
variety in A is defined by some subset of 7, we must have |A] < 2¢. The same argument
shows that if V is any variety of algebras (of finite or countable type), then |Ay| < 2¢.
Whether this upper bound on the cardinality is actually attained depends on the variety
V. For V = L, the answer is affirmative, as was proved independently by McKenzie [70]
and Baker [69] (see also Wille [72] and Lee [85]). Baker in fact shows that the lattice Ay
of all modular subvarieties contains the Boolean algebra 2¢ as a sublattice. We postpone
the proof of this result until we have covered some theory of projective spaces in the next
chapter. In Section 4.3 we give another result, from Lee [85], which shows that there
are 2¢¥ almost distributive lattice varieties (to be defined). In contrast, Jonsson’s Lemma
implies that any finitely generated congruence distributive variety V has only finitely many
subvarieties and therefore Ay is finite.

An as yet unsolved problem about lattice varieties is whether the converse of the above
observation is true, i.e. if a lattice variety has only finitely many subvarieties, is it finitely
generated? This problem can also be approached from below: if a lattice variety V is
finitely generated, is every cover of V finitely generated?

Sometimes these problems are phrased in terms of the height of a variety V in A
(= length of the ideal (V] ). Since A is distributive, to be of finite height is of course
equivalent to having only finitely many subvarieties. Call a variety V locally finite if every
finitely generated member of V is finite. For locally finite congruence distributive varieties,
the above problem is easily solved.

THEOREM 2.7 Every finitely generated variety of algebras is locally finite. Conversely, if
V is a locally finite congruence distributive variety, then
(i) every join irreducible subvariety of V that has finite height in Ay is generated by a
finite subdirectly irreducible member, and

(ii) every variety of finite height in Ay is finitely generated.
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Proor. If V is finitely generated, then V = {A}Y for some finite algebra A € V. For
n € w the elements of Fy(n) are represented by n-ary polynomial functions from A™ to
A, of which we can have at most |A[l4". Hence Fy(n) is finite for each n € w, and this is
equivalent to V being locally finite.

Conversely, assume that V is a locally finite congruence distributive variety. (i) If a
subvariety V' of V is join irreducible and has finite height in Ay, then it is in fact completely
join irreducible, whence Theorem 2.5 implies that V' is generated by a finitely generated
subdirectly irreducible algebra, which must be finite. (ii) follows from (i) and the fact that
a variety of finite height is the join of finitely many join irreducible varieties. a

Nonfinitely based and nonfinitely generated varieties. It is easy to see that a vari-
ety can have at most countably many finitely based or finitely generated subvarieties, hence
McKenzie’s and Baker’s result (JA] = [Ap] = 2¢) imply that there are both nonfinitely
based and nonfinitely generated (modular) lattice varieties. An example of a modular
variety that is not finitely based is given in Section 5.3, and £ and M are examples of
varieties that are not finitely generated. In fact Freese [79] showed that, unlike £, M
is not even generated by its finite members (see Section 3.3). Other such varieties were
previously discovered by Baker [69] and Wille [69].

2.2 The Structure of the Bottom of A

Covering relations between modular varieties. The class of all trivial (one-element)
lattices, denoted by 7 = Mod{z = y}, is the smallest lattice variety and hence the least
element of A. If a lattice variety V properly contains 7, then V must contain a lattice
which has the two-element chain 2 as sublattice, hence 2 € V. It is well known that, up
to isomorphism, 2 is the only subdirectly irreducible distributive lattice, and therefore
generates the variety of all distributive lattices, D = {2}V = Mod{z(y + 2) = zy + zz}.
It follows that D is the unique cover of 7 in the lattice A.

The next important identity is the modular identity zy+ 2z = z(y+xz), which defines
the variety M of all modular lattices. Of course every distributive lattice is modular, and
a lattice L satisfies the modular identity if and only if, for all w,v,w € L with u < w we
have u + vw = (u 4+ v)w (for arbitrary lattices we only have < instead of equality). The
diamond Mz (see Figure 2.1) is the smallest example of a nondistributive modular lattice.

A well known result due to Birkhoff [35] states that M3 is in fact a sublattice of every
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nondistributive modular lattice. We give a sketch of the proof. Let «,y,z € L and define
uw=z2y+zz+yzand v=(z+y)(x+ 2)(y+ z). Then clearly u < v, and the elements

a=u+azv=(u+z)v
b=u+yv=(u+yv
c=u+zv=_(u+2)

generate a diamond with least element u and greatest element v. On the other hand, if
u = v for all choices of x,y,z € L, then the identity

oy +az+yz = (2 4+ y)(o + )y + )

holds in L, and it is not difficult to see that this identity is equivalent to the distributive
identity.

It follows that every nondistributive modular lattice contains a sublattice isomorphic
to M3, and consequently the variety Mz = { M3}V covers D. More generally, since the
lattices M, (see Figure 2.1) are simple (hence subdirectly irreducible) modular lattices for
each n > 3, and since M, is a sublattice of M, 1, it follows from Corollary 1.7(i) that,
up to isomorphism, (M, )sr = {2} U{ M} : 3 < k < n}, where M,, = {M,,}V. Hence the
varieties M,, form a countable chain of join irreducible modular subvarieties of M, with
M, 41 covering M, for n > 3. Jousson [68] proved that for n > 4, M, 41 is in fact the
only join irreducible cover of M, and that Mgz has exactly two join irreducible covers,
M2 and My. This result is presented in Section 3.4. Further remarks about the covers
of Ms2 and various other modular varieties appear at the end of Chapter 3.

Covering relations between nonmodular varieties. A lattice variety is said to be
nonmodular if it contains at least one nonmodular lattice L (i.e. L ¢ M). If L € Vis
nonmodular, then we can infer the existence of three elements u, v, w € L such that v < w
and v + vw < (u 4+ v)w. In that case the elements ¢ = v + vw, b = v and ¢ = (v + v)w
generate a sublattice of L that is isomorphic to the pentagon N with critical quotient ¢/a
(see Figure 2.1). Since the pentagon is nonmodular, one obtains the well known result of
Dedekind [00]:

Every nonmodular lattice contains a sublattice isomorphic to N.

Many of the later results will be of a similar flavor, in the sense that a certain property
is shown to fail precisely because of the presence of some particular sublattices. If L and
K are lattices, we say that L exzcludes K if L does not have a sublattice isomorphic to
K. Otherwise we say that L includes K. In this terminology, modularity is said to be
characterized by the exclusion of the pentagon.

An immediate consequence is that the variety generated by the pentagon (denoted by
N) is the smallest nonmodular variety. Again, Jonsson’s Lemma enables us to compute
Nsr = {2, N} and hence N is a join irreducible cover of the distributive variety D. Since
every lattice is either modular or nonmodular, we conclude that Mz and N are the only
covers of D.

In a paper of McKenzie [72] there is a list of 15 subdirectly irreducible lattices
Ly, Ly, ..., L5 (see Figure 2.2) with the following property: If we let £; = {L;}V (i =
1,...,15) then each of them satisfy (L;)st = {2, N, L;}. Hence each £; is a join irre-
ducible cover of the variety N. It is a nontrivial result, due to Jonsson and Rival [79],
that McKenzie’s list is complete. A proof of this result appears in Chapter 4.
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Rose [84] proves that above each of the varieties L¢, L7, Lg, L9, L10, L13, L£14 and
L15 there is a chain of varieties £ (n € w), each one generated by a finite subdirectly
irreducible lattice L? (L? = L;), such that L‘?'H is the unique join irreducible cover of L7
(1 =16,7,8,9,10,13,14,15).

Lattice varieties which do not include any of the lattices Ms, Lq1,..., L2 are called
almost distributive by Lee [85]. They are all locally finite, and Lee shows that their finite
subdirectly irreducible members can be characterized in a certain way which, in principle,
enables us to determine the position of any finitely generated almost distributive variety
in the lattice A.

Ruckelshausen [78] investigates the covers of Mz + A, and further results by Na-
tion [85] [86] include a complete list of the covers of the varieties £3 and £q7, £12. Nation
also shows that above £17 and L1 there are exactly two covering chains of join irreducible
varieties. These results are discussed in more detail at the end of Chapter 4.

A diagram of A is shown in Figure 2.4.

2.3 Splitting Lattices and Bounded Homomorphisms

The concept of splitting. A pair of elements (z,y) in a lattice L is said to be a splitting
pair of L if L is the disjoint union of the principal ideal (z] and the principal filter [y) (or
equivalently, if for any z € L we have z < z if and only if y £ z). The following lemma is
an immediate consequence of this definition.
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LEMMA 2.8 In a complete lattice L the following conditions are equivalent:

(i) (z,y) is a splitting pair of L;
(ii) z is completely meet prime in L and y = [l2g0 25

(iii) y is completely join prime in L and z = Doapy 7

The notion of “splitting” a lattice into a (disjoint) ideal and filter was originally inves-
tigated by Whitman [43]. In McKenzie [72] this concept is applied to the lattice A, as a
generalization of the familiar division of A into a modular and a nonmodular part. What
is noteworthy about McKenzie’s and subsequent investigations by others is that they yield
greater insight, not only into the structure of A, but also into the structure of free lattices.
In this section we first present some basic facts about splitting pairs of varieties in general
and then discuss some related concepts and their implications for lattices.

Let V be a variety of algebras and suppose (Vgp, V1) is a splitting pair in A. By
Lemma 2.8 Vg is completely meet prime, hence completely meet irreducible, and since

Vo =ModIdVy= ()| Mod{c}
EEIdV()

it follows that Vy can be defined by a single identity €9. Dually, since every variety is
generated by its finitely generated subdirectly irreducible members, V; = {A}V for some
finitely generated subdirectly irreducible algebra A. We shall refer to such an algebra A
(which generates a completely join prime subvariety of V) as a splitting algebra in V, and
to the variety Vg as its conjugate variety, defined by the conjugate identity €. Note that
if V is generated by its finite members, then we can assume, by Theorem 2.5, that A is a
finite algebra. If, in addition, V is congruence distributive, then Corollary 1.7(iv) implies
that A is unique. In particular, if (Vo, V1) is a splitting pair in A, then V; = {L}V where L
is a finite subdirectly irreducible lattice, and we refer to such a lattice as a splitting lattice.
The two standard examples of splitting pairs in A are (7,D) and (M, N).

Projective Algebras. An algebra P in a class K of algebras said to be projective in K
if for any homomorphism h : P — B and epimorphism ¢g : A — B with A, B € K, there
exists a homomorphism f: P — A such that h = gf (Figure 2.5(i)).

An algebra B is a retract of an algebra A if there exist homomorphisms f: B — A
such that ¢ f is the identity on B. Clearly f must be an embedding, and g is called a
retraction of f.

LEMMA 2.9 Let K be a class of algebras in which K-free algebras exist. Then, for any
P € K, the following conditions are equivalent:

(i) P is projective in K;

(ii) For any algebra A € K and any epimorphism g : A — P there exists an embedding
f: P — A such that g f is the identity on P;

(iii) P is a retract of a K-free algebra.

ProoOF. (ii) is a special case of (i), with B = P and h the identity on P. Clearly f must
be an embedding in this case. Suppose (ii) holds, and let X be a set with | X| = |P|. Then
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there exists an epimorphism ¢ : Fic(X) — P. Since Fx(X) € K, it follows from (ii) that
P is a retract of Fic(X). Lastly, suppose P is a retract of some K-free algebra Fi(X),
and let h: P — B and g : A — B be given (A, B € K). Then there exist f' : P — F(X)
and ¢’ : Fx(X) — P such that ¢’f’ is the identity on P (Figure 2.5(ii)). Since g is onto,
we can define a map k : X — A satisfying gk(z) = hg'(z) for all z € X. Let k be the
extension of k to Fic(X), then kf’ is the required homomorphism from P to A. a

Thus, for any variety V, every V-free algebra is projective in V.

LEMMA 2.10 (Rose [84]). Let K be a class of algebras and suppose that P € KV is
subdirectly irreducible and projective in KY. Then P is isomorphic to a subalgebra of
some member of K.

PROOF. Since P € KY = HSPK, Lemma 2.9 (ii) implies that P € SPK. Hence we can
assume that P is a subalgebra of a direct product X;c;A;, where A; € K for ¢ in some
index set I. Denoting the projection map from the product to each A; by 7;, we see that
P is a subdirect product of the family of algebras {m;(P) :7 € I'}. But P is assumed to be
subdirectly irreducible, so there exists j € I such that m;( /) is isomorphic to P. Therefore
7; 1 P — L; is an embedding. |

Recall from Section 1.1 that Fy(X) can be constructed as a quotient algebra of the
word algebra W (X), whence every element of Fy(X) can be represented by a term of
W (X). Also if A is an algebra and p, ¢ are terms in W (X ), then the identity p = ¢ holds
in A if and only if h(p) = h(g¢) for every homomorphismmn h : W(X) — A. Notice that
if V is a variety containing A, then any such h can be factored through Fy(X). The
following theorem was proved by McKenzie [72] for L-free lattices, and then generalized
to projective lattices by Wille [72] and to projective algebras by Day [75].

THEOREM 2.11 Let V be a variety of algebras, suppose P € V is projective in V, and for
some a,b € P there is a largest congruence 1) € Con(P) which does not identify a and
b. Then P/ is a splitting algebra in V, and if f : P — Fy(X) is an embedding and
g : Fy(X) — P is a retraction of f (i.e. gf = idp) then for any terms p,q which represent
f(a), f(b) respectively, the identity p = q is a conjugate identity of P/.

ProOOF.It is enough to show that p = ¢ fails in P/ but holds in any subvariety of V that
does not contain P/¢. Let v : P — P/ be the canonical epimorphism. Then ¢ does



24 CHAPTER 2. GENERAL RESULTS

not identify f(«) and f(b), hence by the remark above, p = ¢ fails in P/1¢. Suppose now
that V' is any subvariety of V not containing P/, and let h : Fy(X) — Fy(X) be the
extension of the identity map on the generating set X. Clearly the identity p = ¢ will hold
in V" if and only if Af(a) = hf(b). Suppose to the contrary that ¢ and b are not identified
by ker h f. Since 1 is assumed to be the largest such congruence, we have ker hf C 1, and
it follows from the second homomorphism theorem that v : P — P/ factors through
Fyi(X), hence P/¢ € V', a contradiction. Therefore p = ¢ holds in V'. O

In particular, any projective subdirectly irreducible algebra is splitting. Combining
Lemma 1.10 with the above theorem we obtain the result of Wille [72]:

COROLLARY 2.12 Let V be a lattice variety, u/v a prime quotient in some lattice P € V
which is projective in V, and suppose 0 is the largest congruence on P that does not
collapse u/v. Then P[0 is a splitting lattice in V.

If we take V to be the variety £ of all lattices, then the converse of the above corollary
is also true. In fact it follows from a result of McKenzie (Corollary 2.26) that every
splitting lattice in £ is isomorphic to a quotient lattice of some finitely generated free
lattice F'(n) modulo a congruence  which is maximal with respect to not collapsing some
prime quotient of F(n). Before we can prove this result, however, we need some more
information about free lattices, which is due to Whitman [41] [42] and can also be found
in [ATL] and [GLT]. Whitman showed that a lattice L is (£-) freely generated by a set
X C L if and only if for all z,y € X and a,b,c¢,d € L the following four conditions are
satisfied:

(W1) x <y implies z =y (i.e. generators are incomparable)

(W2) ab <y implies a<y or b<y

(W3) &<c+d implies z<c¢ or z<d

(W) ab<c+d implies a<c+d or b<c+d or ab<c or ab<d.

(These conditions are also known as Whitman’s solution to the word problem for lattices
since they provide an algorithm for testing when two lattice terms represent the same
element of a free lattice.)

In fact Jonsson [70] showed that if V is a nontrivial lattice variety then (W1), (W2)
and (W3) hold in any V-freely generated lattice. We give a proof of this result. A subset
X of alattice L is said to be irredundant if for any distinct @, xq1,z9,...,2, € X

(W2 x } xyee...x, and
(W3') r Ly +ay+ ...+ z,.

We also require the important notion of a join-cover. Let U and V be two nonempty
finite subsets of a lattice L. We say that U refines V (in symbols U <« V) if for every
u € U there exists v € V such that « < v. V is a join-cover of a € L'if a <3V, and
a join-cover V of a is nontrivial if a £ v for all v € V. Observe that any join-cover of a,
which refines a nontrivial join-cover of a, is itself nontrivial. The notion of a meet-cover

is defined dually.
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LEMMA 2.13 (Jonsson[70]). Let L be a lattice generated by a set X C L.

(i) If every join-cover U C X of an element a € L is trivial, then every join-cover of a
is trivial.

(ii) X is irredundant if and only if for all ,y € X and a,b,¢,d € L (W1), (W2) and
(W3) hold.

ProOOF. (i) Let Y be a subset of L for which every join-cover U C Y of a is trivial, and
let S(Y') and P(Y) denote the sets of all elements of L that are (finite) joins and meets of
elements of Y respectively. Since every join-cover V C S(Y) of a is refined by a join-cover
U CY,V is trivial. We claim that the same holds for every join-cover V. C P(Y') of a.
Suppose V is a finite nonempty subset of P(Y) such that for all v € V, a £ v. Each
element v is the meet of a nonempty set U, C Y. Since a £ v, there exists an element
uy € U, such that @ £ u,. Each u, belongs to Y, so the set W = {u, : v € V' } cannot be
a join-cover of a, i.e. a £ 3" W. But v =[] U, < uy, and hence YV < 3 W. It follows
that @ £ >~V which means that V is not a join-cover of a. This contradiction proves the
claim.

Now let Yy = P(X) and Y41 = PS(Y,) for n € w. If every join-cover U C X of a
is trivial, then by the above this is also true for X replaced by Y,,. Since X generates L,
we have L = |J,¢, Yn, so if V is any join-cover of a, then V' C Y, for some m € w, and
therefore V is trivial.

(ii) If X is irredundant, then clearly the elements of X must be incomparable, so (W1)
is satisfied. It also follows that any join-cover U C X of a generator z € X is trivial,
hence by part (i) every join-cover of z is trivial. This implies (W3), and (W2) follows by
duality. Conversely, if © < 21 + 292 + --- + 2, with all z,21,...,2, € X distinct, then
repeated application of (W3) yields # < z; and by (W1) z = z; for some ¢ = 1,...,n.
This contradiction, and its dual argument, shows that X is irredundant. a

THEOREM 2.14 (J6usson[70]). Let K be a class of lattices that contains at least one
nontrivial lattice. If F is a lattice that is K-freely generated by a set X, then X is
irredundant.

PrOOF. Suppose z,zq1,...,2, € X are distinct, and let L € K be a lattice with more
than one element. Then there exists a,b € L such that ¢ £ b. Choose a map f: X — L
such that f(z) = a and f(x;) = b (all 7). Then the extension of f to a homomorphism
f: F — L satisfies ?(L) =a£b= T(IE1+...+JEn), and hence ¢ £ x1 + ...+ z,. By
duality X is irredundant. a

The last condition (W) is usually referred to as Whitman’s condition, and it may be
considered as a condition applicable to lattices in general, since it makes no reference to
the generators of L. Clearly, if a lattice L satisfies (W), then every sublattice of L again
satisfies (W). In particular Whitman’s result and Lemma 2.9 show that every projective
lattice satisfies (W). Day [70] found a very simple proof of this fact based on a construction
which we will use several times in this section and in Chapters 4 and 6. Given a lattice L
and a quotient I = u/v in L, we construct a new lattice

LI = (L-T)u(Ix2)

with the ordering « < y in L if and ounly if one of the following conditions holds:
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(i) z,ye L—Tand ¢ < yin L;
(i) z el —1I,y=(b,j)and z < bin L;
(iii) ye L — I,z = (a,7) and y < a in L;
(iv) z = (a,t),y = (b,j)and a < bin L, ¢ < jin 2.
L[] is referred to as L with doubled quotient u/v, and it is easy to check that L[] is in

fact a lattice (2 = {0,1} is the two-element chain with 0 < 1). Also there is a natural
epimorphism = : L{u/v] — L defined by

7(”_{& if €l —ufv

a if «=(a,7) some i€ 2.
We say that a 4-tuple (a,b,c,d) € L* a (W)-failure of L if ab < ¢+ d but ab £ ¢,d and
a,b £ c+d.

LEmMA 2.15 (Day [70]). Let (a,b,c,d) be a (W)-failure of L, and let u/v = ¢ + d/ab.
Then there does not exist an embedding f : L — L[u/v] such that v f is the identity map
on L (i.e. there exists no coretraction of ).

PrOOF. Suppose the contrary. Then f(z) = « for each € L — u/v, and f(v) < f(u).
But f(v) = f(ab) = f(a)f(b) = ab = (v,1) since a,b £ u, and dually f(u) = (u,0). This
is a contradiction since by definition (v,1) € (u,0). O

From the equivalence of (i) and (ii) of Lemma 2.9 we now obtain:
COROLLARY 2.16
(i) Every lattice which is projective in L satisfies (W).
(ii) Every free lattice satisfies (W1), (W2), (W3) and (W).
As mentioned before, the converse of (ii) is also true. A partial converse of (i) is given
by Theorem 2.19.

Bounded homomorphisms. A lattice homomorphism f: L — L’ is said to be
upper bounded  if for every b € L’ the set f~1(b] = {z € L : f(z) < b} is either empty
or has a greatest element, denoted by a(b);

lower bounded — if for every b € L' the set f~1[b) = {z € L: f(z) > b} is either empty
or has a least element, denoted by 35(b);

bounded if f is both upper and lower bounded;
(upper/lower) bounded — if a given one of the above three properties holds.
The following lemma lists some easy consequences of the above definitions.
LEMMA 2.17 Let f: L — L' and g : L' — L" be two lattice homomorphisms.
(i) If L is a finite lattice, then f is bounded.

(ii) If f and g are (upper/lower) bounded then g f is (upper/lower) bounded.
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(iii) If gf is (upper/lower) bounded and f is an epimorphism, then g is (upper/lower)
bounded.

(iv) If gf is (upper/lower) bounded and g is an embedding, then f is (upper/lower)
bounded.

(v) If f is an upper bounded epimorphism and b € L’ then as(b) is the greatest member
of f~1{b}, and the map a5 : L' — L is meet preserving. Dually, if f is a lower
bounded epimorphism then (4(b) is the least member of f~1{b}, and B : L' — L is
join preserving.

A lattice is said to be wupper bounded if it is an upper bounded epimorphic image of
some free lattice, and lower bounded if the dual condition holds. A lattice which is a
bounded epimorphic image of some free lattice is said to be bounded (not to be confused
with lattices that have a largest and a smallest element: such lattices will be referred to
as 0,1 - lattices). Of course every bounded lattice is both upper and lower bounded. We
shall see later (Theorem 2.23) that, for finitely generated lattices, the converse also holds.

The notion of a bounded homomorphism was introduced by McKenzie [72], and he
used it to characterize splitting lattices as subdirectly irreducible finite bounded lattices
(Theorem 2.25). We first prove a result of Kostinsky [72] which shows that every bounded
lattice that satisfies Whitman’s condition (W) is projective. For finitely generated lattices
this result was already proved in McKenzie [72].

LEMMA 2.18 Suppose F(X) is a free lattice generated by the set X and let f : F(X) — L
be a lower bounded epimorphism. Then for each b € L the set {x € X : f(z) > b} is finite.

Proor. Since f is lower bounded and onto, 35(b) exists. Suppose it is represented by a
term ¢(z1,...,z,) € F(X) for some z1,...,2, € X, then clearly

{eeX : f(e)2b)={oveX:a>te1,...,2n)} C{&1,..., 20}

a

In particular note that if a finite lattice is a (lower) bounded homomorphic image of a
free lattice F', then F’ must necessarily be finitely generated.

THEOREM 2.19 (Kostinsky [72]). Every bounded lattice that satisfies (W) is projective
(in ).

Proor. Let f be a bounded homomorphism from some free lattice F'(X) onto a lattice
L, and suppose that L satisfies (W). We show that L is a retract of F((X), and then apply
Lemina 2.9. To simplify the notation we will denote the maps ay and 35 simply by « and
g.

Let h: F(X) — F(X) be the endomorphism that extends the map « — af(x), ¢ € X.
We claim that for each ¢ € F(X), ff(a) < h(a) < af(a), from which it follows that
fh(a) = f(a). This is clearly true for z € X. Suppose it holds for a,a’ € F(X). Since

is join-preserving

Bf(a+a) = Bf(a) + Bf(a') < h(a) + h(a’)
— ha+a) < af(a) +af(a) < af(a+ )
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and similarly since « is meet-preserving 3 f(aa’) < h(aa’) < af(aa’). This establishes the
claim.

We now define the map g : L — F(X) by ¢ = h3. Then g is clearly join-preserving.
Also fg(b) = fhpB(b) = fB(b) = b for all b € L (since fh = f). Thus we need only show
that g is meet-preserving. Since hf is orderpreserving, it suffices to show that

(%) hB(bc) > h(B(b)3(c)) for all b,ce L.

We first observe that, by the preceding lemina, the set S = {& € X : f(z) > be} is finite.
Let

B(b)B(c) i S =0.
Then clearly f(u) = be. We claim that w = §(bc). To see this, let Y be the set of all
a € F(X) such that bc < f(a) implies v < a. By definition X C Y, and Y is closed under
meets. Suppose a,a’ € Y and be < f(a) + f(a’). Since L satisfies (W), we have

b< fla)+ f(a') or ¢ < f(a)+ f(a') or be < f(a) or be < f(a').

Applying 5 to the first two cases we obtain u < 3(b) < a+a' or u < 3(¢) < a+a, and in
the third and fourth case we haveu < a < a+a’ oru < a' < a+a' (since a,a’ €Y). Thus
Y = F(X), and it follows that u is the least element for which f(u) > be, i.e. u = 3(bc).

Now cousider h(u) = hf(bc). If § = 0 then B(bc) = [B(b)5(c) and so (x) holds.
If S # 0 then hf3(bc) = hp(b)hB(c)[1h(S) so to prove (x), it is enough to show that
h(B(b)5(c)) < h(x) for all z € S. But any such z satisfies f(5(b)3(¢)) = be < f(z), and
applying o we get 3(b)3(c) < af(z) = h(z). Thus h(S(b)3(c)) < hh(z) and, since we
showed that h(a) < af(a), we have hh(z) < afh(z) = af(z) = h(z) as required. |

_{mmmqns if S#0

A complete characterization of the projective lattices in £ can be found in Freese and
Nation [78].

We now describe a particularity elegant algorithm, due to Jonsson, to determine
whether a finitely generated lattice is bounded.

Let Do(L) be the set of all @ € L that have no nontrivial join-cover (i.e. the set of
all join-prime elements of L). For k € w let Dyy1(L) be the set of all @ € L such that
if V is any nontrivial join-cover of a, then there exists a join-cover U C Dy(L) of a with
U < V. Note that Do(L) C Dy(L), and if we assume that Dy_q(L) C Dy(L) for some
k > 1, then for any a € Dp(L) any nontrivial join-cover V of a there exists a join-cover
U C Dip_1(L) C Di(L) of @ with U < V|, whence a € Dgy1(L). So, by induction we have

Do(L)YC Dy(L)C...CDp(L)C....
Finally, let D(L) = Uge, Pr(L) and define the sets D (L) and D'(L) dually. Jénsson’s
algorithm states that a finitely generated lattice is bounded if and ounly if D(L) = L =
D'(L). This result will follow from Theorem 2.23.
LEMMA 2.20 (Jonsson and Nation [75]). Suppose L is a lattice generated by a set X C L,

let Hg be the set of all (finite) meets of elements of X, and for k € w let Hy41 be the set
of all meets of joins of elements of Hy. Then Dy(L) C Hy for all k € w.

Proor. Note that the Hj are closed under meets, Hy C Hy C ... and L = [Jp¢,, Hg-
Suppose a € Do(L) and let m € w be the smallest number for which ¢« € H,,. If mm > 0,
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then a is of the form a = [[", X U;, where each U; is a finite subset of H,, 1. U; is a
join-cover of a for each ¢ = 1,...,n, and since a € Dg(L), it must be trivial. Hence there
exists a; € U; with a < a; for each ¢. But then @ = [[/x; a; € H,,_1, a contradiction. Thus
Do(L) C Ho.

We proceed by induction. Suppose Dg(L) C Hy, a € Dgg1(L) and m > k + 1 is the
smallest number for which ¢ € H,,,. Again a is of the form a = [[;—; >~ U; with U; C H,,_1
and each U; is a join-cover of a. If U; is trivial, pick a; € U; with a < a;, and if U; is
nontrivial, pick a join-cover V; C Dy(L) of ¢ with V; < U;. By assumption each V; is a
subset of Hy. If m > k + 1 then >_V; € Hpyq and a is the meet of these elements > V;
and the a;, so a € H,, 1, a contradiction. Thus m = k + 1 and Dg41(L) C Hiqa. |

For the next lemma, note that Whitman’s condition (W) is equivalent to the following:
for any two finite subset U,V of L,if « = [[U < >V = b, then V is a trivial join-cover
of a or U is a trivial meet-cover of b.

LEMMA 2.21 Suppose L = F(X) is freely generated by X, and let Hy, be as in the previous
lemma. Then Dy(L) = Hy and therefore D(L) = L.

Proor. By the previous lemma, it is enough to show that Hy C Dy(L) for each k € w.
If « € Hp, then a = [[i=; ; for some z; € X, and Whitman’s condition (W) and (W1)
imply that any join-cover of @ must be trivial, hence a € Do(L). Next suppose a € H;.
Then a = [[i=y > U; for some finite sets U; C Hg = Do(L), some n € w. If V is a
nontrivial join-cover of @, then (W) implies that for some ¢y we have 3" U;; < 3"V (see
remark above). Since U;; C Do(L), V is a trivial join-cover of each u € U;y, and therefore
Uiy, € V. Since Uy, is also a join-cover of a, it follows that « € Dy(L).

Proceeding by induction, suppose now that Dg(L) = Hjp and @ € Hgyq, for some
k > 1. Then a = [[ixy > U; for some U; C Hy, some n € w, and each U; is a join-cover
of a. Let V' be any nontrivial join-cover of a. As before (W) implies that > U;; < >V
for some ¢. Let W be the set of all v € U;, such that V' is a nontrivial join-cover of u,
and set W/ = U;; — W. Since W C Hy = Dy(L), there exists for each u € W a join-cover
Vi C Dy, (L) of uw with V,, < V. It is now easy to check that U = W/ U ,ew Vu is a
join-cover of ¢ which refines V' and is contained in Dg(L). Hence a € Dyyq1(L). a

A join-cover V of @ in a lattice L is said to be irredundant if no proper subset of V is a
join-cover of a, and minimal if for any join-cover U of a, U < V implies V C U. Observe
that every join-cover contains an irredundant join-subcover (since it is a finite set) and
that the elements of an irredundant join-cover are noncomparable. Also, every minimal
join-cover is irredundant.

LEMMA 2.22 (Jonsson and Nation [75]). If F' is a free lattice and V is a nontrivial
cover of some a € Dy(F), then there exists a minimal cover Vo of a with Vo < V and

Vo C Dia(F).

ProoOF. First assume that F is freely generated by a finite set X. Suppose V is a
nontrivial join-cover of « € Dy(F), and let C be the collection of all irredundant join-covers
U C Dy 1(F) of a, which refine V. C is nonempty since a € Dy(F'), and by Lemma 2.20
Dy (F) is finite, hence C is finite. Note that if U € C and U <« W < U for some subset W
of F, then for each u € U there exists w € W and «' € U such that u < w < w’, and since
the elements of U are noncomparable, we must have © = w = «' and therefore U C W. In
particular, it follows that C is partially ordered by the relation <. Let V{ be a minimal
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(with respect to <) member of C, and suppose U is any join-cover of a with U < V.
Because V' is assumed to be nontrivial, so are Vp and U, and since a € Dg(F), there exists
a join-cover Ug C Dy 1(F) of a with Uy < U. It follows that Uy < Vg, and since we may
assume that Uy € C, we have Uy = Vp. Therefore Vo < U < Vy which implies Vo C U.
Thus Vp is a minimal join-cover of a.

Assume now that X is infinite, and choose a finite subset Y of X such that V U {a}
belong to the sublattice F’ generated by Y C F. By the first part of the proof, there
exists a set Vo C D 1(F') C Dy_1(F) such that Vo < V and Vp is a minimal cover of a
in F'. We show that V{ is also a minimal cover of a in F. Let Fj be the lattice obtained
by adjoining a smallest element 0 to F'; and let h be the endomorphism of Fy that maps
each member of Y onto itself and all the remaining elements of X onto 0. Then A maps
every member of F” onto itself, and h(u) < u for all w € Fy. Hence, if U is any join-cover
of @ in F’, then the set U’ = h(U) — {0} is a join-cover of @ in F’ and U’ < Vg, so that
Vo CU' < U. Thus Vo < U < Vg, which implies that Vo C U. a

For finitely generated lattices we can now give an internal characterization of lower
boundedness. This result, together with its dual, immplies that an upper and lower bounded
finitely generated lattice is bounded.

THEOREM 2.23 (Jonsson and Nation [75]). For any finitely generated lattice L, the
following statements are equivalent:

(i) L is lower bounded;
(i) D(L) = I;

(ili) Every homomorphism of a finitely generated lattice into L is lower bounded.

ProOF. Suppose (i) holds, let f be a lower bounded epimorphism that maps some free
lattice ' onto L, and denote by 3(a) = (s(a) the smallest element of the set f~1[a) for
all @ € L. We show by induction that

B(a) € Dp(F) implies a€ Di(L)

then D(L) = L follows from the result D(F) = F of Lemma 2.21. Since 3 is a join-
preserving map, the image 3(U) of a join-cover U of a is a join-cover of 3(a). If B(U) is
trivial, then 3(a) < B(u) for some v € U, hence a = fB(a) < fB(u) = w and U is also
trivial. It follows that 3(a) € Do(F) implies a € Do(L).

Suppose now that §(a) € Di(f) and that U is a nontrivial join-cover of a. Then 3(U)
is a nontrivial join-cover of 3(a) and by Lemma 2.22 there exists a minimal join-cover
Up € Dy_1(F) of B(a) with Uy < B(U). Clearly f(Up) is a join-cover of a and f(Up) < U.
Furthermore, the set 3f(Up) is a join-cover of 5(a) with 5f(Up) < Up. By the minimality
of Ug, we have Uy C 3f(Up), and since Up is finite, this implies 3f(Up) = Ug C Dy_1(F).
It now follows from the induction hypothesis that f(Uy) C Dg_1, and therefore a € Dy(L).

Now assume D(L) = L, and consider a homomorphism f : K — L where K is
generated by a finite set Y. Let Hy =Y, and for £ € w let Hi4q1 be the set of all joins of
meets of elements in Hi. For each k € w define maps B : L — K by

B(a) = [[{y € Hi : f(y) > a}.
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(In particular [0 = >°Y = 1k.) We claim that for every k € w and a € Dy(L), if the
set f~1{a) is nonempty, then f~1[a) = [Bk(a)), and Bi(a) is therefore the smallest element
of this set. Since D(L) = L it then follows that f is lower bounded. So suppose that
a € Dg(L) for some k, and f~'[a) is nonempty. If + € K and z > fi(a) then

» Jrag)  if {ye Hp:fly)>a} =10
Tw) 2 1hule) = {H{?(y) HN/AS Hky and kf(y) é a} otherwise,

and in both cases f(z) > a (f(1x) > a since f~![a) is nonempty). Thus [Br(a)) C f~a).
For the reverse inclusion we have to show that for all z € K

(%) f(z) > a implies z > Pr(a).

The set of elements z € K that satisfy (%) contains Y and is closed under meets, hence
it is enough to show that it is also closed under joins. For k = 0, we have a € Do(L), so
S>> f(U) > aimplies f(u) > a for some v € U, and by (%) u > fo(a), hence 3" U > [o(a).
Suppose now that (x) holds for all values less than some fixed £ > 0. Let z = 3> U and
assumme f(z) > a, ie. f(U) is a join-cover of a. If it is trivial, then (x) is satisfied as
before, so assume it is nontrivial. Then there exists a join-cover V. C Dy_1(L) of a with
V & f(U), and by the inductive hypothesis z > 8;_1(v) for all v € V. Now the elements
Br—1(v) are meets of elements in Hy, , and the element z = 3 B_1(V) therefore belongs
to Hg. Since f(z) > Y-V > a, it follows from the definition of 3; that z > [(i(a), hence
x > Br(a) as required. (iii) implies (i) follows immediately from the assumption that L is
finitely generated. a

The equivalence of (i) and (iii) was originally proved by McKenzie [72]. Note that
(i)=(ii)=-(iii) is true for any lattice L, so the above theorem implies that if L is lower
bounded then D(L) = L, and the converse holds whenever L is finitely generated. Together
with Lemma 2.21 we also have that every finitely generated sublattice of a free lattice is
bounded.

It is fairly easy to compute D(L) and D'(L) for any given finite lattice L. Thus
one can check that the lattices N, Lg, L7,..., L1s are all bounded, and since they also
satisfy Whitman’s condition (W), Theorem 2.19 implies that they are projective (hence
sublattices of a free lattice). On the other hand L; fails to be upper bounded (dually for
Ly) and Ms, L3, Ly and Ls are neither upper nor lower bounded (see Figures 2.1 and 2.2).

Note that if U is a finite subset of Dg(L) then > U € Dyyq1(L). Since every join
irreducible element of a distributive lattice is join prime, and dually, it follows that every
finite distributive lattice is bounded.

We now recall a construction which is usually used to prove that the variety of all
lattices is generated by its finite members. In Section 1.2 it was shown that every free
lattice F(X) can be constructed as a quotient algebra of a word algebra W (X), whence
elements of F/(X) are represented by lattice terms (words) of W(X). The length A of a
lattice term is defined inductively by A(z) = 1 for each € X and A(p + ¢) = A(pq) =
A(p)+ A(q) for any terms p, ¢ € W(X). Let X be a finite set, and for each k € w, construct
a finite lattice P(X, k) as follows:

Take W to be the finite subset of the free lattice F/(X') which contains all elements that
can be represented by lattice terms of length at most &k, and let P(X, k) be the set of all
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finite meets of elements from W, together with largest element 15 = >~ X of F(X). Then
P(X,k)is a finite subset of (X ), and it is a lattice under the partial order inherited from
F(X), since it is closed under meets and has a largest element. However, P(X, k) is not a
sublattice of F'(X) because for a,b € P(X,k),a+p b > a+F b and equality holds if and
only if a +5 b € P(X, k). Nevertheless, P(X, k) is clearly generated by the set X.

LEMMA 2.24

(i) If p = q is a lattice identity that fails in some lattice, then p = ¢ fails in a finite
lattice of the form P(X, k) from some finite set X and k € w.

(ii) If h : F(X) — P(X,k) is the extension of the identity map on X, then h is upper
bounded.

ProoOF. (i) Let X be the set of variables that occur in p and ¢, and let &k be the greater of
the lengths of p and ¢. Since p = ¢ fails in some lattice, p and g represent different elements
of the free lattice F(X') and therefore also different elements of P(X, k). Thus p = ¢ fails
in P(X,k). (ii) Note that for a« € P(X,k) C F(X), h(a) = a, and in general h(b) > b for
any b € F. Therefore h(b) <p « implies b <p h(b) <p a, and conversely b <g a implies
h(b) <p h(a) = a, whence a is the largest element of f~1(a] for all @ € P(X, k). a

THEOREM 2.25 (McKenzie [72]). S is a splitting lattice if and only if S is a finite
subdirectly irreducible bounded lattice

PRrOOF. Suppose § is a splitting lattice, and p = ¢ is its conjugate identity. We have to
show that S is a bounded epimorphic image of some free lattice F'(X). As we noted in the
beginning of Section 2.3, every splitting lattice is finite, so there exists an epimorphism
h: F(X)— S for some finite set X. The identity p = ¢ does not hold in 5, hence it fails
in £'(X) and also in P(X, k) for some large enough k € w (by Lemma 2.24 (i)). Therefore
S € {P(X,k)}Y and since S is subdirectly irreducible and P(X, k) is finite, it follows from
Jounsson’s Lemma (Corollary 1.7(i)) that S € HS{P(X, k)}. So there exists a sublattice L
of P(X,k) and an epimorphism ¢ : L — 5. Since ¢ is onto, we can choose for each z € X
an element a, € L such that g(a;) = h(x). Let f: F(X) — L be the extension of the map
z +— a,. By Lemma 2.24 (ii) P(X,k) is an upper bounded image of F(X), hence by the
equivalence of (i) and (iii) of (the dual of) Theorem 2.23 f is upper bounded. Since L is
finite, ¢ is obviously bounded, and therefore h = g f is upper bounded. A dual argument
shows that h is also lower bounded, whence 5 is a bounded lattice.

Conversely, suppose 5 is a finite subdirectly irreducible lattice, and let u/v be a prime
critical quotient of 5. If 5 is bounded, then there exists a bounded epimorphism A from
some free lattice F(X) onto S. Let r be the smallest element of A=![u) and let s be the
largest element of A=(v]. Now r + s/s is a prime quotient of F(X), for if s <t <7+ s
then h(t) = w = h(tr) = h(r), and by the choice of r, tr = r hence r <t = r +s. By
Lemma 1.10 there exists a largest congruence 6 on F(X) which does not identify r + s
and s. Since h(r 4+ s) = u # v = h(s) we have ker h C 6, and equality follows from the
fact that w/v is a critical quotient of S. Now Corollary 2.12 implies that S is a splitting
lattice. a

Referring to the remark after Theorem 2.23 we note that the lattices Lg, Lz, ..., L1s
are examples of splitting lattices. In fact McKenzie [72] shows how one can effectively
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compute a conjugate identity for any such lattice. For the details of this procedure we
refer the reader to his paper and also to the more recent work of Freese and Nation [83].
From Corollary 2.12 and the proof of the above theorem we obtain the following:

COROLLARY 2.26 (McKenzie [72]). A lattice L is a splitting lattice if and only if L is
isomorphic to F(n)/1,s where F(n) is some finitely generated free lattice and 1,5 is the
largest congruence that does not identify some covering pair r > s of F(n).

Canonical representations and semidistributivity. A finite set U of a lattice L is
said to be a join representation of an element ¢ in L if ¢ = >~ U. Thus a join representation
is a special case of a join-cover. U is a canonical join representation of a if it is irredun-
dant (i.e. no proper subset of U is a join representation of ) and refines every other join
representation of a. Note that an element can have at most one canonical join representa-
tion, since if U and V' are both canonical join representations of ¢ then U € V <« U and
because the elements of an irredundant join representation are noncomparable it follows
that U C V C U. However canonical join representations do not exist in general (consider
for example the largest element of Ms3).

Canonical meet representations are defined dually and have the same uniqueness prop-
erty.

A fundamental result of Whitman’s [41] paper is that every element of a free lattice
has a canonical join representation and a canonical meet representation. We briefly outline
the proof of this result. Denote by p the element of F(X) represented by the term p. A
term p is said to be minimal if the length of p is minimal with respect to the lengths
of all terms that represent p. If p is formally a join of simpler terms pq,...,p,, none of
which is itself a join, then these terms will be called the join components of p. The meet
components of p are defined dually. Note that every term is either a variable or it has join
components or meet components.

THEOREM 2.27 (Whitman[41]). A term p is minimal if and only if p = © € X or p has
join components py,...,p, and foreachi1=1,...,n

(1) pi is minimal,
(2) m & 2 ii Pis
(3) for any meet component r of p;, T # p,

or the duals of (1), (2) and (3) hold for the meet components of p.

ProoOF. All # € X are minimal, so by duality we may assume that p has join components
P1y--sPn- If (1), (2) or (3) fail, then we can easily construct a term ¢ such that g = p,
but A(¢)A(p), which shows that p is not minimal. (If (1) fails, replace a nonminimal p; by
a minimal term; if (2) fails, omit the p; for which p; < 37;; p;; if (3) fails, replace p; by
its meet component r which satisfies 7 < p.)

Conversely, suppose p satisfies (1), (2) and (3), and let ¢ be a minimal term such that
g = p. We want to show that A(p) = A(q), then p is also minimal. First observe that
¢ must have join components, for if ¢ € X or if ¢ has meet components ¢, ..., ¢, then
g <P+ ...+ p, together with (W3) or (W) imply g < p; < por g <g; <p for some 4,
and since § = p we must have equality throughout, which contradicts the minimality of ¢.
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Solet ¢q,. .., ¢n be the join components of ¢q. Foreach ¢ € {1,...,n},p; <q+...+7,
and either p; € X or p; has meet components (whose images in F(X) are not below
p by condition (3)), so we can use (W3) or (W) to conclude that p; < @ for some
unique ¢* € {1,...,m}. Similarly, since ¢ is minimal, it satisfies (1) (3), and so for
each j € {1,...,m} there exists a unique j. € {1,...,n} such that g; < p; . Thus
Pi < Gix < Py, and q; < p; < qj «, whence (2) implies ¢ = 7%, and j = j.*. It follows that
the map ¢ — ¢* is a bijection, m = n, p; = ¢;» and since both terms are minimal by (1),

A(pi) = A(gix). Consequently A(p) = A(g)- o

COROLLARY 2.28 Every element of a free lattice has a canonical join representation and
a canonical meet representation.

PRrROOF. Suppose u is an element of a free lattice, and let p be a minimal term such that
p = u. If p has no join components, then (W3) or (W) imply that u is join irreducible, in
which case {u} is the canonical join representation of w. If p has join components py, ..., p,
then condition (2) above implies that U = {p;,...,p,} is irredundant, and (W3) or (W)
and condition (3) imply that U is a canonical join representation of u. The canonical meet
representation is constructed dually. a

The existence of canonical representations is closely connected to the following weak
form of distributivity:

A lattice L is said to be semidistributive if it satisfies the following two implications
for all w,z,y,z € L:

(SDT) u=z+y=x+z implies uw=u+yz and dually
(SD") u=zy =1z implies u = z(y + 2).

LEMMA 2.29 If every element of a lattice L has a canonical join representation then L
satisfies (SDY).

PRrOOF. Let w = >V be a canonical join representation of «, and suppose u = 2z + y =
z + z. Then for each v € V we have v < z or v < y,z. It follows that v < z + yz for
each v € V, which implies v < z + yz. The reverse inclusion always holds, hence (SD1) is
satisfied. a

Now Corollary 2.28 and the preceding lemma together with its dual imply that every
free lattice is semidistributive. The next lemma extends this observation to all bounded
lattices.

LEMMA 2.30

(i) Bounded epimorphisms preserve semidistributivity.

(ii) Every bounded lattice is semidistributive.

PrOOF. (i) Suppose L is semidistributive and f: L — L’ is a bounded epimorphism. Let
u,z,y,z € L' be such that v = 2 + y = 2 + 2. Then f(u) = f(z) + B(y) = B(z) + B(z) =
B(x) + B(y)B(z), where = 35 : L' — L is the join-preserving map associated with f.
Hence

w=fB(w) = f(B(x) + By)B(2)) = = + =,
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which shows that (SD*) holds in L. (SD") follows by duality (using ay), whence L’ is
semidistributive. Now (ii) follows immediately from the fact that every free lattice is
semidistributive. a

Since there are lattices in which the semidistributive laws fail (the simplest one is the
diamond Ms) it is now clear that these lattices cannot be bounded. However, there are
also semidistributive lattices which are not bounded. An example of such a lattice is given
at the end of this section (Figure 2.2).

For finite lattices the converse of Lemma 2.29 also holds. To see this we need the
following equivalent form of the semidistributive laws.

LEMMA 2.31 (Joénsson and Kiefer [62]). A lattice L satisfies (SDY) if and only if for all
Uy Ay e ey Gy by .. b, €L

T T T T
(%) U = g a; = E b; implies U = E E a;b;.
=1 7=1 =1 j7=1

ProOF. Assuming that L satisfies (SDT), we will prove by induction that the statement

for all w,ay,...,a,,b1,...,b, € L

P(m, n) u=w+y,a;=w+3 ;b implies u=w+3y ;> ab;

holds for all m,n > 1. Then (x) follows if we choose any w < 37; Zj aib;.

P(1,1) is precisely (SD*), so we assume that n > 1, and that P(1,7') holds whenever
1 <n' < n. By hypothesis u = w + a1 = w + b, + b,,, where b], = Z;L;ll b;. Therefore
=(w+b)+a=(w+d,)+b, implies
=w+ b, + a1b, by (SD+), and now
=w+ a1b, + a1 = w+ a1b, + Z?;ll b; implies
=w+arb, + 3727 arbj = w+ Yoy arb; by P(1,n — 1).

Hence P(1,n) holds for all n.
Now assume that m > 1 and that P(m’,n) holds for 1 < m/ < m. By hypothesis
u=w+a, +an =w+ Z?:l b;, where a! = Zﬂ]l a;j. Consequently

=w+al, +a, =w+a, + Z?:l b; implies

w+ ay, + 37 anb; by P(1,n), and now

= (w+ Y721 amby) + 2270 ai = (w + Y 7oq amby) + 371 b;  implies
=w+ iy amby + 0 Yo aiby = w+ L Y0 aib;

by P(m — 1,n) as required. Therefore P(m,n) holds for all m,n.

Conversely, if (%) holds and v = a + b = a + ¢ for some u,a,b,c € L, then u =
aa + ab + ac + bc = a + be. Hence (SDT) holds in L. a

COROLLARY 2.32 (Joéusson and Kiefer [62]). A finite lattice satisfies (SDT) if and only if
every element has a canonical join representation.

ProoOF. Let L be a finite lattice that satisfies (SD*), and suppose that V and W are two
join representations of u € L. By the preceding lemma the set {ab:a € V, b € W} is
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again a join representation of w, and it clearly refines both V and W. Since L is finite, u
has only finitely many distinct join representations. Combining these in the same way we
obtain a join representation U that refines every other join representation of u. Clearly
a canonical join representation is given by a subset of U which is an irredundant join
representation of u. The converse follows from Lemma 2.29 a

Thus finite semidistributive lattices have the same property as free lattices in the
sense that every element has canonical join and meet representations. Further results
about semidistributivity appear in Section 4.2.

Cycles in semidistributive lattices. We shall now discuss another way of characteriz-
ing splitting lattices, due to Jonsson and Nation [75]. Let L be a finite lattice and denote
by J(L) the set of all nonzero join-irreducible elements of L. Every element p € J(L) has
a unique lower cover, which we denote by p.. We define two binary relations A and B on
the set J(L) as follows: for p,q € J(L) we write

pAq if p<q+z, g<p, g€z and g. <z for some z € L
pBg i p<p.tg, pLqgandp L p.t g

A third relation o is defined by poq if pAq¢ or pBq. Note that if pAg then gur = ¢,
p+ax = q+ x and pr > g«. So, depending on whether or not the last inequality is
strict, the elements p, ¢,z generate a sublattice of L that is isomorphic to either A; or
Ay (Figure 2.6). Also if pBgq, then p. € ¢. (else p < pe + ¢ < ¢« + ¢ = ¢, contradicting
p £ q)and p+ ¢ = p«+ ¢ > p+ ¢.. Now the elements p, ps, ¢, g« generate a sublattice of
L isomorphic to

By if gL paand pt+q>p+g.

By if g < pa

By if q. & p.and po+q=p+ g

If we assume that L is semidistributive, then the last case is excluded since Bs fails

(SDT) (ps+ g« + P = pe+ ¢« + ¢ # P« + ¢« + pqg). Observe also that in general the element
z in the definition of A is not unique, but in the presence of (SD") we can always take
z = k(q), where

H(q):Z{weL:qgwandq*S;L'}:Z{LL'ELZQLL':Q*},

since L is finite and by (SD") k(q) itself satisfies gx(¢) = ¢«. In this case z is covered by
g+ .

The following lemma from Joénsson and Nation [75] motivates the above definitions.
Note that if D(L) # L for some finite lattice L, then some join-irreducible element of L is
not in D(L), since for any nonempty subset U of Dy(L), > U is an element of Dy4q(L).

LEMMA 2.33 If L is a finite semidistributive lattice and p € J(L)— D(L) then there exists
q € J(L)— D(L) with pogq.

PRrOOF. Since p ¢ D(L), there exists a nontrivial join-cover V of p such that no join-cover
U C D(L) of p refines V. Since p < 3"V, we have Y~V £ k(p), whence vy € &(P) for
some vy € V. Choose y < vy minimal with respect to the property y £ k(p). Clearly
y € J(L) and p < y since V is a nontrivial join-cover. Note that y £ s(p) if and only if
p < px+y, so by the minimality of y, p £ p. +y.. Thus pBy, and if y ¢ D(L), then ¢ =y
yields the desired conclusion.
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Figure 2.6

Otherwise y € D(L), and we can choose an element z < p, subject to the condition
p < y+ z. We claim that z ¢ D(L). Assume the contrary. Since z < p < 3"V, V is a
join-cover of z, which is either trivial or nontrivial. If it is trivial, we let U = {y, 2}, and
if it is nontrivial, then there exists a join-cover W C D(L) of z which refines V| and we
let U = W U{y}. In both cases U is a subset of D(L) and a join-cover of p which refines
V (since y < vy), contradicting the assumption p ¢ D(L).

By Corollary 2.32 every element of L has a canonical join representation, so there
exists a finite set Ug C L such that z = Y Up. Since z ¢ D(L), there exists ¢ € Up such
that ¢ ¢ D(L). Letting ¢/ = > (Up —{¢} and z = y+ ¢. + ¢ wesee that z4+¢ > y+ 2z > p,
¢« < @ and g < p (since z < p,). Furthermore, ¢. + ¢’ < z and therefore p £ « by the
minimality of z. Consequently pAgq. a

By a repeated application of the preceding lemma we obtain elements p; € J(L) with
piopiy1 for 2 € w. Since L is finite, this sequence must repeat itself eventually, so we can
assume that poop1o - --op,opg. Such a sequence is called a cycle, and it follows that the
nonexistence of such cycles in a finite semidistributive lattice L implies that D(L) = L.
The next result, also from Jénsson and Nation [75], shows that the converse is true is an
arbitrary lattice.

THEOREM 2.34 If L is any lattice which contains a cycle, then D(L) # L.

PROOF. Suppose poopi0 ---oprope for some p; € J(L). From Figure 2.6 we can see that
each p; has a nontrivial cover, so p; ¢ Do(L). Suppose no p; belongs to Di_1(L), but say
po € Di(L). If poAp1, then po < p1 4+ @, p1 < po, p1 £ ¢ and p1. < @ for some & € L.
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Since {p1, 2} covers pg, there exists a cover U C Dy 1(L) of po with U < {p1,2}. For
each u € U, either u < z or w < py (since p1 ¢ Dy_1(L)), but if u < pq, then u < p1. < z.
Hence u < z for all w € U, so that po < >°U < x, a contradiction.

If poBp1, then {po«, p1} covers pg, and therefore there exists a cover v C Dy 1(L) of
po with U < {pox,p1}. For each u € U, either u < po. or v < p1,i.e. v < pox or 4 < Pra.
Therefore pg < 3" U < pox + P1x, again a contradiction. By induction we have p; ¢ D(L)
for all 4, and so D(L) # L. O

COROLLARY 2.35 For a finite semidistributive lattice L, D(L) = L if and only if L contains
no cycles.

An example of a finite semidistributive lattice which contains a cycle is give in Fig-
ure 2.7. at the end of this section.

Day’s characterization of finite bounded lattices. The results of this section are es-
sentially due to Alan Day, but the presentation here is taken from Jénsson and Nation [75].
A more general treatment can be found in Day [79].

We investigate the relationship between J(L) and J(Con(L)). By transitivity, a con-
gruence relation on a finite lattice is determined uniquely by the prime quotients which it
collapses. The next lemma shows that we need only consider prime quotients of the form
p/p«, where p € J(L).

LEMMA 2.36 Let L be a finite lattice, and suppose 6 € Con(L). Then

(i) 6 € J(Con(L)) if and only if § = con(u,v) for some prime quotient u/v of L;
(ii) if u/v is a prime quotient of L then there exists p € J(L) such that p/p. /" u/v;

(iii) if L is semidistributive, then the element p in (ii) is unique.

Proor. (i) In a finite lattice
0= Z{con(u, v):u/v is prime and ubv}

so if @ is join-irreducible then # = con(u,v) for some prime quotient u/v. Conversely,
suppose ¢ € Con(L) is strictly below . Then ¢ C 1)y, Ncon(u,v), where 1y, is the unique
largest congruence that does not identify w and v. Hence 1, N con(u,v) is the unique
dual cover of con(u,v), and it follows that con(u,v) € J(con(L)). To prove (ii) we simply
choose p minimal with respect to the condition v = v+p. Then p € J(L) and p/p. / u/v.

(iii) Suppose for some ¢ € J(L), g # p, we also have ¢/q. /" u/v. Then u = v+p = v+gq,
and by semidistributivity u = v 4+ pg. Now p # ¢ implies pg < g or pg < p, so pg < p, or
pq < ¢.. But then pg < v, hence v = v + pg = v, which is a contradiction. a

From (i) and (ii) we conclude that for any finite lattice L the map p — con(p, p«)
from J(L) to J(Con(L)) is onto. Day [79] shows that the map is one-one if and only if
L is lower bounded. Let us say that a set () of prime quotients in L corresponds to a
congruence relation § on L if § collapses precisely those prime quotients in L that belong

to Q.
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LEMMA 2.37 A set of prime quotients () in a finite lattice L corresponds to some 6 €
Con(L) if and only if

(x) For any two prime quotients r/s and uw/v in L, if r/s € () and if either s < v < u <
r4+vorsu<ov<u<r, then u/v e Q.

Proor. The two conditions of (%) can be rewritten as either »/s / r + v/v 2 u/v or
r/s \, u/su 2 u/v, hence if r/s is collapsed by some congruence, so is u/v. Therefore (x)
is clearly necessary.

Suppose (x) holds and let § = > {con(u,v) : u/v € Q}. If x/y is a prime quotient
that is collapsed by @, then con(z,y) C 6. But con(z,y) is join irreducible and Con(L)
is distributive, so con(z,y) is in fact join prime, whence con(z,y) C con(u,v) for some
u/v € (). By Lemma 1.11 u/v projects weakly onto z/y, and since (*) forces each quotient
in the sequence of transposes to be in @, it follows that z/y € Q. a

THEOREM 2.38 (Jousson and Nation [75]). If L is a finite semidistributive lattice and
S C J(L), then the following conditions are equivalent:

(i) There exists @ € Con(L) such that for all p € J(L), pfp« if and only if p € 5.
(ii) For all p,q € J(L), pog and g € S imply p € 5.

PrOOF. Assume (i) and let p,q € J(L) with pog and ¢ € 5. Then Figure 2.6 shows that
q/ g« projects weakly onto p/px, so if 8 collapses ¢/q., it also collapses p/p., which implies
peS.

Conversely, suppose (ii) holds, and let ) be the set of all prime quotients u/v in L,
such that the unique member p € J(L) with p/p. / u/v belongs to S. Then p/p. € @
if and only if p € 5, so by the proceeding lemma it suffices to show that @) satisfies ().
Counsider two prime quotients r/s and w/v in L and let p and ¢ be the corresponding
members of J(L), so that ¢/¢. / r/s and p/p. / u/v. If r/s € @, then by uniqueness
g€ 5. Now p=gq € 5 implies u/v € () by definition. Assuming that p # ¢, we are going
to show that

(1) if s <wv < u<r+ o then pByg, and
(2) if su < v < u<rthen pAg.

Statement (ii) then implies p € 5, whence u/v € () as required. Under the hypothesis of
(1) we need to show that p < p.+ ¢, p £ ¢ and p £ ps + ¢«. Since ¢, < s < v and p. < v,
we must have p € p.+ g., else p < v. For the same reason p £ ¢, and p # ¢ by assumption.
Finally, p € p«+¢ would imply p(p«q) = p«, which together with pv = p, gives p(v+¢) = p«
by semidistributivity. This, however, is impossible since v+qg = s+v+qg=r+v > u > p.
This proves (1).

Now suppose that the hypothesis of (2) is satisfied. Clearly ¢ £ s and ¢« < s, so to
prove pAgq it suffices to show that ¢ < p and p < ¢ + s. We certainly have g+ s =r > p
by the hypothesis, and this inclusion must be strict, since p = r > s would imply p = ¢
by the join irreducibility of p. Observe that p £ s because ps < su < v and p £ v. Since
p < r, this implies » = s 4+ p which, together with r = s + ¢ yields r = s + pg. Now ¢ £ p
would imply pg < ¢. < s, which is impossible because s + pg = r > s. Thus p < ¢ as
required. a
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Figure 2.7

THEOREM 2.39 For any finite semidistributive lattice L, the following conditions are
equivalent:

(i) [J(L)] = |J(Con(L))]
(ii) D(L) =L
(iii) D'(L) = L

(iv) L is bounded.

Proor. It follows from the preceding theorem that, for two distinct elements p and ¢ of
J(L), con(p,p«) = con(q,qx) if and only if there exists a cycle containing both p and g¢.
Consequently the map p — con(p, p.) from J(L) to J(Con(L)) is one-one if and only if L
contains no cycles if and ouly if D(L) = L by Corollary 2.35. Therefore (i) is equivalent
to (ii).

Lemma 2.36(iii) and its dual imply that the number of meet irreducible elements of L
is equal to the number of join irreducible elements (to every prime quotient m*/m where
m is meet irreducible and m* is its dual cover, corresponds a unique p € J(L) such that
p/p« /" m*/m, and vice versa). Therefore the condition |J(L)| = |J(Con(L))|is equivalent
to its own dual, and hence to the dual of D(L) = L, namely D'(L) = L.

Lastly (ii) and (iii) together are equivalent to (iv) by Theorem 2.23 and its dual. O

It is interesting to examine how the above conditions fail in the semidistributive lattice
in Figure 2.7, which contains the cycle pg A p1 A pa B p3 B pg. If we add an element a on the
edge ¢, p2, then we obtain an example of a subdirectly irreducible semidistributive lattice
which is not a splitting lattice. It is not difficult to prove that every critical quotient
of a splitting lattice must be prime, but the example we just mentioned shows that the
converse does not hold even for semidistributive lattices.
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2.4 Splitting lattices generate all lattices

We will now prove a few lemmas which lead up to the result of Day [77], that the variety
L of all lattices is generated by the class of all splitting lattices. This result and some of
the characterizations of splitting lattices will be used at the end of Chapter 6.

Let B be the class of all bounded lattices and let Br be the class of finite members of
B. By Theorem 2.25 (Bp)sr is the class of all splitting lattices, and it is clearly sufficient
to show that £ = (Bg)V.

LEMMA 2.40 Bp is closed under sublattices, homomorphic images and direct products
with finitely many factors.

Proor. If L is a sublattice of a lattice B € B, then by Lemma 2.17 (iv), any f: F(X) —
— L, where F(X) is a finitely generated free lattice, is bounded. If L is a homomorphic
image of B, say h : B — L, then there exists g : F(X) — B such that f = hg, and
by the equivalence of (i) and (iii) of Theorem 2.23 ¢ is bounded. h is bounded since B
is finite, hence f is also bounded. Lastly, if By, By € Bp and f : F(X) — By X By is
an epimorphism, then w;f is bounded, where 7; : By X By — B; is the projection map
(¢ = 1,2). For b; € By, let 3;(b;) be the least preimage of b; under the map =;f, and
denote the zero of B; by 0;. Since (b1, 02) is the least element of Wfl{bl}, B1(by1) is also the
least element of f~1{(b1,02)}, and similarly 32(b3) is the least element of f~1{(01,b2)}.
It follows that (31(b1) + B2(be) is the least preimage of (b1, 02) + (01,b2) = (b1, b2) under f.

Hence f is lower bounded, and a dual argument shows that f is also upper bounded. O

The two element chain is a splitting lattice, so the above lemma implies that every
finite distributive lattice is bounded. Recall the construction of the lattice L{u/v] from a
lattice L and a quotient u/v of L (see above Lemma 2.15).

LEMMA 2.41 (Day [77]). If L € Br and I = u/v is a quotient of L, then L[I] € Bp.
ProoF. By assumption L is a finite lattice, hence L[I] is also finite. Let X be a finite
set with f : F(X) — L[I] a lattice epimorphism and let v : L[I] — L be the natural

epimorphism. Since L € Bp, h = vf : F(X) — L is bounded, so for each b € L there
exists a least member (,(b) of A=1{b}. By definition of v, we have

o [ it bel -1
7 {b}_{{(b,o),(b,l)} i bel

hence (,7(b) is the least member of f~1{b} for each b € (L — I)U I x {0}. Note that for
any ai,az, by, by € L if a; is the least member of f=1{b;} (i = 1,2) then a1 + ag is the
least member of f~1{b; + by}. Since for any ¢t € u/v, (¢,1) = (¢,0) + (v,1) it is enough
to show that f='{(v,1)} has a least member. f is surjective, so there exists a w € F(X)
with f(w) = (v,1). Define

w=w- H{.L €X:(v,1)< f(z)}- H{ﬁh(b) :be L — 1 and v < b}.
Clearly f(w) = (v,1), and if

S={pe F(X):(v,1) < f(p) implies w < p}
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then X C S and 5 is closed under meets. We need to show that S is also closed under joins.
Let p,q € S and suppose that (v,1) < f(p+¢) = f(p) + f(¢g)- Note that by construction
of LI, 7+ s € I x {1} implies r € I x {1} or s € I x {1}, s0if f(p+¢q) € I x {1},
then (v,1) < f(p) or (v,1) < f(¢), whence w < p or w < ¢, which certainly implies
w < p+¢q. On the other hand, if f(p+¢) € L — I, then vf(p+ ¢q) = f(p + ¢), and so
w < Bryf(p+4q) < p+ q. Therefore fis lower bounded by §f: L[] — F(X), where

B,(b) = Bry(b) if be(L-1T)ulx{0}
7 w+ Bpy(b)  if belx{1}.
A dual argument shows that f is also upper bounded, hence L[I] € Bf. a

Let W (L) be the set of all (W)-failures of the lattice L (see Lemma 2.15) and define

Iw(L) =A{c+d/ab: (a,b,c,d) e W(L)}.

LEMMA 2.42 (Day [77]). If L is a lattice that fails (W), then there exists a lattice I and
a bounded epimorphism p : I — L satisfying: For any (a1, az,as,as) € W(L) and any
z; € p~Ha;i} (1=1,2,3,4) vy29 £ x5 + 4.

Proor. For each I € Zyw (L) we construct the lattice L[I] and denote by 77 the natural
epimorphism from L[I]| onto L. Note that 77 is bounded with the upper and lower bounds
of v~ 1{b} given by

b it beD—1 b if beL—1
“““‘{@J)ifbe[ ﬂ““‘{@ﬁ)ifbe[

respectively. Let L’ be the product of all the L[] as I ranges through Zw (L), and let
ny : L' — L[I] be the I'th projection map. Recall that for f,¢g : L' — L we can define a
sublattice of L’ by

Eq(f,9) ={z € L": f(x) = g(2)}

Let L = ({Eq(yirr,v0my) + I,J € Zw(L)} and take p : L — L to be the restriction of
yr7r to L. Now, for every y € L, vrar(y) = y = 75a5(y), hence the I-tuple (as(y)) is
an element of I, and clearly a,(y) = (as(y)) is the greatest element of p~{y}. Similarly
B,(y) = (B1(y)), and therefore p is a bounded epimorphism. To verify the last part of the
lemma, it is sufficient to show that for all (a,b,c,d) € W(L), B3,(a)B,(b) £ a,(c) + a,(d).
This is indeed the case, since ¢ + d/ab = I € Ty (L) implies

Bi(@)Br(b) = (ab, 1) £ (¢ + d, 0) = as(e) + as(d).

a

Note that if L € Bp, then L is a sublattice of a finite product of lattices L[I], hence
by Lemmas 2.40 and 2.41, L € Bp.

THEOREM 2.43 (Day [77]). For any lattice L, there is a lattice L satisfying (W) and a
bounded epimorphism p: L — L.
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ProoF. Let Ly = L and, for each n € w, let L,11 = L, and ppy1 : Lyyr — Ly, be given
by the preceding lemma. L is defined to be the inverse limit of the L, p,, i.e. L is the
sublattice of the product X, Ln defined by

vel if and omnly if Pr41(@ng1) = @, forallmew

where ©; € L; is the image of z under the projection «; : )(nEwLn — L;. We claim that
L satisfies (W). Suppose a,b,c,d € L with a,b £ ¢+ d and ab £ ¢,d. Then there exist
indices j,k, [, m such that

ajbj g ¢ (Lkbk ﬁ dk7 aj ﬁ c+ dl and bm ﬁ Cm + dm
Since each p; is order- preserving, we have that for any ¢ > max{j, k,1, m},
a;, b; ﬁ ¢+ d; and a;b; g ¢, d;.

Now if a;b; £ ¢; + d;, then ab £ ¢ + d and we are done. If a;b; < ¢; + d;, then by the
previous lemma a@;41b;41 € ¢iy1 + diy1, and again ab £ ¢ + d. Hence L satisfies (W).

Let p = W0|f, L — L, let @y = B, be the identity map on Lo = L, and for n > 1
define the maps a,, [, : L — L, by

Qp = Qp, 0,1 and Br, = Bpaln_1-

Then it is easy to check that for y € L the sequences (a,(y)) and (5,,(y)) are the greatest
and least elements of p~1{y} respectively, hence p is a bounded epimorphism. a

THEOREM 2.44 (Day [77]). L is generated by the class of all splitting lattices.

Proor. Let L = Fp(3), the free distributive lattice on three generators, say «,y, z, and
consider the lattice I constructed in the preceding theorem. L is a finite distributive
lattice, hence L € Bp, and it follows that L € (Br)Y. Choose elements &,,% € L which
map to z,y,z under p: L, — L. Since the set X = {z,y, z} satisfies (W2') and (W3’), so
does the set X = {&, 7, 2}. In addition L satisfies (W), hence the sublattice of L generated
by X is isomorphic to Fr(3). By a well known result of Whitman [42], the free lattice
on countably many generators is a sublattice of Fz(3), and therefore Fg(w) € (Bp)Y. The
result now follows. a

The two statements of the following corollary were proven equivalent to the above
theorem by A. Kostinsky (see McKenzie [72]).
COROLLARY 2.45
(i) Fz(n) is weakly atomic for each n € w.

(ii) For any proper subvariety V of L, there is a splitting pair (V1,V,) of L such that
YV V.

Proor. (i) By the above theorem Fp(n) is a subdirect product of splitting lattices 5;
(1€ 1). Let f: Fg(n) — X;erS: be the subdirect representation, and suppose r/s is a
nontrivial quotient of Fz(n). Then for some index ¢ € I, 7; f(r) # n; f(s). Since S; is finite,
we can choose a prime quotient p/q C m; f(r)/7; f(s). By Theorem 2.25 ; f : Fp(n) — 5;
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is a bounded epimorphism, so there exists a greatest preimage v of ¢ and a least preimage
u of p, and it is easy to check that u + v/v is a prime subquotient of r/s (see proof of
Theorem 2.25).

(i) This is an immediate consequence of the preceding theorem, since £ = (Bp)Y if
and only if every proper subvariety of £ does not contain all splitting lattices. a

Note that if Fz(n) is weakly atomic for n € w, then by Corollary 2.26 Fz(n) is a
subdirect product of splitting lattices, hence Fz(n) € (Bp)Y for each n € w. This clearly
implies £ = (Bp)Y.

Using some of the results of this section, we prove one last characterization of finite
bounded lattices.

THEOREM 2.46 (Day [79]). A finite lattice L is bounded if and only if there is a sequence
of lattices 1 = Lg,L1,...,L,+1 = L and a sequence of quotients ug/vo,. .., u, /v, with
u;/v; C L; such that Lizq = Lifu;/v;] (1=0,1,...,n).

Proor. The reverse implication follows from Lemma 2.41, since the trivial lattice 1 is
obviously bounded.

To prove the forward implication, let # be an atom in Con(L). We need only show
that L can be obtained from L, = L/@ by finding a suitable quotient w, /v, in L, such
that L,[u,/v,] = L. Since L, is again a finite bounded lattice, we can then repeat this
process to obtain L, 1, L,_9,..., Lg = 1.

By Theorem 2.39 the map p — con(p,p.) is a bijection from J(L) to J(Con(L)),
and since 8 € J(Con(L)), there exists a unique p € J(L) with § = con(p,p.). L is
semidistributive, so by the dual of Lemma 2.36 (iii) we can find a unique meet irreducible
m € L such that m*/m N\ p/p«, where m* is the unique cover of m. We claim that

(1) m/ps transposes bijectively up onto m*/p, and
(2) 280y if and only if v = y or {x,y} = {z,p + z} for some z € m/p..

Letting w,, = m/6 and v, = p/6, we then have L, [u, /v,] = L.

To prove (1), suppose z € m/p. but z < (p+ z)m. Then we can find ¢ € J(L) such
that ¢ < (p+ «)m and ¢ £ . Now p,8p implies = 0 (p + z)m, which in turn implies ¢.8q.
Since the map p — con(p, px) is one-one, this forces p = ¢ < m, a contradiction. Dually
one proves that for « € m*/p, x = ma + p.

Since L is a finite lattice we need only check the forward implication of (2) for pairs
(z,y) € 0 of the form z < y. Clearly con(z,y) < con(p,p.), and since con(p, p.) is an
atom of Con(L), equality holds. This means that p is the unique join irreducible for which
p/p« /" y/x, and therefore {z,y} = {z,p+ «}. The reverse implication follows from the
observation that if z = z, say, and z € m/p., then & > p., 2 p and y = p+ «. This
implies that p/p. / y/x, whence z0y. a

2.5 Finite lattices that satisfy (W)

We conclude this chapter with a result about finite lattices that satisfy Whitman’s condi-
tion (W), and some remarks about finite sublattices of a free lattice.
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THEOREM 2.47 (Davey and Sands[77]). Suppose f is an epimorphism from a finite lattice
K onto a lattice L. If L satisfies (W), then there exists an embedding g : L — K such
that fg is the identity map on L.

PrOOF. Let f be the epimorphism from K onto L. Since K is finite, f is bounded, so we
obtain the meet preserving map a5 : L — K and the join preserving map (s : L — K (see
Lemma 2.17(v)). Let M be the collection of all join preserving maps v : L — K which are
pointwise below aj (i.e. 7(b) < af(b) for all b € L). M is not empty since 5 € M. Now
define a map g : L — K by g(b) = > {7(b) : v € M}. g is clearly join preserving and is in
fact the largest element of M (in the pointwise order). Also, since G5(b) < g(b) < as(b)
for all b € L, we have
b= FB5(b) < Fg(b) < fas(b) = b

which implies that fg is the identity map on L. It remains to show that ¢ is meet
preserving, then ¢ is the desired embedding of L into K.

Suppose g(ab) # g(a)g(b) for some a,b € L. Since g is order preserving, we actually
have g(ab) < g(a)g(b). Define h : L — M by

Then h ¢ M because h(ab) = g(a)g(b) > g(ab), but h is pointwise below oy since for ab <
we have h(z) = g(2)+¢(a)g(b) < as(z)+ap(a)as(b) = af(z)+as(adb) = as(z). It follows
that h is not join preserving, so there exist ¢,d € L such that h(c+d) # h(¢)+ h(d). From
the definition of h we see that this is only possible if ab < ¢+ d, ab £ ¢ and ab £ d. Thus
(W) implies that @ < ¢4 d or b < ¢ 4+ d. However, either one of these conditions leads to
a contradiction, since then

h(c+d) = g(c+ d)+ g(a)g(b) = g(c + d) = g(c) + g(d) = h(c) + h(d).
O

Actually the result proved in Davey and Sands [77] is somewhat more general, since
it suffices to require that every chain of elements in K is finite.

Finite sublattices of a free lattice. Another result worth mentioning is that any finite
semidistributive lattice which satisfies Whitman’s condition (W) can be embedded in a
free lattice. This longstanding conjecture of Jonsson was finally proved by Nation [83].
Following an approach originally suggested by Jonsson, Nation proves that a finite semidis-
tributive lattice L which satisfies (W) cannot contain a cycle. By Corollary 2.35 and The-
orem 2.39 L is bounded, and it follows from Theorem 2.19 that L can be embedded in a
free lattice. (Note that (W) fails in the lattice of Figure 2.7)

Of course any finite sublattice of a free lattice is semidistributive and satisfies (W)
(Corollary 2.16, Lemma 2.30). So in particular Nation’s result shows that the finite sub-
lattices of free lattices can be characterized by the first-order conditions (SD*), (SD-) and
(W).



Chapter 3

Modular Varieties

3.1 Introduction

Modular lattices were studied in general by Dedekind around 1900, and for quite some
time they were referred to as Dedekind lattices. The importance of modular lattices stems
from the fact that many algebraic structures give rise to such lattices. For example the
lattice of normal subgroups of a group and the lattice of subspaces of a vector space and
a projective space (projective geometry) are modular. The Jordan Hoélder Theorem of
group theory depends only on the (semi-) modularity of normal subgroup lattices and the
theorem of Kuro§ and Ore holds in any modular lattice.

Projective spaces play an important role in the study of modular varieties because their
subspace lattices provide us with infinitely many subdirectly irreducible (complemented)
modular lattices of arbitrary dimension. They also add a geometric flavor to the study of
modular lattices.

The Arguesian identity was introduced by Jénsson [53] (see also Schiitzenberger [45]).
It implies modularity and is a lattice equivalent of Desargues’ Law for projective spaces.
Some of the results about Arguesian lattices are discussed in Section 3.2, but to keep the
length of this presentation within reasonable bounds, most proofs have been omitted.

As we have mentioned before McKenzie [70] and Baker [69] (see also Wille [72] and
Lee [85]) showed independently that the lattice A of all lattice subvarieties has 2 members.
Moreover, Baker’s proof shows that the lattice Ay of all modular lattice subvarieties
contains the Boolean algebra 2“ as a sublattice.

Continuous geometries, as introduced by von Neumann [60], are complemented mod-
ular lattices and von Neumann’s coordinatization of these structures demonstrates an
important connection between rings and modular lattices. Using the notion of an n-frame
and its associated coordinate ring (due to von Neumann), Freese [79] shows that the va-
riety M of all modular lattices is not generated by its finite members. Herrmann [84]
extends this result by showing that M is not even generated by its members of finite
length.

The structure of the bottom end of Az is investigated in Gritzer [66] and Jonsson [68],
where it is shown that the variety M3 generated by the diamond M3 is covered by exactly
two varieties, My and Mazz. Furthermore, Jonsson [68] proved that above M4 we have
a chain of varieties M,,, each generated by a finite modular lattice of length 2, such that
M, 41 is the only join irreducible cover of M,,. Hong [72] adds further detail to this picture

46
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Figure 3.1

by showing, among other things, that Mas: has exactly five join irreducible covers. The
methods developed by Jonsson and Hong have proved to very useful for the investigation
of modular varieties generated by lattices of finite length and / or finite width (=maximal
number of pairwise incomparable elements). Freese [72] extends these methods and gives
a complete description of the variety generated by all modular lattices of width 4.

3.2 Projective Spaces and Arguesian Lattices

We begin with a discussion of projective spaces, since many of the results about modular
varieties make use of some of the properties of these structures. A some of the results
reviewed here will also be used in Chapter 6.

Definition of a projective space. In this section we will be concerned with pairs of
sets (P, L), where P is a set of points and a collection L of subsets of P, called lines. If
a point p € P is an element of a line [ € I, then we say that p lies on [, and | passes
through p. A set of points is collinear if all the points lie on the same line. A triangle is
an ordered triple of noncollinear (hence distinct) points (p, ¢, 7).

(P, L) is said to be a projective space (sometimes also called projective geometry) if it
satisfies:

(P1) each line contains at least two points;

(P2) any two distinct points p and ¢ are contained in ezactly one line (denoted by {p, ¢});

(P3) for any triangle (p,q,r), if a line intersects two of the lines {p, ¢}, {p,r} or {¢,7}
in distinct points, then it meets the third side (i.e. coplanar lines intersect, see

Figure 3.1).

The two simplest projective spaces, which have no lines at all, are (§,0) and ({p},0),
while ({p,}, {{p>4}}) and ({p, 4,7}, {{p4,7}}) have one line each, and

U, a, ), U ad, v, 4e,7}))

has three lines.
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The last two examples show that we can have different projective spaces defined on
the same set of points. However we will usually be dealing only with one space (P, L) at
a time which we then simply denote by the letter P.

A subspace S of a projective space P is a subset S of P such that every line which passes
through any two distinct points of S is included in S (i.e. p,q € S implies {p,q} C 5,
where we define {p, p} = {p}). The collection of all subspaces of P is denoted by L(P).

Projective spaces and modular geometric lattices. A lattice L is said to be upper-
semimodular or simply semimodular if « < bin L implies a+¢ <b+cor a+ ¢ = b+ ¢ for
all ¢ € L. Clearly every modular lattice is semimodular.

A geometric lattice is a semimodular algebraic lattice in which the compact elements
are exactly the finite joins of atoms. The next theorem summarizes the connection between
projective spaces and (modular) geometric lattices.

THEOREM 3.1 Let P be an arbitrary projective space. Then

(i) (L(P),C) is a complete modular lattice;

(ii) associated with every modular lattice M is a projective space P(M), where P(M)
is the set of all atoms of M, and a line through two distinct atoms p and g is the set
of atoms below p+ ¢ (i.e. {p,q} ={re P(M):r <p+q});

(iii) P(L(P)) = P;

(iv) for any modular lattice M, if M’ is the sublattice of M generated by the atoms of
M, and ZM' is the ideal lattice of M', then ZM' = L(P(M));

(v) L(P) is a modular geometric lattice;

(vi) L(P(M)) = M for any modular geometric lattice M

Proor. (i) L(P) is closed under arbitrary intersections and P € L(P), hence L(P),
ordered by inclusion, is a complete lattice. For S,7 € L£(P) the join can be described by

S+T=U{p.q}:res, qeT}

(here we use (P3), see [GLT] p.203). Suppose R € L(P) and R 2 T. To prove L(P)
modular, we need only show that R(S +7)C RS +T. Let r € R(S +T). Then r € R
and r € 5 4+ T, which implies r € {p, ¢} for some pe S, ¢q e T C R. If r = g then r € T,
and if r # ¢ then p € {r,¢} C R (by (P2)), hence p € RS. In either case r € RS + T as
required.

(ii) We have to show that P(M) satisfies (P1), (P2) and (P3). (P1) holds by con-

struction, and (P2) follows from the fact that, by modularity, the join of two atoms covers

both atoms. To prove (P3), suppose (p,q,r) form a triangle, and z,y are two distinct
points (atoms) such that < p+ ¢ and y < ¢+ r (see Figure 3.1). It suffices to show that
{z,y} 0 {p,r} # 0. Since p,q,r are noncollinear, p + ¢ + 7 covers p + r by (upper semi-)
modularity. Also z4+y < p+gqg+7, hence z+y = (z+y)(p+ ¢+ ), which covers or equals
(z + y)(p+ r) by (lower semi-) modularity. If z + y = (¢ + y)(p+ 7), then 2 + y < p+ r,
and since z 4+ y and p+ r are elements of height 2, we must have z +y = p+r. In this case
{z,y} = {p,r} and there intersection is certainly nonempty. If e +y > (¢ +y)(p+7r) = z,
then z must be an atom, and is in fact the point of intersection of {z,y} and {p,r}.
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(iii) A point p € P corresponds to the one element subspace (atom) {p} € L(P), and
it is easy to check that this map extends to a correspondence between the lines of P and
L(P).

(iv) Each ideal of M’ is generated by the set of atoms it contains, every subspace
of P(M) is the set of atoms of some ideal of M’, and the (infinite) meet operations
(intersection) of both lattices are preserved by this correspondence. Hence the result
follows.

(v) By (iii) P = P(M) for some modular lattice M, hence (iv) implies that £L(P) =
IM'. It is easy to check that ZM' is a geometric lattice, and modularity follows from (i).

Now (vi) follows from (iv) and the observation that if M is a geometric lattice, then
IM' =M. a

LEMMA 3.2 (Birkhoff [35°]). Every geometric lattice is complemented.

ProoF. Let L be a geometric lattice and consider any nonzero element « € L. By Zorn’s
Lemma there exists an element m € L that is maximal with respect to the property
zm = 0. We want to show z + m = 1. Every element of L is the join of all the atoms
below it, so if « + m < 1, then there is an atom p £ z + m, and by semimodularity
m < m + p. We show that z(m + p) = 0p, which then contradicts the maximality of
m, and we are done. Suppose z(m + p) > 0r. Then there is an atom ¢ < z(m + p),
and ¢ £ m since ¢ < . Again by semimodularity m < m + ¢. Also ¢ < m + p, hence
m < m+q < m+ p, and together with m < m + p we obtain m + ¢ = m + p. But this
implies p < m + g < z + m, a contradiction. a

In fact MacLane [38] showed that every geometric lattice is relatively complemented
(see [GLT] p.179).

The next theorem is a significant result that is essentially due to Frink [46], although
Jonsson [54] made the observation that the lattice L is in the same variety as K.

THEOREM 3.3 Let V be a variety of lattices. Then every complemented modular lattice
K €V can be 0,1-embedded in some modular geometric lattice L € V.

Proor. Let M = F K be the filter lattice of K, ordered by reverse inclusion. Then M
satisfies all the identities which hold in K, hence M is modular and M € V. For L we
take the subspace lattice of the projective space P(M) associated with M. Note that the
points of P(M) are the maximal (proper) filters of K. By Theorem 3.1 (v), L is a modular
geometric lattice, and by (iv) L = ZM', which implies that L is also in V. Define a map
f:K — L by

fle)={F e P(M):z€F}

for each @ € K. It is easy to check that f(«) is in fact a subspace of P(M), that f(0x) = 0,
f(l1g) = P(M) and that f is meet preserving, hence isotone. To conclude that f is also
join preserving, it is therefore sufficient to show that f(z 4+ y) C f(«) 4+ f(y). This is
trivial for z or y equal to Ok, so suppose z,y # O and F € f(z +y). Then z +y € F,
and we have to show that there exist two maximal filters G € f(z), H € f(y) such that
F<G+H (ie. F2G+H). lf o € F, then wesimply take ' = GG, and H as any maximal
filter containing y, and similarly for y € F’ (here, and subsequently, we use Zorn’s Lemma
to extend any filter to a maximal filter). Thus we may assume that z,y ¢ F. Further
we may assume that zy = O, since if xy > 0g, then we let y’' be a relative complement
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of zy in the quotient y/0x (it is easy to see that every complemented modular lattice is
relatively complemented). Clearly 2y’ = zyy’ = 0,2+ y =2+ 2y+ vy = + y and any
filter that does not contain y must also exclude y’, so we can replace y by y'.

Now y ¢ F implies [y) < [y)+ F', where [y) is the principal filter generated by y. Hence
by modularity, we see that

0k) = [2) - [y) < [2)- (ly) + F)

(else [y), [y)+F and [z) generate a pentagon). So there is a maximal filter G < [z)-([y)+F),
whence it follows that « € G and [y)+ F = [y) + F +G. This time « ¢ F gives G < G+ F),
and to avoid a pentagon, we must have [0g) = [y) -G < [y) - (G + F). Hence there is a
maximal filter H < [y)- (G + F), and z € G, y € H and 2y = 0k shows that G £ H.
Consequently F', G and H are three distinct atoms of F K, and since H < G 4+ F, they
generate a diamond. Thus /' < G + H as required.

To see that f is one-one, suppose z £ y, and let 2’ be a relative complement of 2y in
z/0k. If Fis a maximal filter containing z’, then F € f(z) but F' ¢ f(y) since 2’y = 0.
Therefore f(z) # f(y). O

The above result is not true if we allow K to be an arbitrary modular lattice. Hall and
Dilworth [44] construct a modular lattice that cannot be embedded in any complemented
modular lattice.

Coordinatization of projective spaces. The dimension of a subspace is defined to be
the cardinality of a minimal generating set. This is equal to the height of the subspace
in the lattice of all subspaces. If it is finite, then it is one greater than the usual notion
of Euclidian dimension, since a line is generated by a minimum of two points. A two-
dimensional projective (sub-) space is called a projective line and a three-dimensional one
is called a projective plane.

It is easy to characterize the subspace lattices of projective lines: they are all the
(modular) lattices of length 2, excluding the three element chain. Note that except for
the four element Boolean algebra, these lattices are all simple. A projective space in
which every line has at least three points is termed nondegenerate. A simple geometric
argument shows that the lines of a nondegenerate projective space all have the same
number of points.

Nondegenerate projective spaces are characterized by the fact that their subspace
lattices are directly indecomposable (not the direct product of subspace lattices of smaller
projective spaces) and, in the light of the following theorem, they formn the building blocks
of all other projective spaces.

THEOREM 3.4 (Maeda [51]). Every (modular) geometric lattice is the product of directly
indecomposable (modular) geometric lattices.

A proof of this theorem can be found in [GLT] p.180. There it is also shown that a di-
rectly indecomposable modular geometric lattice is subdirectly irreducible (by Lemma 1.13,
it will be simple if it is finite dimensional).

An important type of nondegenerate projective space is constructed in the following
way:

Let D be a division ring (i.e. a ring with unit, in which every nonzero element has a
multiplicative inverse), and let V' be an a-dimensional vector space over D. (For a = n
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Figure 3.2

finite, V is isomorphic to p D™, otherwise V is isomorphic to the vector subspace of p D®
generated by the set {e, : 7 € a}, where the coordinates of the e, are all zero except
for a 1 in the 7th position.) It is not difficult to check that the lattice £(V, D) of all
vector subspaces of V over D is a modular geometric lattice, so by Theorem 3.1, £L(V, D)
determines a projective space P such that £(V,D) = L(P). Clearly P has dimension
a, and the points of P are the one-dimensional vector subspaces of V. Note that P is
nondegenerate, for if p, = {au : @« € D} and p, = {av : @ € D} are two distinct points
of P (i.e. u,v € V,u # av for any a € D), then the line through these two points must
contain the point p,_,, which is different from p, and p, (else u — v = av, say, giving
v = (a + 1)v and therefore p, = p,). Observe also that the number of points on each line
(=number of one-dimensional subspaces in any two-dimensional subspace) is |D|+ 1. The
smallest nondegenerate projective space is obtained from L(Z3%, Z;) where Z, is the two
element field. The subspace lattice, denoted by Fs, is given in Figure 3.7.

We say that a nondegenerate projective space P can be coordinatized it L(P) = L(V, D)
for some vector space V over some division ring D. To answer the question which projective
spaces can be coordinatized, we need to recall Desargues’ Law.

Two triangles a = (ag,a1,az) and b = (bg, b1, b2) in a projective space P are centrally
perspective if {a;,a;} # {b;,b;} and for some point p the points a;,b;,p are collinear
(2,7 € {0,1,2}). If we think of the points a;, b; as atoms of the lattice £L(P), then we can
express this condition by

(a0 + bo)(a1 + b1) < az + by.

The triangles are said to be azially perspective if the points cg,cq,cy are collinear,
where ¢ = (a; + a;)(b; + b;), {%,7,k} = {0,1,2} (see Figure 3.2). This can be expressed
by

¢z < ¢o+ 1.

Desargues’ Law states that if two triangles are centrally perspective then they are
also axially perspective. A projective space which satisfies Desargues’ Law is said to be
Desarguesian.

It is a standard result of projective geometry that every projective space associated
with a vector subspace lattice is Desarguesian.
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Conversely, we have the classical coordinatization theorem of projective geometry, due
to Veblen and Young [10] for the finite dimensional case and Frink [46] in general.
THEOREM 3.5 Let P be a nondegenerate Desarguesian projective space of dimension
«a > 3. Then there exists a division ring D, unique up to isomorphism, such that L(P) =
L(D*, D).

For a proof of this theorem and further details, the reader should consult [ATL]
p.111 or [GLT] p.208. Here we remark only that to construct the division ring D which
coordinatizes P we may choose an arbitrary line [ of P and define D on the set | — {p}
where p is any point of [. The 0 and 1 of D may also be chosen arbitrarily, and the addition
and multiplication are then defined with reference to the lattice operations in £(P). This
leads to the following observation:

LEMMA 3.6 Let P and () be two nondegenerate Desarguesian projective spaces of dimen-
sion > 3 and let Dp and D¢ be the corresponding division rings which coordinate them.
If L(P) can be embedded in L(Q)) such that the atoms of L(P) are mapped to atoms of
L(Q), then Dp can be embedded in Dy,.

It is interesting to note that projective spaces of dimension 4 or more automatically
satisfy Desargues’ Law ([GLT] p.207), hence any noncoordinatizable projective space is ei-
ther degenerate, or a projective plane that does not satisfy Desargues’ Law, or a projective
line that has k + 1 points, where k is a finite number that is not a prime power.

Arguesian lattices. The lattice theoretic version of Desargues’ Law can be generalized
to any lattice L by considering arbitrary triples a,b € L3 (also referred to as triangles in
L) instead of just triples of atoms. We now show that under the assumption of modularity
this form of Desargues’ Law is equivalent to the Arguesian identity:

(ao + bo)(a1 + b1)(ag + b2) < ag(ar + d) + bo(b1 + d)
where d is used as an abbreviation for
d = cy(co + c1) = (ap + a1)(bo + b1)((a1 + az)(b1 + b2) + (ao + a2)(bo + b2)).
A lattice is said to be Arguesian if it satisfies this identity.
LEMMA 3.7 Let p = (ag + bo)(a1 + b1)(ag + bs), then

(i) the identity p < ag(a1 + d) + bo is equivalent to the Arguesian identity,
(ii) every Arguesian lattice is modular and
(iii) to check whether the Arguesian identity holds in a modular lattice, it is enough to
consider triangles a' = (ag, by, cp) and b' = (bg, by, by) which satisfy

(%) a;+b; = ai+p = b +p, (1=0,1,2)
where p' is defined in the same manner as p.
PRrROOF. Since we always have bo(by + d) < bg, the Arguesian identity clearly implies p <

ag(a1+d)+bg. Conversely, let L be a lattice which satisfies the identity p < ag(a1+d)+ bo.
We first show that L is modular. Given u,v,w € L with u < w, let ay = v, bg = u and



3.2. PROJECTIVE SPACES AND ARGUESIAN LATTICES 53

ap = az = by = by = w. Then p = (v + w)w and d = w, whence the identity implies
(v 4 u)w < vw + u. Since u 4+ vw < (u+ v)w holds in any lattice, we have equality, and
so L is modular. This proves (ii).

To complete (i), observe that p and d are unchanged if we swop the a;’s with their
corresponding b;’s, hence we also have p < bg(b1 +d)+ag. Combining these two inequalities
gives

p < (ao(ar + d) + bo)(bo(b1 + d) + ao)
= aop(a1 + d) + bo(bo(b1 + d) + ao)
= ag(a1 + d) + agbo + bo(b1 + d)

by modularity. Also apby < ¢2, ¢1 shows agbg < d and therefore agby < ag(aq + d). This
means we can delete the term agby and obtain the Arguesian identity.

Now let a,b € L? and define a} = a;(b; + p), b} = bi(a; + p). Since we are assuming
that L is modular,

a; + b7 = a;(b; + p) + bi(a; + p) = (ai(bi + p) + bi)(a; + p)

= (bi + p)(ai + bi)(ai + p)

= (bi+p)ai+p) = (bi+plai +p=a;+p
:bz(az+[))+l):b;+l)-

7

Thus p’ = (af + p)(a} + p)(ay + p) > p, while af < a; and b, < b; imply p’ < p. So we
have p = p/, and condition (x) is satisfied. If the Arguesian identity holds for ', b’ and we
define d’ in the same way as d, then clearly d' < d and

p=1p < aglay +d') + by < ag(ar + d) + bo,
hence the identity holds for the triangles a,b. a
THEOREM 3.8 If a modular lattice L satisfies Desargues’ Law then L is Arguesian. Con-
versely, if L is Arguesian, then L satisfies Desargues’ Law.

ProoF. Let ag, a1, a2,bg,b1,02 € L, p = (ap+bo)(a1 +b1)(az +b2), cx = (a; +a;)(b; +b;),
({7,7,k} =40,1,2}) and d = ca(co + ¢1) as before. By part (iii) of the preceding lemma
we may assume that

(*) ai+b;=a;i+p=bi+p i=0,1,2
Define by = by + bo(aq + b1). The following calculation shows that the triangles (ag, a1, ag)
and (bo, b1, by) are centrally perspective:
(ao + bo)(a1 + b1) = (p+ bo)(ar + b1) by (x)

=p+bo(ar + b1) by modularity
<ag + by + bo(ay + by) = ay + by.

Therefore Desargues’ Law implies that

2 < (a1 + a2)(by + b2) + (a2 + ao)(by + bo)
= (a1 + a2)(b1 + by + bo(ar + b1)) + (az + ag)(ba + bo)
= (a1 + a2)(ba + (b1 + bo)(a1 + b1)) + 1

= (a1 + a2)(b1 + by + a1(bo+ b1)) + 1

= (a1 + a2)(b1 + b2) + a1(bo + b1) + ¢1 = co + ¢1 + a1 (bo + b1),
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whence ¢2 = ¢a(co+ec1+a1(bo+b1)) = ca(co+c1)+a1(bo+b1) = d+ a1(bo+b1). It follows
that
a1 +d = ay + ¢3 = ay + (ag + a1)(bo + b1)
= (a1 + by + bo)(ao + a1)
= (@ +p+bo)a+a) by ()
=(m+ptag)(aot+ar) by (x)
= (a0 + a1) > ag,

so we finally obtain ag(aq + d) + by = ap + by > p.

Conversely, suppose L is Arguesian (hence modular) and (ag,a1,az), (bg,b1,bs2) are
centrally perspective, i.e.(ag + bo)(a1 + b1) < ag + by, Let ¢ = (a1 + az)(e1 + ¢2) and
take af, = ¢, a} = b1, aby = a1, by = c1, b} = bo, by = ag in the (equivalent form of the)
Arguesian identity p’ < aj(aj + d’') + by. We claim that under these assignments p’ = ¢
and ag(a) + d') + by < o + ¢ from which it follows that the two triangles are axially
perspective. Firstly,

a1 +az + c1)(er + c2)
+ (ag + ag)(bo + az + b2))(c1 + ¢2)
+ (a0 + az)(bo + (a0 + bo)(a1 + b1)))(e1 + ¢2)
+ (ap + a2)(ao + bo)(bo + a1 + b1))(c1 + ¢2)
ar + ag(bo + a1 + b1))(e1 + ¢2)
a1 + ag)(bo + a1 + b1)(c1 + ¢2)
ap + a1)(bo+ b1)(c1 + ¢2) = 2

¢t =

(
(a1
(a1
(a1
(
(
(

AV (B AVARR | B AV

so p' = (¢o + ¢1)(b1 + bo)(a1 + ag) = ¢3. Secondly,

(o + b1)(e1 4+ bo)((co + a1)(e1 + ao) + (b1 + a1)(bo + ao))
(bo + b2)((ao + a2)(a1 + az) + (ao + bo)(a1 + b1))

(bo + b2)((@o + az)(a1 + az) + b2) (by central persp.)
(bo + b2)(ag + a2)(a1 + az2) + by = c1(a1 + az) + by

[ IAIA H

which implies
ag(ay +d')+ by =co(br1+d') + &1
((Ll + (Lg)(bl + by + C]((Ll + (L2)) +
(a1 +a2)(by +b2) + c1(ar +az)+c1=co+ 1

Al

a

The first statement of this theorem appeared in Gratzer, Jonsson and Lakser [73], and
the converse is due to Jonsson and Monk [69]. In [GLT] p.205 it is shown that for any
Desarguesian projective plane P the atoms of £(P) satisfy the Arguesian identity and that
this implies that £(P) is Arguesian. Hence it follows from the preceding theorem that P
is Desarguesian if and only if £(P) satisfies (the generalized version of) Desargues’ Law.

Since modularity is characterized by the exclusion of the pentagon N, which is isomor-
phic to its dual, it follows that the class of all modular lattices M is self-dual (i.e. M € M
implies that the dual of M is also in M). The preceding theorem can be used to prove
the corresponding result for the variety of all Arguesian lattices.
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LEMMA 3.9 (Jousson[72]). The variety of all Arguesian lattices is self-dual.

Proor. For modular lattices the Arguesian identity is equivalent to Desargues’ Law by
Theorem 3.8. Let L be an Arguesian lattice and denote its dual by L. Lemma 3.7 (ii)
implies that L is modular, and by the above remark, so is L. We show that the dual of
Desargues’ Law holds in L, i.e. for all zq, 21,29, y0,y1,y2 € L

(*) ToYo + T1Y1 2 T2Y2

implies that
(%) 2oz + yoyn > (2122 + y1y2)(Tow2 + Yoyo)-

Then L satisfies Desargues’ Law and is therefore Arguesian.
Assume () holds, and let ap = zoz2, a1 = Yoy2, a2 = ZoYo, bo = 122, b1 = Y1Y2,
by = z1y1 and ¢ = (a; + a;)(b; + b;) ({¢,4,k} =4{0,1,2}). Then

(@0 + bo)(a1 + b1) = (xoz2 + T122)(Yoy2 + y192) < 2292 < az + by

by (%), so it follows from Desargues’ Law that ¢z < ¢g + ¢1. But ¢o < yoy1, c1 < o1 and
¢z equals the right hand side of (k). Therefore (*x) is satisfied. O

So far we have only considered the most basic properties of Arguesian lattices. Ex-
tensive research has been done on these lattices, and many important results have been
obtained in recent years. We mention some of the results now.

Recall that the collection of all equivalence relations (partitions) on a fixed set form an
algebraic lattice, with intersection as meet. If two equivalence relations permute with each
other under the operation of composition then their join is simply the composite relation.
A lattice is said to be linear if it can be embedded in a lattice of equivalence relations
in such a way that any pair of elements is mapped to a pair of permuting equivalence
relations. (These lattices are also referred to as lattices that have a type 1 representation,
see [GLT] p.198). An example of a linear lattice is the lattice of all normal subgroups of
a group (since groups have permutable congruences), and similar considerations apply to
the “subobject” lattices associated with rings, modules and vectorspaces.

Jonsson [53] showed that any linear lattice is Arguesian, and posed the problem
whether the converse also holds. A recent example of Haiman [86] shows that this is
not the case, i.e. there exist Arguesian lattices which are not linear.

Most of the modular lattices which have been studied are actually Arguesian. The ques-
tion how a modular lattice fails to be Arguesian is investigated in Day and Jonsson [89].

Pickering [84] [a] proves that there is a non-Arguesian, modular variety of lattices, all
of whose members of finite length are Arguesian. This result shows that Arguesian lattices
cannot be characterized by the exclusion of a finite list of lattices or even infinitely many
lattices of finite length. For reasons of space the details of these results are not included
here.

The cardinality of A . In this section we discuss the result of Baker [69] which shows
that there are uncountably many modular varieties. We begin with a simple observation
about finite dimensional modular lattices.

LEMMA 3.10 Let L and M be two modular lattices, both of dimension n < w. If a map
f: L — M is one-one and order-preserving then f is an embedding.
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ProoF. We have to show that
() fle+y)=f=)+ fly) and  flzy) = f(z)f(y)
Since f is assumed to be order-preserving, f(z +y) > f(z)+ f(y), f(zy) < f(z)f(y) and

equality holds if = is comparable with y. For z, y noncomparable we use induction on the
length of the quotient z + y/zy.

Observe firstly that if w > v in L then w,v are successive elements in some maximal
chain of L, and since M has the same dimension as L and f is one-one it follows that
f(u) > f(v). If the length of  + y/ay is 2, then  and y cover zy and z,y are both
covered by « + y, so (%) holds in this case. Now suppose the length of « 4+ y/zy is n > 2
and (*) holds for all quotients of length < n. Then either z 4+ y/z or z/zy has length > 2.
By modularity z/zy = @ 4+ y/y, and by symmetry we can assume that there exists z’ such
that < 2’ < z 4+ y. The quotients z' + y/z'y and = + z'y/z(z'y) = 2'/xy have length
< n, hence

f@) = f(z + 2'y) = f(z) + (&) f(y) = (F(z) + f(9) [ ().

It follows that f(z') < f(z)+ f(y) and so f(e+y) = f(a'+y) = f(&")+ f(y) < f(@)+ f(y).
Similarly f(zy) > f(z)f(y)- o

Let P be a finite partially ordered set and define N(P) to be the class of all lattices that
do not contain a subset order-isomorphic to P. For example if 5 is the linearly ordered
set {0,1,2,3,4} then IN(5) is the class of all lattices of length < 4.
LEMMA 3.11 For any finite partially ordered set P

(i) N(P) is closed under ultraproducts, sublattices and homomorphic images;

(i) any subdirectly irreducible lattice in the variety N(P)V is a member of N(P).

Proor. (i) The property of not containing a finite partially ordered set can be expressed
as a first-order sentence and is therefore preserved under ultraproducts. If L is a lattice and
a sublattice of L contains a copy of P, then of course so does L. Finally, if a homomorphic
image of L contains P then for each minimal p € P choose an inverse image p € L, and
thereafter choose an inverse image g of each ¢ € P covering a minimal element in P such
that g > > {p:p < ¢, p € P}. Proceeding in this way one obtains a copy of P in L.

(ii) This is an immediate consequence of Corollary 1.5. a

THEOREM 3.12 (Baker [69]). There are uncountably many modular lattice varieties.
Proor. Let II be the set of all prime numbers, and for each p € II denote by F, the
p-element Galois field. Let L, = L'(Fs’, F,) and observe that each L, is a finite subdirectly
irreducible lattice since it is the subspace lattice of a finite nondegenerate projective space.
We also let A be the class of all Arguesian lattices of length < 4.

Now define a map f from the set of all subsets of II to Axq by

F(8) = AVN[UN(L)Y :q ¢ S}

We claim that f is one-one. Suppose 5,7 C 1l and p € § — T. Then f(T) C N(L,)Y and
since L, ¢ N(L,) and L, is subdirectly irreducible it follows from the preceding lemma
that L, ¢ f(T).
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On the other hand we must have L, € f(5) since L, ¢ N(L,) for some ¢ ¢ S would
imply that L, contains a subset order-isomorphic to L,. By Lemma 3.10 L, is actually a
sublattice of L, and it follows from Lemma 3.6 that £}, is a subfield of F},. This however
is impossible since ¢ # p € 5. a

By a more detailed argument one can show that the map f above is in fact a lattice
embedding, from which it follows that Axs contains a copy of 2% as a sublattice.

3.3 n-Frames and Freese’s Theorem

Products of projective modular lattices. By a projective modular lattice we mean a
lattice which is projective in the variety of all modular lattices.

LEMMA 3.13 (Freese[76]). If A and B are projective modular lattices with greatest and
least element then A X B is a projective modular lattice.

Proor. Let f be a homomorphism from a free modular lattice F' onto A x B, and choose
elements u,v € F such that f(u) = (14,0p) and f(v) = (04,1p). By Lemma 2.9 it suffices
to produce an embedding g : A X B — F such that fg is the identity on A x B.

Clearly f followed by the projection w4 onto the first coordinate maps the quotient
u/uv onto A. Assuming that A is projective modular, there exists an embedding g4 :
A — u/uv such that 74 fg4 is the identity on A. Similarly, if B is projective modular,
there exists an embedding ¢gg : B — v/uv such that 7gfgp = idp. Define g by g(a,b) =
ga(a)+gp(b) for all (a,b) € Ax B. Then g is join preserving, and clearly fg is the identity
on A X B. To see that ¢ is also meet preserving, observe that by the modularity of F

g9(a,b) = ga(a) + vu + gp(b) = (9a(a) + v)u+ gB(b) = (9a(a) + v)(u + gB(b)).

Hence
9(a,b)g(c,d) = (ga(a) + v)(u+ gp(b))(ga(c) + v)(u+ gp(d))
= (9a(a)ga(c) + v)(u + g(b)yn(d)) = g(ac, bd),

where the middle equality follows from the fact that in a modular lattice the map ¢ — 14+
is an isomorphism from u/uv to u 4+ v/v. O

Von Neumann n-frames. Let {a; : ¢ =1,...,n} and {¢1; : 7 = 2,...,n} be subsets of
a modular lattice L for some finite n > 2. We say that ¢ = (a;,¢1;) is an n-frame in L
if the sublattice of L generated by the a; is a Boolean algebra 2™ with atoms a4, ..., a,,
and for each j = 2,...,n the elements aq,¢;j,a; generate a diamond in L (i.e. aq + ¢15 =
a; +c1; = a1 +a; and a1c1; = ajcq; = ara;). The top and bottom element of the Boolean
algebra are denoted by 0y (= ajag) and 14 (= Y =, a;) respectively, but they need not
equal the top and bottomn of L (denoted by 07, and 17). If they do, then ¢ is called a
spanning n-frame.

If the elements aq,...,a, € L are the atoms of a sublattice isomorphic to 27, then
they are said to be independent over 0 = ajag. If L is modular this is equivalent to the
conditions a; # 0 and @;}";4; a; = 0 for all i = 1,...,n (see [GLT] p.167).

The index 1 in ¢;; indicates that an n-frame determines further elements ¢;; for distinct
i, # 1 as follows: let ¢;; = ¢q; and

cij = (ai + aj)(cin + c1j).
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These elements fit nicely into the n-frame, as is shown by the next lemma.

LEMMA 3.14 Let ¢ = (a;, ¢1;) be an n-frame in a modular lattice and suppose ¢;; is defined
as above. Then, for distinct ¢, € {1,...,n}

(1) ai+cij = ai + a; = cij + a;;
(iii) a; > or#k Ckr = Og for any fixed index k;
(iv) ai,cij, aj generate a diamond;
)

(v) ¢ij = (a; + a;)(cik + cg;) for any k distinct from 1, j.

Proor. (i) Using modularity and the n-frame relations, we compute

a; + ¢ij = a; + (a; + aj)(ca + c1j)
= (a; + a;)(a; + ci1 + ¢15)
= (ai + aj)(ai + a1 + ;) = a; + a;.

The second part follows by symmetry.
(ii) We first show that ¢;; Doy Or < a4

a; + ¢ij Z”é]- ar = (a; + ¢;5) Zr;éj a, by modularity since ¢ # j
= (a; + aj) Zr;éj a, = a; since the a;’s generate 2™.

Hence if 7 = 1 then 04 < ¢y Z,r#]- a, < cpja; = 0p. The general case will follow in the
same way once we have proved (iv).
(iii) We first fix ¢ = £k = 1 and show that a; ) /L, 1, < Z,,T_”:}l c1, for 3 < m < n.
ard o+ Yy = (ci24 .ot am)(ar a2+ .o+ cimo1)
=(c1i2+ ...+ cam)artaz+ ...+ amn_1)
=cizt ...+ Cm1+t Cim Z;n;ll ar
=ci2+ ...+ cim_1+ 04 by part (ii).

Thus 0y < a1} ;_,c1r < Z:‘;Ql c1r < ..o L arerp = 0.

Let € = >°7'_5c1, and suppose ¢ # 1. Then ¢1; + aje = (c1; + a;)e = (c1i + ar1)e =
c1i + are = c1; + 04, s0 aze < a;cq; = 0p. Hence (iii) holds for £ = 1 and any .

Now (iv) follows from (i) and the calculation

0g < ajcij = ai(a; + a;)(cin + ¢ij) = ai(cri + ¢15) < aze = O4.

Therefore (ii) holds in general. Using this one can show in the same way as for £k = 1,
that ar ) /Lpiqcrr < Z;”:*kl_l_l cgr for kK +1 < m < n and, letting ¢/ = Y7 ;.1 Ckr,
ap(c+ 3" epr) <+ e for 1< m <k — 1. Assuming @ £ k, let e = Dtk Crk-
Then one shows as before that ¢ +aze = cg;, whence a;e = 04. Thus (iii) holds in general.

For k = 1 (v) holds by definition. Suppose ¢ = 1 £ j, k.

(a1 + a;)(c1r + ckj) = (a1 + a;)(c1k + (ax + a;)(ckr + €15))
= (a1 + aj)(clk + ar + dj)(ckl + Clj)
= (a1 + aj)(a1 + ar + a;)cgp1 + 15 = 05 + ¢1; by (ii).
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The case 5 = 1 # 7,k is handled similarly. Finally suppose that ¢, 7,k,1 are all distinct
and note that ¢;; < a; + a; + ay.

(a; + aj + ag)(cin + cix) + ckj)
ci1 + C1k + Ckj)

ci1+ (a1 + aj)(car + ckj))

ci1 + c15) = ¢

|
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S
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P N
NN N N
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A concept equivalent to that of an n-frame is the following: A modular lattice L
contains an n-diamond 6 = (a,...,an,e) if the a; are independent over 05 = ajaz and e
is a relative complement of each a; in 15/05 (15 = Z;L:l a;). The concept of an n-diamond
is due to Huhn [72] (he referred to it as an (n — 1)-diamond).

Note that although e seems to be a special element relative to the a;, this is not really
true since any n elements of the set {a;,...,a,,e} are independent, and the remaining
element is a relative complement of all the others.

LEMMA 3.15 Let § = (a;,e) be an n-diamond and define ¢1; = e(a1+a;), then s = (a;, ¢1;)
is an n-frame. Conversely, if ¢ = (a;,cy;) is an n-frame and e = 377_, c1; then by = (ai,e)
is an n-diamond. Furthermore ¢5¢ = ¢ and 0y, = 6.

PROOF. Since e is a relative complement for each a; in 15/0s, a1e(ar + a;) = 05 =
aje(ar + a;) and

a1 + e(ar + aj) = (a1 + €)(a1 + a;) = (a1 + a;) = a1 + a; = a; + e(a1 + a;),

s0 ¢5 = (a;,e(ar + a;)) is an n-frame.
Conversely, if e = }77_, ¢1; then a;e = 0y by Lemma 3.14 (iii) and

a;+e=ci2+...+a;+ci+ ...+
ci2+...+a;+ar+ ...+,
:(11-|-...-|-an:1-

Hence 64 = (a4, €) is an n-diamond.

Also e(a1 + a;) = e1j + (3,2 c1r)(@1 + a;) = ¢y since (37,4, ¢1-)(a1 + a;) = 04 can
be proved similar to Lemma 3.14 (iii). Finally, if § = (a;, €) is any n-diamond, and we let
e =) gc1j, then ¢ < e and in fact ¢’ = e’ + (a1 +az)e= (e + a1 +az)e=1se =e. O

LEMMA 3.16 (Freese[76]). Suppose 3 = (a;,€) is an (n+1)-tuple of elements of a modular
lattice such that the a; form an independent set over Og = a1aq, g < e < 1g = join!_;aq
and e is incomparable with each a;. Define (i ranges over 1,...,n)

b=>ae < e < c=](a;+e)
d=>(a;+b)c=b+> aic=>ac and
B*=(a;+b,e), [Be=(aic,ed), [*, = ((a;+b)c,ed).
(i) Ifa; + e =1 for all i then (3* is an n-diamond in 1/b.
(ii) If aje = 0g # a;c for all © then B, is an n-diamond in d/0g.



60 CHAPTER 3. MODULAR VARIETIES

(iii) Ifb # (a; 4 b)c for all ¢ then 3*, is an n-diamond in d/b.

Proor. (i) Since b < e and a; £ e we have a; + b # b for all ¢. The following calculation
shows that the a; + b are independent over b:

(@i +b) 3 zi(a; +0) = b+ ai(3"2 a5 + 3 p=q ake)
= b+ ai(}jzi aj + aie)
=b+ q; Zﬁéi a; + aze
=b+ 05+ ae =b.

Furthermore (a; + b) + € = @; + b = 1 by assumption, and (a; + b)e = b + a;e = b.

(ii) Since a;c # 0g and 0g < a;c Doji 4jc < ay Zﬁéi a; = 0g, the a;c are independent
over 0g. Also e < ¢ and a;e < a;¢ < d imply (a;c)(ed) = a;ed = a;e = 0g by assumption,
and a;c + ed = (a;c+ e)d = c¢(a; + e)d = ¢d = d.

Now (iii) follows from (i) and (ii). a

Suppose M and L are two modular lattices and f is a homomorphism from M to L.
If ¢ = (a;,c¢1;) is an n-frame in M and the elements f(a;), f(c1;) are all distinct, then
(f(ai), f(c1;)) is an n-frame in L (since the diamonds generated by aq,¢q;, a; are simple
lattices). Risking a slight abuse of notation, we will denote this n-frame by f(¢). Of
course similar considerations apply to n-diamonds.

The next result shows that n-diamonds (and hence n-frames) can be “pulled back”
along epimorphisms.
CoROLLARY 3.17 (Huhn [72], Freese [76]). Let M and L be modular lattices and let
f M — L be an epimorphism. If § = (a;,¢) is an n-diamond in L then there is an
n-diamond & = (a;,€) in M such that f(§) = 6.
Proor. It follows from Lemma 3.13 that 2" is a projective modular lattice, so we can
find @,...,a, € M such that f(a;) = a; and the @; are independent over @yaz. Choose
e € f~Ye} such that @@ < e < 3.7, @ and let 8 = (@;,€). Since § is an n-diamond,
each @; is incomparable with e. Defining b,¢,d in the same way as b, ¢,d in the previous
lemma, we see that f(b) = 0s, f(¢) = 15 and f((@; + b)c) = a;. Therefore b # (@; + b)c,

whence § = [5*. is the required n-diamond. a

LEmMA 3.18 (Herrmann and Huhn[76]). Let ¢ = (a;,c¢1;) be an n-frame in a modular
lattice L and let uw; € L satisfy 0y < uq < aq. Define u; = a;(ug + ¢q;) for i # 1 and
w =Y qu. Then ¢* = (u+a;,u+ c1;) and ¢, = (ua;, ucyj) are n-frames in 14 and u /04
respectively.

A proof of this result can be found in Freese [79]. We think of ¢* (¢,) as being
obtained from ¢ by a reduction over (under) u.

The canonical n-frame. The following example shows that n- frames occur naturally
in the study of R-modules:

Let (R,+,—,-,0r, 1r) be a ring with unit, and let L(R™, R) be the lattice of all (left-)
submodules of the (left-) B-module B™. We denote the canonical basis of R" by e1,..., €,
(i.e. ¢, = (ORr,...,0Rr,1R,0R,...,0g) with the 1g in the ith position), and let

a; = Re; = {re; :r € R}
cij = R(e; — €j) n,j=1,...,m 1#7].
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Then it is not difficult to check that £(R™, R) is a modular lattice and that ¢p = (a;, ¢1;)
is a (spanning) n-frame in L(R", R), referred to as the canonical n-frame of L(R™, R).

Definition of the auxillary ring. Let L be a modular lattice containing an n-frame
¢ = (ai, c15) for some n > 3. We define an auzillary ring Ry associated with the frame ¢
as follows:

Ry = Rig =4z € L:zay = araz and z 4+ a2 = a1 + az}

and for some k € {3,...,n}, z,y € Ry

m(z) = (¢ + cp)laz +ax),  7'(2) = (¢ + czp)(@1 + ax)
@&y = (a1 + az)[(z + ap)(crk + az) + 7(y)]
v Sy = (a1 + az)lar + (c2x + @)(az + 7' (y))]
¢Oy—(a1+“2)7f() ()

Or = as, 1p =

THEOREM 3.19 Ifn > 4, or L is an Arguesian lattice and n = 3, then (Ry,$,2,©,0r, 1Rr)
is a ring with unit, and the operations are independent of the choice of k.

This theorem is due to von Neumann [60] for n > 4 and Day and Pickering [83] for
n = 3. The presentation here is derived from Herrmann [84], where the theorem is stated
without proof in a similar form. The proof is long, as many properties have to be checked,
and will be omitted here as well. The theorem however is fundamental to the study of
modular lattices.

It is interesting to compare the definition of £ with the definition D in the classical
coordinatization theorem for projective spaces (|[GLT] p.209). The element ag corresponds
to the point at infinity, and the operations of addition and multiplication are defined in
the same way.

There is nothing special about the indices 1 and 2 in the definition of By = Ky2. We
can replace them throughout by distinct indices 7 and 7 to obtain isomorphic rings £;;. For
example the isomorphism between B9 and Ry; (5 # 1,2) is induced by the projectivity

Riz Car+az/0 /a1 +ag + cgj/cz; a1+ a;/0 D By

(Since in a modular lattice every transposition is bijective, it only remains to show that
this induced map preserves the respective operations. For readers more familiar with von
Neumann’s L-numbers, we note that they are n(n—1)- tuples of elements 3;; € R;;, which
correspond to each other under the above isomorphisins.)

Coordinatization of complemented modular lattices. The auxillary ring construc-
tion is actually part of the von Neumann coordinatization theorem, which we will not use,
but mention here briefly (for more detail, the reader is referred to von Neumann [60]).

THEOREM 3.20 Let L be a complemented modular lattice containing a spanning n-frame
(4 < mn € w)and let R be the auxillary ring. Then L is isomorphic to the lattice L;(R"™, R)
of all finitely generated submodules of the K-module R".

Notice that if R happens to be a division ring D, then D™ will be a vector space over
D, and Ly(D",D) = L(D™, D). Hence the above theorem extends the coordinatization
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of (finite dimensional) projective spaces to arbitrary complemented modular lattices con-
taining a spanning n-frame (n > 4). Moreover, Jénsson [59] [60°] showed that if L is
a complemented Arguesian lattice, then the above theorem also holds for n = 3. Fur-
ther generalizations to wider classes of modular lattices appear in Baer [52], Inaba [48],
Jonsson and Monk [69], Day and Pickering [83] and Herrmann [84].
Characteristic of an n-frame. Recall that the characteristic of a ring R with unit 1p
is the least number r = charR such that adding 1g to itself » times equals Og. If no such
7 exists, then charR = 0.

We define a related concept for n-frames as follows:

Let ¢ = (ai,¢1;) be an n-frame in some modular lattice L (n > 3), and choose k €
{3,...,n}. The projectivity

a1 + az/0 / a1 + ag + ap/ar \ c1x + a2/0 /" a1 + ag + ag/car \ a1 + a2/0

induces an automorphism oy on the quotient a; 4+ a3 /0 given by
ag(z) = ((z + ag)(e1x + az) + c2x)(a1 + az).

Let r be a natural number and denote by aj the automorphism oy iterated r times. We
say that ¢ is an n-frame of characteristic r if a;(al) =ay.

LEMMA 3.21 Suppose ¢ = (a;,c1;) is an n-frame of characteristic r, and R is the auxillary
ring of ¢. Then the characteristic of R divides r.

Proor. By definition 0gr = aq and 1g = ¢12. From the definition of « & y we see that for
z € R, ag(z) = = & 1g (since 7(1r) = (c21 + c1x)(az + ag) = cax). This also shows that
a4l R is independent of the choice of k. The condition a;(al) = a7 therefore implies

r terms

ORE1r®1RD ... ©1r =0Rr

whence the result follows. a

The next result shows that the automorphism oy is compatible with the operation of
reducing an n-frame. For a proof the reader is referred to the original paper.

LEMMA 3.22 (Freese [79]). Let ¢, u, ¢* and ¢, be as in Lemma 3.18. If z € a1 + a3/04
then

(i) z+u € a4+ ag + u/u and agu(z + u) = ag(z) + u;

(ii) zu € aru + agu/04 and oy, (zu) = ay(z)u.

It follows that if ¢ is an n-frame of characteristic r, then so are ¢* and ¢,. The lemma
below shows how one can obtain an n-frame of any given characteristic.

LEMMA 3.23 (Freese [T9]). Let ¢ = (a;, c1j) be an n-frame and r any natural number. If

we define a = a;(al), ug = az(a+tay), up = ar(ug+cr2), ui = a;(ur+c1i) and w = > 4 u;
then ¢“ is an n-frame of characteristic r.
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ProoFr. Note that ug, defined as above, agrees with the definition of ug in Lemma 3.18
since
az(ur + c12) = az(aq(ug + c12) + ¢12)

= ag(u1 + c12)(ug + c12)

= ay(ug + c12) = agcia + up = uy.
Let R be the auxillary ring of ¢. By definition the elements of R are all the relative
complements of ay in aq + az/04. Since z € R implies ay(z) = 2 & 1p € R, it follows that
ay(2) is again a relative complement of a3 in a3 4+ a3/04 (this can also be verified easily
from the definition of ay). Thus a = a;(al) € R and a + a3 = a1 + a3. By the preceding
lemma

a;u(al +u) = a;(al) +u
=a+u+az(a+ ar)

(a+az)(a+a1)+u
=(amr+az)la+a)+u=a+a + u.

Also ay+uy = (a1+az)(a1+a) = a;+a shows that a; +u > a, whence a;u(al—l—u) =ay+u.0

We can now prove the result corresponding to Theorem 3.17 for n-frames of a given
characteristic.
THEOREM 3.24 (Freese [79]). Let M and L be modular lattices and let f : M — L be
an epimorphism. If ¢ = (a;,c1j) is an n-frame of characteristic r in L, then there is an
n-frame ¢ = (a;,¢1;) of characteristic r in M such that j(qg) = o.

PROOF. From Theorem 3.17 we obtain an n-frame ¢ = (@;,¢1;) in M such that f(¢) = ¢.
If we let uy = 62(0%(61) + @) and u be as in the preceding lemma, then we see that
5” = (a; + u, c1j + u) is an n-frame of characteristic r in M. Since ¢ has characteristic r
by assumption,

fuz) = f@a(ag(ar) + a1)) = az(ag(ar) + a1) = az(ar + a1) = Oy,

from which it easily follows that f(uy) = f(@1(u2 + ¢12) = 0p and f(u;) = 04. Therefore
f(u) =04 and f(6") = ¢, so we can take ¢ = ¢". a

M is not generated by its finite members.This is the main result of Freese [79], and
follows immediately from the theorem below, where Mg is the class of all finite modular
lattices.

THEOREM 3.25 (Freese [79]). There exists a modular lattice L such that L ¢ (Mpg)Y.

ProoF.The lattice L is constructed (using a technique due to Hall and Dilworth [44]) as
follows:

Let F and K be two countably infinite fields of characteristic p and ¢ respectively,
where p and ¢ are distinct primes. Let L, = L(F*,F) be the subspace lattice of the
4-dimensional vector space F'* over F' and let ¢ = (aji,c1;) be the canonical 4-frame in L,
(the index ¢ = 1,2,3,4 and j = 2,3,4 through out). Note that ¢ is a spanning 4-frame
of characteristic p. Similarly let L, = L(K*, K) with canonical 4-frame ¢' = (af,¢y;) of
characteristic ¢. Since |K| = w, there are precisely w one-dimensional subspaces in the
quotient af -|-a’2/0¢/, hence af -|-a’2/0¢/ ~ M, (the countable two-dimensional lattice). The
quotient 14/ag+ a4 of L, is isomorphic to a1 +ag/04 via the map « — z(aq +ag) and since
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(i)

Figure 3.3

|F'| = w, we see that 14/a3+ a4 is also isomorphic to M,,. Let 0 : 14/az+as — a} +a5/04
be any isomorphism which satisfies

o(ar + as + asq) = a}
o(ag + asz + aq) = d},
o(c1z2 + ag +aq) = ¢y

The lattice L is constructed by “loosely gluing” the lattice L, over L, via the isomorphisin
o,i.e. let L be the disjoint union of L, and L, and define z < y in L if and only if

z,y€ L, and =z <y in L, or
z,y€ Ly, and z <y in L, or
re€l, yel, and z<z, o(z) <y forsome z € 1,/as+ ay.

Then it is easy to check that L is a modular lattice. (The conditions on o are needed to
make the two 4-frames fit together nicely.) Let D be the finite distributive sublattice of
L generated by the set {a;,a} : i = 1,2,3,4} (see Figure 3.3 (i)). Notice that D is the
product of the four element Boolean algebra and the lattice in Figure 3.3 (ii). Both these
lattices are finite projective modular lattices, so by Lemma 3.13 D is a projective modular
lattice.

Suppose now that L € (Mp)¥ = HSPMp. Then L is a homomorphic image of some
lattice L € SPMp, and hence L is residually finite (i.e. a subdirect product of finite
lattices). But hereafter we show that any lattice which has L as a homomorphic image
cannot be residually finite, and this contradiction will conclude the proof.

Let f be the homomorphism from L — L. Since D is a projective modular sublattice
of I, we can find elements a;,a; in L which generate a sublattice isomorphic to D, and
f(@;) = a;, f(@}) = a}. Let us assume for the moment that

%) there exist further elements ¢;; and . in L such that ¢ = (@;,¢;) is a 4-frame
J 1y » 1y
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of characteristic p, ¢ = (al,¢;) is a 4-frame of characteristic ¢ and f(¢) = ¢,
f(¢) =9

If L is residually finite, then we can find a finite modular lattice M and a homomor-
phism g : L — M which maps the (finite) 4-frames ¢ and & in a one to one fashion into
M, where we denote them by ¢ = (a;,¢1;) and & (a;,¢;) respectively. By Lemmas 3.19
and 3.21 they give rise to two auxillary rings B C a1 + &2/0$ and R C aj + &’2/0(;, of
characteristic p and ¢ respectively. Since M is a finite lattice, K and R’ are finite rings,
so |R| = p™ and |R'| = ¢™ for some n,m € w. Also, since Op = a1 # ¢12 = 1g, R has at
least two elements.

Now in M the elements a;,a’ generate a sublattice D~ D, hence a; + &2/0(]3 /
ay + &'2/0(;,, ay + 0<Z>’ = aj and ag + Oqg, = d), (see Figure 3.3 (i)). It follows that the two
quotients are isomorphic, and checking the definition of R4 above Theorem 3.19, we see
that this isomorphism restricts to an isomorphism between R and R'. Thus |R| = |R/],
which is a contradiction, as p and ¢ are distinct primes and |R| > 2. Consequently I is
not residually finite, which implies that L is not a member of (Mg)V.

We now complete the proof with a justification of (x). This is done by adjusting the
elements @;, @ in several steps, thereby constructing the required 4-frames. Since we will
be working primarily with elements of L, we first of all change the notation, denoting the
4-frames ¢, ¢’ in L by ¢ = (ai,é1;), ¢ = (a;,¢);) and the @;, @} in L by a;,ai. Also the
condition that the elements a;, a} generate a sublattice isomorphic to D (Figure 3.3 (i))
will be abbreviated by D(a;,a}). To check that D(a;,a}) holds, one has to verify that the a;
are independent over ayagy, the @) are independent over ajay = 0', 1/az+ aq /" @} + ab /0,
ay = a1 + 0" and df, = ay + 0’. Actually, once the transposition has been established, it is
enough to show that a; < af and ay < df) since then 0/ < @f(ag + 0') < ajaf, = 0’ implies

ay = (14 0)a) = (a1 + az + 0)ay = a1 + (az + 0)ay = a; + 0,

and ab = ag + 0’ follows similarly.

Step 1: Let 1/ = Y% al and & = &y + &3 + 4. By Lemma 3.15 (al,é) is a 4-
diamond in L. Since é € 1¢;,/0¢;,, we can choose e’ € 1/0" such that f(e') = é. Clearly
e’ is incomparable with each af. Defining o' = > ale’, ¢/ = [[(a} + €'), d' = Y (a} 4+ b')c!
(¢ =1,2,3,4) corresponding to b,c,d in Lemma 3.16 it is easy to check that b < d' < ¢,
(af + b’)c =aid! + b, f(V') =05, f(¢') =15 = f(d') and f((aj +b")c’) = a;, so combining
part (iii) of that lemma with Lemma 3.15 shows that

—1

¢ = (ﬁ;-,é'lj) = (aid + b, (aid + (L;C, +b)e'd)
is a 4-frame in d'/b" and j(gl) = 4.

Now let 0 = (a1 4 a2)b’ and consider the elements @; = a;d’ + 0. Since D(a;,a}) holds,
ay + az £ 045 whence f(0) = 0; and f(a;) = a;. In particular it follows that a; # 0. We
show that the @; are independent over 0. Observe that az + a4 < 0’ < b < d' implies
az = a3+ 0 and a4 = a4 + 0. Since a1 < @}, az < d)y, d' < ¢’ and & is a 4-frame,

@121 @ = (a1d' + 0)(azd’ + a3 + as +0)
< (ayd +0)(ahe +0) =0



66 CHAPTER 3. MODULAR VARIETIES

Since @7 < a1 + ag, the left hand side is < 0/, and the opposite inequality is obvious.
Similarly @237, 2a@; = 0. Also

a3 23 = (a3 + 0)(ard’ + azd’ + as +0)
= 6 + (Lg(ald, + (de, + a4 + U) = 6
because ard’' + azd’ + as + 0 < a1 + az + a4, and likewise for @4 37,24 @; = 0.

Let T = Y%, a@; and observe that 05’ = b'. We proceed to show that D(a;,a;) holds.
Note firstly that aid’ = alc’ since ald’ = aly j_; atc’ = ai(aic’ + D okgi ap¢ = ajic’ + 0"
Now B B

140 =ard +ad +az+ag +0+ 0
<ayd +ahd + b = ajd + ayd + 0 =@l + @),
and a1d’ + 0 > a1d’ + 0 = (a1 + 0")d’ = @ d’ together with a similar computation for ay
shows that 1+ 0’ = @} + @%. Furthermore

Tb,: (ald’+a2d’+a3+a4+6)b’
=a=34+a=440+ (ar1d" + axd" )t/
=az+as+ 0= a3 + ay.

Since @; = a;d' + (a1 + a2)b’ < ald' + b = @ we have D(a;,a;).
Step 2: Using Lemmas 3.18 and 3.23 we now construct a new 4-frame
¢ = (agvcllj) - gu - (E; + qu’lj + u)’

where u is derived from uy = 6,2((1%,(6,1) + @}). By Lemma 3.23 ¢’ is a 4-frame of char-
acteristic ¢. Since ¢’ in L has characteristic g, it follows that flu) = 04 and f(¢') = &
(see proof of Theorem 3.24). Moreover, if we define 0 = (@1 + @2)u and a; = @; + 0 then
f(a;) = a; and calculations similar to the ones in Step 1 show that the a;, a} generate a
copy of D.

Step 3: In this step we first construct a new 4-frame ¢ = (@;,¢;) derived from the
elements a; of Step 2 such that f(¢) = 6. Then we adjust ¢ accordingly to obtain
& — (at,eh,) satisfying £(8') = &', D(ai,at) and chy = c12+ 0.

Since é23+¢24 < Gg+ag+aa, it is possible to choose € € L such that f(€) = ¢23+¢24 and
araz <€ < ag+tas+as. Let c1g = ¢5(a1+az) and observe that f(c12) = éj5(a1+a2) = é12
by the choice of ¢ in the construction of L. Let e = ¢19 + € and define b,¢,d as in
Lemma 3.16. Since f(e) = ¢12 + €23 + ¢24 = € is a relative complement of each a;,
considerations similar to the ones in Step 1 show that

¢ = (@i,e1;) = (aic + b, (ar1¢ + ajc + b)ed)
is a 4-frame in d/b and f(¢) = ¢.

P . P A Y | J ol 4
Let ) =aic+ 0y, ul=al(u)+cy;) o =) iqul
. ol P A g ol 4
and o] = are4 04, i =al(v]+cf;) v =30l

Then 04 < v] < uj < a; and two applications of Lemma 3.18 show that

¢ = (al,dly) = 0" = (afu' + ', cyu’ +v')
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is a 4-frame in «'/v’. Also since ¢’ has characteristic ¢, Lemma 3.22 implies that ¢ has
characteristic ¢. Furthermore, it is easy to check that f(u') = 1, and f(v') = 04/ whence
j(al) _ dzl_
We now show that the elements @;, @ generate a copy of D. From D(a;, a}) we deduce
that
c12 + 0y = c1p(a1 + a2) + 0y = cfy(ar + az + 0y = chy(ay + ay) = ¢y
a1 + c12 = a1 + ¢io(ar + az) = (a1 + ¢hy)(a1 + a2)
= (a1 4 04 + c1g)(a1 + az) = (a1 + ah)(a1 + az) = a1 + az.

Similarly ag + ¢12 = a1 + a9 and aq¢12 = a1a2 = agcyz. Since ¢ < e < ¢,

c12 + a1e = (c12 + a1)e = (c12 + az)e = c12 + age
c12 + a1c = c12 + age.

Moreover

uy = ay(arc+ 0y + ¢hy) = ah(arc + 0y + c12)
ay(azc + 0y + c12) = ajage + )
= agc + ahely = age 4 Oy

A similar calculation yields vy = aze 4+ 04. Now age 4+ uf + uly < ay + aj + afy implies
aju’ = aj(arc + aze + 04 + ul +uy) = ajc + 0y,
and similarly aju’ = azc + 04 . Together with azc 4+ a4c < v’ we compute

d+v' =Yt aic+v =Yt aic+ 04+
=dju' + ahu' + 0 =@ +a,

= d(a} + ay)(are + age + 04 + v + v})
~ d(are + aze + 0y + (a4 ), + v3)
= d(aie + aze + 0yr)

(a1¢ + aze + aze + asc)0y + are + age
= azc + agc + (ar1c + az¢)04 + are + age
= azc+ agc + b = as + a4.

~

dv

Since a1 +v' = a1c+ b+ v = a1c+ 0y + v = ayu’ + v' = @} and similarly a; + v = @,
we have D(a;,a}).

Lastly we want to show that ¢}, = ¢12 + Ogr. Since d = Y1 aic+ b, € <ag+az+ aq
and e <e <,

c12 = (a1c + azc + b)ed = (arc + azc)e + b
= (a1¢ + azc)(a1 + az)(c12 +€) + b
= (a1c+ azc)(ci2 + (a1 + az)e) + b
(ar1c + azc)(c12 + aze) + b

= ci12(a1c + aze) + aze + b
< e’ + 0" = ey,

where we used ¢12 < ¢y, a1¢ + aze < v’ and aze < b < v’ in the last line. Also @z < @)
implies o' < (@24v')¢jy < @4y, = v, and since we already know that d/as+as / @) +ah /v’
the calculation,

¢y = (d+ ')z = (a1 + a2 + v')e)y
= (12 +ag + ')y = 12 + (a2 + v')cy = c12 + v’
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completes this step.
Step 4: As in Step 2 we use Lemma 3.18 to construct a new 4-frame

¢ = (ai,c15) = ¢ = (@i + u,c1j + w),
where u is derived from wuy = dg(ag(dl) +@a1) and uy = a@1(ug + ¢12). By Lemma 3.23 ¢ is
a 4-frame of characteristic p and as before f(¢) = ¢.
Let w} = uy + o', wh = @(w} +¢,;), w' = 3+, w! and consider the 4-frame

/wl

¢ = (aj,ch;) = ¢ = (a;+w',¢; +w)
Since ¢ was of characteristic g, so is ¢/ (Lemma 3.22).
It remains to show that D(a;,a}) holds. Note that 14 = 15 =dand Oy = w' > w; >
v’ > a3 + a4. Therefore

lg+w' =@ + a2+ a3+ a4 + w'
=ay + a4+ w' = d} + di,.
Also ug = az(u1 + ¢12) (see proof of Lemma 3.23) and uq = @1 (ug + ¢12) imply uz 4 ¢12 =
uy + ¢12. Together with ¢}, = €12 + ¢’ from Step 3 we have
Wyt =ut+cz+v =uz+ciz+v
wh = ay(wy + ¢p) = @h(uz + €12 + 0')
= uy + v + @hc1a = up + v’

A last calculation shows that

Lyw' = 14(uy + ug + wh + w})
= ur + ug + 1g(ay + a3)(ws + wy)
=uy +ug + 140" = uy + uy + a3 + a4
=u+as+ aq = ag + ag.
Since a1 < @), a2 < @y and v = 0y < w' it follows that a; < @} and ay < af. Hence
D(a;,at) holds.
Denoting ¢, ¢’ by ¢, 6’ and <5,{b' by ¢, ¢" we see that condition (*) is now satisfied. O
Note that the lattice L in the preceding theorem has finite length.
Let Mgy be the class of all modular lattices of finite length, and denote by Mg the
collection of all subspaces of vector spaces over the rational numbers.
By a result of Herrmann and Huhn [75] Mg C (Mp)Y. Furthermore Herrmann [84]
shows that any modular variety that contains Mg cannot be both finitely based and
generated by its members of finite length. From these results and Freese’s Theorem one

can obtain the following conclusions.
COROLLARY 3.26
(i) Both (Mp)V and (Mpy)Y are not finitely based.
(i) (Mp)Y C (Mp)Y C M and all three varieties are distinct.

(iii) The variety of Arguesian lattices is not generated by its members of finite length.



34. COVERING RELATIONS BETWEEN MODULAR VARIETIES 69

3.4 Covering Relations between Modular Varieties

The structure of the bottom of Aj. In Section 2.1 we saw that the distributive
variety D is covered by exactly two varieties, M3 and A. The latter is nonmodular, and
its covers will be studied in the next chapter. Which varieties cover M3z? Gritzer [66]
showed that if a finitely generated modular variety V properly contains Mg, then My € V
or Mz, € V or both these lattices are in V (see Figure 2.1 and 3.6). The restriction that
V should be finitely generated was removed by Jonsson [68]. In fact Jonsson showed that
for any modular variety V the condition M. ¢ V is equivalent to V being generated by
its members of length < 2. The next few lemmas lead up to the proof of this result.

Recall from Section 1.4 that principal congruences in a modular lattice can be described
by sequences of transpositions, which are all bijective. Two nontrivial quotients in a
modular lattice are said to be projective to each other if they are connected by some
(alternating) sequence of (bijective) transpositions. For example the sequence ag/bg /
ar /by \, ... /" a,/b, makes ag/by and a, /b, projective to each other in n steps. This
sequence is said to be normal if by, = by,_1bg41 for even k and ap = ap_1 + ag4q for odd k
(k=1,...,n—1). It is strongly normal if in addition for even k we have by_1 + bgy1 > ag
and for odd %k ap_q1ax4+1 < b.

LEMMA 3.27 (Gratzer [66]). In a modular lattice any alternating sequence of transposi-
tions can be replaced by a normal sequence of the same length.

ProoOF. Pick any three consecutive quotients from the sequence. By duality we may
assume that a/b / x/y \ ¢/d. If this part of the sequence is not normal (i.e. a + ¢ < z),
then we replace @/y by a + ¢/y(a + ¢). To see that a/b /" a + ¢/y(a + ¢) we only have
to observe that ay(a + ¢) = ay = b and, by modularity, a + y(e + ¢) = (e + y)(e + ¢) =
z(a+c) = a+ec. Similarly a4 c¢/y(a+c¢) \, ¢/d. Notice also that the normality of adjacent
parts of the sequence is not disturbed by this procedure, for suppose u/v is the quotient
that precedes a/b in the sequence, then vy = b implies vy(a + ¢) = b(a + ¢) = b. Thus we
can replace quotients as necessary, until the sequence is normal. a

Gritzer also observed that the six elements of a normal sequence a/b /" z/y \ ¢/d
are generated by a, y and ¢. Hence, in a modular lattice, they generate a homomorphic
image of the lattice in Figure 3.4 (i) (this is the homomorphic image of the free modular
lattice Faq(a,y,c) subject to the relations a +y = a + ¢ = y + ¢).

If the sequence is also strongly normal, then y = y + ac, and so a, y and ¢ generate a
homomorphic image of the lattice in Figure 3.4 (ii). Of course the dual lattices are gen-
erated by a (strongly) normal sequence a/b\ z/y / ¢/d. Figure 3.4 (ii) also shows that
strongly normal sequences cannot occur in a distributive lattice, unless all the quotients
are trivial. However Jonsson [68] proved the following:

LEMMA 3.28 Suppose L is a modular lattice and p/q and r /s are nontrivial quotients of L
that are projective in n steps. If no nontrivial subquotients of p/q and r/s are projective
in fewer than n steps, then either n < 2 or else p/q and r/s are connected by a strongly
normal sequence, also in n steps.

ProOOF. Let p/q = ag/bo ~ a1/by ~ ...~ a, /b, = r/s (some n > 3) be the sequence that

connects the two quotients. By Lemma 3.27 we can assume that it is normal. If it is not
strongly normal, then for some k£ with 0 < & < n we have ag_1/bgx_1 /" ar/br \\ @k41/bk+1,
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Figure 3.4

but ag, ap+1 £ bg, or dually. Let cx_1 = bp_1 + ar_10ak41, and for ¢ < n, 2 # k — 1 we
define ¢; to be the element of a;/b; that corresponds to ¢x_1 under the given (bijective)
transpositions. With reference to Figure 3.4 (i) it is straightforward to verify that

Ck—1/bk—1 \ @p_1ap41/bk_1bps1 /" Crp1/bpsr-
Since 0 < k < nand n > 3 we havek > 1 or k <n —1 (or both). In the first case
ck—2/bk—2 \ ap_1ap41/bk_1bpy1 /7 Cryr1 /b

and in the second

Ck—1/bk—1 \\ @k—10k4+1/bk—10k+1 /" Chy2/bkt2.

Either way it follows that the nontrivial subintervals ¢o/bg of p/q and ¢, /b, of r/s are
projective in n — 1 steps. This however contradicts the assumption of the lemma. a

LEMMA 3.29 (Jounsson [68]). Let L be a modular lattice such that Ms. is not a homomor-
phic image of a sublattice of L. If (v < z,y,z < u) and (v' < z',y', 2" < u') are diamonds
in L such that y' = yu' and z = 2’ 4+ v, then u/v \, u'/v" (refer to Figure 3.5(i)).

PrOOF. Observe firstly that the conditions imply u/y N\, 2’/v', since y+2' = (y+v)+2' =
y+z=wuand yz’ = y(u'z") = y'z/ = v'. Let w= v+ 4. Then w > v+ 2 = z and
w >y, z imply uw > ', hence w € u/z. We show that w = w and dually vu’ = o', which
gives the desired conclusion.

Note that we cannot have w = z since then the two diamonds would generate a
sublattice that has Ms2 as homomorphic image. So suppose z < w < u. Because all
the edges of a diamond are projective to another, the six elements w,v,z,y, z, u generate
the lattice in Figure 3.5 (ii). Under the transposition u/y \, z’/v’ the element zw + y
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(iii)

Figure 3.5

is sent to w’ = 2'(zw + y), and together with v’, 2’ ¢/, 2/, v’ these elements generate the
lattice in Figure 3.5 (iii). It is easy to check that (zw + yw < z + yw,zw + y,w < u)
and ((z'+ ')y +w') <y +w', 2" +2'(y + w'),2’ + w' < ') are diamonds (they appear
in Figure 3.5 (ii) and (iii)). We claim that w/zw + yw \, «'/y" + w’. Indeed, since
W <w< (v +u)(y+ u') we have
swHyr+u =v +azw+u +yw=(v+2)w+ (v +y)w=w
y+w =y +2@w+y)=(y+2)(ew+y)
=d'(zw+y) =d(zw+ y)w = u'(zw + yw).

But this means that the two diamonds form a sublattice of L that is isomorphic to the lat-
tice in Figure 3.5 (iv), and therefore has M2 as a homomorphic image. This contradiction
shows that we must have u = w. a

LEMMA 3.30 (J6nsson [68]). If L is a modular lattice such that Ms2 is not a homomorphic
image of a sublattice of L, then any two quotients in L that are projective to each other
have nontrivial subquotients that are projective to each other in three steps or less.

Proor. It is enough to prove the theorem for two quotients a/b and ¢/d that are projective
in four steps, since longer sequences can be handled by repeated application of this case.
We assume that no nontrivial subquotients of a/b and ¢/d are projective in less than four
steps and derive a contradiction. By Lemma 3.28 there exists a strongly normal sequence
of transpositions

a/b: ao/bo / al/bl \ ag/bQ / a3/b3 \ a4/b4 = C/d

or dually. Associated with this sequence are three diamonds (bg+by < ag+b2,b1,bo+ a2 <
ay), (b2 < bias,az,a1bs < ajaz) and (by + by < agz + ba, b3, a2 + by < ag). The first and the
second, and the second and the third diamond satisfy the conditions of Lemma 3.29, since

bias = bi(aras), bo + az = ag + (bo + b2)
a1bs = bs(aras), az + by = ag + (bo + ba)
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whence we conclude that
(%) a1/bo + b2 \, araz2/by /" a3/by + by.
This enables us to show that a/b and ¢/d are projective in 2 steps. In fact
(k%) ao/bo /" ag + b + ba/ar + az \, as/by
as is shown by the following calculations

ag+ (ag + bo+ bs) = a1 + by = a1 + a1a3 + by + by (a1 > araz + by)
= a1 -|- as (a1a3 -|- (b2 -|- b4) = das by (*))
ag(az + bo + ba) = bo + ap(az + ba) (by modularity)
= bo + agay(az + bs) (a1 > ag)
= bo + ao(az + a1bs) (by modularity)
< bo + ag(ag + bg) = bo + ajag = bg,

where the inequality holds since a1by = a1a3bs < ajaz(by + bs) = b2 by (x). The second
part of (xx) follows by symmetry. Since a/b and ¢/d were assumed to be projective in not
less than 4 steps, this contradiction completes the proof. a

LEMMA 3.31 Suppose L is a modular lattice with b < a < d < cin L. If a/b and ¢/d are
projective in three steps, then a/b transposes up onto a lower edge of a diamond and ¢/d
transposes down onto an upper edge of a diamond.

PROOF. Since a < d, no nontrivial subintervals of a/b and ¢/d are projective to each other
in less than three steps. Hence by Lemma 3.29 a/b and ¢/d are connected by a strongly
normal sequence of length 3, say

a/b: ao/bo / al/bl \ az/bg / (I3/b3 = C/d

(the dual case cannot apply). Then a/b transposes up onto ag+ bz /bg+ bz of the diamond
(bo + b2 < ag + bz, b1,b0 + a2 < ap) (see Figure 3.4(ii)) and ¢/d transposes down onto
ayasz/bibs of (by < byas,az,a1bs < ajas) as required. a

THEOREM 3.32 (Jousson [68]). For any variety V of modular lattices the following con-
ditions are equivalent:

(i) Ma2 ¢ V;
(ii) every subdirectly irreducible member of V has dimension two or less;

(iii) the inclusion a(b+ c¢d)(c+ d) < b+ ac + ad holds in V.

PROOF. Suppose M32 ¢ V but some subdirectly irreducible lattice L in V has dimension
greater than two. Then L contains a four element chain ¢ > b > ¢ > d. Since L is
subdirectly irreducible con(a, b) and con(b, ¢) cannot have trivial intersection, and therefore
some nontrivial subquotients a'/b" of a/b and p/q of b/c are projective to each other.
By Lemma 3.30 we can assume that they are projective in three steps. Similarly some
nontrivial subquotients p’/¢’ of p/q and ¢’/d" of ¢/d are projective to each other, again in
three steps. Since all transpositions are bijective, p’ /¢’ is also projective to a subquotient of



34. COVERING RELATIONS BETWEEN MODULAR VARIETIES 73

Figure 3.6

a' /b in three steps. From Lemma 3.31 we infer that p’/¢’ transposes up onto a lower edge
of a diamond and down onto an upper edge of a diamond. It follows that the two diamonds
generate a sublattice of L which has Ms2 as homomorphic image. This contradicts (i),
thus (i) implies (ii).

Every variety is generated by its subdirectly irreducible members, so to prove that (ii)
implies (iii), we only have to observe that the inclusion a(b + ¢d)(c + d) < b+ ac + ad
holds in every lattice of dimension 2. Indeed, in such a lattice we always have ¢ < d or
d < cored=0. In the first case a(b+ cd)(c+ d) = a(b+ ¢)d < ad < b+ ac + ad, in the
second a(b+ cd)(c+d) = a(b+d)c < ac < b+ ac+ ad and in the third a(b+ cd)(c+ d) =
ab(c+d) <b< b+ ac+ ad.

Finally, Figure 3.6 shows that the inclusion fails in Ms:, and therefore (iii) implies
(i)- O

For any cardinal a > 3 there exists up to isomorphism exactly one lattice M, with
dimension 2 and a atoms (see Figure 2.2). For @« = n € w each M,, generates a variety
M., while for a > w all the lattices M, generate the same variety M, since they all have
the same finitely generated sublattices. Clearly M, C M, and by Joénsson’s Lemma
M, 41 covers M, for 3 < n € w. The above theorem implies that Mz ¢ M, for all
n > 3, and conversely, if V is a variety of modular lattices that satisfies M3 ¢ V, then V
is either 7, D, M, or M,, for some n € w, n > 3. Thus we obtain:

COROLLARY 3.33 (Jousson [68]). In the lattice A, the variety M,, (3 < n € w) is covered
by exactly three varieties: M 4+1, M, + Mg and M,, + N.

ProOF. M, N Mg = Mjy is covered by M2, and M, N N = D is covered by N'. By
the distributivity of A, M,, N Ms2 and M, N N cover M,,. Suppose a variety V properly
includes M,,. If V contains a nonmodular lattice, then N € V, hence M, + N C V. If V
contains only modular lattices, then either Mz, € V or M32 ¢ V. In the first case we have
M, + Ma: C V, while in the latter case Theorem 3.32 implies that V = My for some
n < k € w. Hence M, 47 CV, and the proof is complete. a

The proof in fact shows that, for n > 3, C(M,,) = {Mp41, M, + M2, M, + N'}
strongly covers M,, (see Section 2.1). But this is to be expected in view of Theorem 2.2
and the result that every finitely generated lattice variety is finitely based (Section 5.1).
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Figure 3.7

Observe that Mgz has two join irreducible covers (My and Masz) whereas M, (4 <
n € w) has only one.

Further results on modular varieties. Consider the lattices in Figure 3.7. The main
result of Hong [72] is the following;:

THEOREM 3.34 Let L be a subdirectly irreducible modular lattice and suppose
Ay, Ay, As, Man ¢ HS{L}.

Then the dimension of L is less than or equal to n.

The proof of this theorem is based on a detailed analysis of how the diamonds that
are associated with a normal sequence of quotients fit together.

We list some consequences of this result. Let Masn, Ay, Ag, Az and Ps be the varieties
generated by the lattices M3z, Ay, Ay, As and P, respectively.

COROLLARY 3.35 (Hong [70]). For 2 < n € w the variety Msn is covered by the varieties
Mang1, Masn + My, Maszn + Ay, Mszn+ Az, Mazn+ Az, Mszn+ Py, Man + N.

Let M7 be the variety generated by all modular lattices whose length does not exceed
m and whose width does not exceed n (1 < m,n < c0). Note that Theorem 3.32 implies
M2, = M, and since every lattice of length at most 3 can be embedded in the subspace
lattice of a projective plane (|[GLT] p.214), M3 is the variety generated by all such
subspace lattices.
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COROLLARY 3.36 (Hong [72]). The variety M3, is strongly covered by the collection

{M2, 4+ Mg, M2 + Ay, M2 + Ay, M2 + A3, M3 + N}

From Theorem 2.2 one may now deduce that M3 is finitely based.

Considering the varieties M3, we first of all note that since M3 has width 3, M$® and

5° are both equal to the distributive variety D. The two modular varieties which cover
M3 are generated by modular lattices of width 4, hence M$ = Mas.

The variety M$° is investigated in Freese [77]. It is not finitely generated since it
contains simple lattices of arbitrary length (Figure 3.8 (i)). Freese obtains the following
result:

THEOREM 3.37 The variety M$° is strongly covered by the following collection of ten
varieties:

{MP +{L}Y : L= Ay, As, ..., Ag, M5, P, N }.

He also gives a complete list of the subdirectly irreducible members of this variety, and
shows that it has uncountably many subvarieties. Further remarks about the varieties
M appear at the end of Chapter 5.
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Chapter 4

Nonmodular Varieties

4.1 Introduction

The first significant results specifically about nonmodular varieties appear in a paper by
McKenzie [72], although earlier studies by Jénsson concerning sublattices of free lattices
contributed to some of the results in this paper (see also Kostinsky [72], Jonsson and
Nation [75]). Splitting lattices are characterized as subdirectly irreducible bounded ho-
momorphic images of finitely generated free lattices, and an effective procedure for deciding
if a lattice is splitting, and to find its conjugate equation (see Section 2.3) is given. Also
included in McKenzie’s paper are several problems which stimulated a lot of research in
this direction. One of these problems was solved when Day [77] showed that the class of
all splitting lattices generates the variety of all lattices (Section 2.3).

McKenzie [72] also lists fifteen subdirectly irreducible lattices Ly, Lo, ..., L1s, (see
Figure 2.2) each of which generates a join irreducible variety that covers the smallest
nonmodular variety V. Davey, Poguntke and Rival [75] proved that a variety, generated
by a lattice which satisfies the double chain condition, is semidistributive if and only if
it does not contain one of the lattices Ms, Lq,...,Ls. Jonsson proved the same result
without the double chain condition restriction, and in Jonsson and Rival [79] this is used
to show that McKenzie’s list of join irreducible covers of A is complete.

Further results in this direction by Rose [84] prove that there are eight chains of
semidistributive varieties, each generated by a finite subdirectly irreducible lattice Lg, L%,
LE, L%, LYy, Lis, Ly, Lis (n > 0, see Figure 2.2), such that LY = L;, and {L"T!}V is the
only join irreducible cover of {L?}Y for i = 6,7,8,9,10,13,14, 15.

Extending some results of Rose, Lee [85] gives a fairly complete description of all the
varieties which do not contain any of Ms, Ly, L3, ..., L13. In particular, these varieties
turn out to be locally finite.

Ruckelshausen [78] obtained some partial results about the covers of M3 + N, and
Nation [85] [86] has developed another approach to finding the covers of finitely generated
varieties, which he uses to show that {L;}Y has ten join irreducible covers, and that above
{L12}V there are exactly two join irreducible covering chains of varieties. These results
are mentioned again in more detail at the end of Section 4.4.

The notions of splitting lattices and bounded homomorphic images have been discussed
in Section 2.3, so this chapter covers the results of Jonsson and Rival [79], Rose [84] and
Lee [85].

7
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PO

Ms(z,y,z2) Li(z,y,z2) Ls(z,y,z2) La(z,y,2)
(Lg is dual) (Ls is dual)
rt+y=y+z y(z +2) = zz zr+z=y+z w4+z=y+z
=x+z (z+y)z =uy Ty =12 (z+y)z=uzy
zy=yz=u2z (v4+y)le+z)=2 z+yz=a+y
r<y+z (z+y)z=yz
Figure 4.1

4.2 Semidistributivity
Recall from Section 2.3 that a lattice L is semidistributive if for any w,v,2,y,z € L

(SD+) u=zx+ y=u + z iI[lplieS U=+ yz and dlld,uy
(SD) u=xy =1z implies w = z(y + 2).

A glance at Figure 4.1 shows that the lattices M3, Ly, Lo, L3, L4 and Ls fail to be semidis-
tributive and hence they cannot be a sublattice of any semidistributive lattice. The next
lemma implies that for finite lattices the converse is also true. Given a lattice L and three
noncomparable elements z,y,z € L we will write L;(z,y, 2) to indicate that these elements
generate a sublattice of L isomorphic to L;, ¢ = 1,2,3,4,5 (Figure 4.1). Algebraically this
is verified by checking that the corresponding defining relations (below Figure 4.1) hold.

We denote by ZL and F L the ideal and filter lattice of L respectively (F L is ordered
by reverse inclusion). L is embedded in 7L via the map 2 — (z] and in FL via z — [2).
We identify L with its image in ZL and F L. Of course ZL (F L) is (dually) algebraic with
the (dually) compact elements being the principal ideals (filters) of L. Hence both lattices
are weakly atomic (i.e. in any quotient u/v we can find r,s € u/v such that » > s). In
particular, given a,b € L, there exists ¢ € ZL satisfying a < ¢ < a + b.

Note also that ZL is upper continuous,i.e. for any « € ZL and any chain €' CZL, we
have z}"C = )" o oy (see [ATL] p. 15).

LEMMA 4.1 (Jousson and Rival [79]). If a lattice L is not semidistributive, then either
IFIL or FIFL contains a sublattice isomorphic to one of the lattices Ms, Ly, Lo, L3, L4
or Ls.

ProOOF. Suppose that L is not semidistributive. By duality we may assume that there
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(i) (i)

Figure 4.2

exist u,z,y,z € L such that
(%) u=cs+y=x+z but z4+yz<u.

As a first observation we have that z,y and z must be noncomparable. By the weak
atomicity of ZL, we can find 2’ € ZL such that z + yz < 2’ < u, whence it follows that

w=a'+y=a2"+2z, yz<az' <u.

In FZL we can then find minimal elements y’, 2’ subject to the conditions v = 2’ + ¢y’ =
'+ 2,y <yand 2/ < z. Now 2’y < g’ since equality would imply 2’ = w. Furthermore,
if 2’y < w <y, then 2’ < 2’4+ w (equality would imply w < 2'y’) and 2’ +w < 2'+y' = u.
Hence ¢’ + w = u and by the minimality of y', w = . It follows that y’ covers z'y’, and
similarly 2’ covers z’z’. So, dropping the primes, we have found u, z,y, z € F 7L satisfying
(%) and

() z<x<u, zy<y, rz<z see Figure 4.2 (i).

Since zy < y ,we have either y(zy+2) = 2y or y < zy+ z, and similarly z(zz+y) = 22
or z < zz + y. We will show that in each of the four cases that arise, the lattice 7ZL or
IFIL must contain M3 or one of the L; (¢ =1,...,5) as a sublattice.

Case 1: y < azy+zand z < wz+y. Since z,y and z are noncomparable, so are zy and
zz (zy < zz would imply y < azy+2<zz4+2=2). Let w=2y+ 2z, theny,z L w<z
and w £ y,z since zy < y and zz < z. The following calculations show that we in fact
have Lo(w,y,z): wy + wz = sy + 2z = w; w > zyz = yz; y + 2z < y + z and equality
follows from the assumption that y + 2z > z; similarly z + 2y = y + z (see Figure 4.1 (ii),
4.2 (i) and (ii)).

Case 2: y < zy+ z and 2(zz+ y) = z2. Let s = 2(y + 2) and ¢ = 2z + y. The most
general relationship between z,s,? and z is pictured in Figure 4.2 (iii). We will show that
either Ls(s,t,2z) or Ls(z,s + t,z) (see Figure 4.1). Clearly sz = z(y + z)z = 2z = «t by
assumption. Furthermore ¢ and z are noncomparable (z £ ¢ since tz =22 < z,y <t £ 2
sincey £ z),asare sand z (z € s <a,s L zelses+z =z=y+z),and t £ s since y <1,
s <z but y £ x. Suppose now that s+t =y+z. Then s £t (else y+z=s+t=1> z,
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Yn+1 A x Yoo
Yn+12n+1 Yn LYoo Y2

: h

TYn+12n+1 Y2 : Y
T
LYn o ry

(i) (iii)

Figure 4.3

contradicting ¢  z) and therefore s,t, z are noncomparable. Also st = zt since t < y + z,
thus st + 2z = 2t 4+ 2z > 2y + z > y+ z (by assumption), whence st + z = y+ z. This shows
Ls5(s,t,z). On the other hand s +1 < y+ z implies that z, s + ¢,z are noncomparable, and
so L3(z,s + t,z) follows from the calculations:

u=z+zx=s+t+z (since z < u)
z(s+1t) = zu (since zz < z)
z+a(s+t)=z+s=z4+(s+1)
(z+s+t)e=(y+2)e=s=(s+ ).

Case 3: y(zy+ z) = 2y and z < zz + y. This case is symmetric to the preceding case.

Case 4: y(zy + z) = 2y and z(zz + y) = zz. We claim that for n = 0,1,... one can
find increasing chains of elements y, € y 4+ z/y and z, € y + z/z such that () and (*%)
hold with y and 2 replaced by y,, and z,. Indeed, let yg = y, z0 = z and

Yn+1l = Yn + xzy, Zn4+1 = 2n + XY,

Then yo < y+ z and z9 < y + 2z and if we suppose that y,,z, < y + z then clearly
Ynt1 = Yn + 22, < y+ z and z,41 < y + 2. Now suppose that () and (x) hold with
y and z replaced by y, and z, for some n > 0. We show that the same is true for y, 41
and z,41. Firstly @ + yp41 = ¢ + Y + 22, = 2 + y, = u by hypothesis, and similarly
z + 2,41 = u. Further we may assume that y,z,41 = 2y, and z,y,41 = ¢2z,, for otherwise
one of the three previous cases would apply. Now z < 2,47 and z £ z, 50 2,41 £ 2 and
hence zz,41 < zp41- If 22,41 <t < 2,41 then put s = 2z, + zt (Figure 4.3 (i)). We show
that either Ls(z,,t,2) or L4(s,t,z) or Ls(z,,st,z), from which it follows that we may
assuine T2p41 < Zp41. U = 2+ =t +w since z < w, and zz, = tz, since zz, < z,.
Also ot < 2(z, +1) < 22,41 < at shows that ot = z(z, + ) = 22,41 and x,t, 2, are
noncomparable.

Now either z, + ¢t = s, which implies L3(z,,t,z), or z, + ¢t > s in which case we
have Ly4(s,t,z) (if st = zt) or L3(zy,st,z) (if st > «t). Similarly we may assume
that zyn,+1 < Yny1. Finally we can assume that y,y12,41 < 2, otherwise we obtain
Ls(Ynt12n+1, TYnt1, Yn) (Figure 4.3 (ii)).
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In ZFZ L we now form the join y., of all the y,, and the join zo, of all the z,. Clearly
/u:w+yoo:$+zoov yoo+zoo:y+z

Furthermore, © £ yo since z is compact and z £ y, for all n. Therefore z2yo, < Yoo and
if 2900 <1 < Yoo then there exists m € w such that for all n > m ¢ 2 y,, hence ty, = zy,
(Figure 4.3 (iii)). We compute

b= 1Yo = Ztyn: Z-Lyn:vLyoo

where the second and last equality make use of the upper continuity of ZFZL. Thus
TYoo < Yoo and similarly zz,, < zo. Also, for each m, Y, 200 = >, c0 Ymzn < @, hence
YooZoo < &. Lastly, vy, < wz,41 implies

TYoo = D WY S D B2np1 = e

and similarly zz., < 2yo. Consequently xyo, = T2 = Yoo Zoo-

Dropping the subscripts we now have w,z,y,z € ZFLL satisfying (), (%) and 2y =
vz = yz. Let t = x(y+ 2). If t = yz then L4(y, z, ) holds, and if ¢ > yz then we consider
the four cases depending on whether or not the equations y+ z=y+tand y+z=%t+ =
hold. If both hold, then we get Ms(w,y, z), if both fail then we let s = (y + w)(w + 2)
to obtain Lq(s,y,2) (here we use zy < y, 2z < z, see Figure 4.3 (iv)), and if just one
equation holds, say y +t < z+ 1t = y + z, then Ly(y,t,2) follows. This completes the
proof. a

Semidistributive varieties. If L is a finite lattice, then ZFIL =~ FIFL = L, so L is
semidistributive if and ounly if L excludes M3, Ly, Lo, L3, L4 and Ls. We say that a variety
V of lattices is semidistributive if every member of V is semidistributive. The next theorem
characterizes all the semidistributive varieties.
THEOREM 4.2 (Joémsson and Rival [79]). For a given lattice variety V, the following
statements are equivalent:

(i) V is semidistributive.

(ii) Ms,L1,Lo, L3, La,Ls ¢ V.

(iii) Both the filter and ideal lattice of Fy(3) are semidistributive.

(iv) Let yo =y, 20 = z and, for n € w let y,41 = y + ¢z, and z,41 = z + 2y,. Then for
some natural number m the identity

(SDIIL) ”L(y + Z) = TYm
and its dual (SD}) hold in V.
Proor. Since each of the lattices in (ii) fail to be semidistributive, (i) implies (ii), and
(ii) implies (i) follows from Lemma 4.1 and the fact that L € V implies ZFIL, FIFL € V.
Also (i) implies (iii) since ZFy(3), FFy(3) € V.

(iii) implies (iv): By duality it suffices to show that, for some m, z(y+ z) = 2y, in the
free lattice Fy(3) of V generated by z,y,z. By induction one easily sees that y, < y,41



82 CHAPTER 4. NONMODULAR VARIETIES

and z, < zp41. In ZFy(3) we define yo as the join of all the y, and z. as the join of
all the z,. Now 2y, < zz,41 and 22, < 2y,41, hence by the upper continuity of ZFy(3),
LYoo = 200 = v, say. Also y, + z, = y + z for each n implies yoo = 200 = ¥y + z. By
semidistributivity we therefore have v = (Yoo + 200) = 2(y + 2). Hence v = 37, ., 2y, is
a compact element of Z Fy(3), so for some m € w, z(y + z) = Y.

(iv) implies (i): If L € V is not semidistributive, then there are elements «,y,z in L
such that zy = 2z < 2(y + 2) or dually. Then, for all n, y, = y and 2, = z, whence
zy, < z(y + z). Consequently the identity fails for each n. a

The fourth statement shows that semidistributivity cannot be characterized by a set
of identities, and so the class of all semidistributive lattices does not form a variety.

Semidistributivity and weak transpositions. For the notions of weak projectivity
we refer the reader to Section 1.4. The next result concerns the possibility of shortening
a sequence of weak transpositions. Suppose in some lattice L a quotient zg/yo projects
weakly onto another quotient ,,/y, in n > 2 steps, say

:EO/yO /w :El/yl \w 1’2/!,/2 /"w - -wn/yn-
If there exists a quotient u/v such that
20/Yo \w /0w T2/ Y3,

then we can shorten the sequence of weak transpositions by replacing the quotients z1/y;
and z2/y2 by the single quotient u/v. In a distributive lattice this can always be done,
since we may take u/v = zoxz/yoyz. The nonexistence of such a quotient u/v is therefore
connected with the presence of a diamond or a pentagon as a sublattice of L. If L is
semidistributive, then this sublattice must of course be a pentagon. The aim of Lemma 4.3
is to describe the location of the pentagon relative to the quotients z;/y;.

We introduce the following terminology and notation: A quotient ¢/a in a lattice L is
said to be an N-quotient if there exists b € L such that ¢ + b = a + ¢ and ab = ac. In this
case a, b, c € L generate a sublattice isomorphic to the pentagon N, a condition which we
abbreviate by writing N (c¢/a,b).

LEMMA 4.3 (Jonsson and Rival [79]). Let L be a semidistributive lattice and suppose
zo/yo /w 1/¥1 \w ¢2/y2 in L. Then either

(i) there exist a,b,c € L with N(c/a,b), and b/bc is a subquotient of zo/yo or
(ii) there exist a,b,c,t € L with N(¢/a,b), yo <t < g and t/yo /' a + b/b or

(iii) there exists a subquotient p/q of xo/yo such that p/q \, u/v / x3/yz for some
quotient u/v.

ProoOF. Let z{ = zo(y1 + z2). (i) If 2 + y1 < 22 + y1, then the elements ¢ = z{, + ¥,
b= a9 and ¢ = y1 + @2 give N(¢/a,b) and b/bc = wo/x{ C wo/yo (Figure 4.4 (i)).

(ii) Suppose z{, + y1 = 22 + y1. By the semidistributivity of L, z9 + y1 = z{z2 + 1 =
zoZ2 + Y1, hence (zoz2 + y2) + y1 = 22 + y1. I zozg + y2 < 2, then the elements
a = zox3 + Y2, b = y1, ¢ = w3 satisfy n(c/a,b), and a + b/b transposes down onto the
subquotient z(/zoyr of zo/yo (Figure 4.4 (ii)).
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T
Loy
Y2 [
(i)
Figure 4.4

(iii) If o2z + y2 = 22, then

zo/yo 2 p/q = woyr + xoxz/Toyr \ Torz/Toy2 /" T2/ Y2

a

LEMMA 4.4 (Rose [84]). If L is a semidistributive lattice and zo/yo /5 1/11 s T2/Y2
in L, then xzo/yo \, ©ox2/yoy2 / ©2/Yya2.

PRrROOF. Since we are dealing with transpositions, yo = zoy1, y2 = €241 and z1 = y1+zo =
y1 + z1. By semidistributivity @1 = y1 + zpx2. Now the bijectivity of the transpositions
implies yo + zoz2 = (yo + zoZ2 + Y2)To = T1Zo = %o, and similarly y2 + zoz2 = z3. Also

Yo(zozz) = Tey122 = Yoy1 and ya(zoz2) = You1- O

3-generated semidistributive lattices. Let Fy, Fy, F3, F; be the lattices in Figure 4.5.
It is easy to check that each of these lattices is freely generated by the elements z,y, 2
subject to the defining relations listed below.

LEMMA 4.5 (Jénsson and Rival [79], Rose [84]). Let L be a semidistributive lattice
generated by the three ©,y,z with x < 2y + z and zz < y.

(i) If L excludes Ly, then L € HF;.

(ii) If L excludes L1y and L7 then L € HF3.

(iii) If L excludes L1z and Lg then L € HF5.

(iv) If L excludes L1z, L7 and Lg then L € HF)}.

Proor. (i) z < zy + z is equivalent to 2y + z = = + 2, so it suffices to show that
under the above assumptions (z + y)z = yz. The free lattice determined by the elements
z,z,2y,yz and the defining relations ¢ < zy + z and 2z < y is pictured in Figure 4.6(i).
Let yo = 2+ yz, y1 = 2y + Yoz, y2 = yz + zy; and w = zy + yz. To avoid L2 we must
have y; = ys.
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Since w4+ yoz = y1 = Y2 = w+ xy1, semidistributivity implies 13 = y2 = wyozzy; = w.
Further we compute yoz = y12 = wz = yz. Again by semidistributivity yz = (yo + y)z =
(z +yz+y)z = (z + y)z, as required.

(ii) Let s = (¢ + y)(y+ 2) and t = @ + y(« + z), then the sublattice of I} generated by
y, z and ¢ is isomorphic to L7 (Figure 4.6 (iii)) with critical quotient s/¢.

(iii) is dual to (ii), and (iv) follows from (ii) and (iii). O

LEMMA 4.6 (Rose [84]). Let L be a semidistributive lattice that excludes Lyy and Lqig. If
a,b,c,u,v € L with N(u/v,b), a < ¢ and u/v projects weakly onto c¢/a, then N(c/a,b).

Proor. We show that u/v /', ¢/a implies N(c/a,b), then the result follows by repeated
application of this result and its dual. Let « = w, y = @ and z = b (Figure 4.7 (i)).
Then = < 2y + z and zz < y, hence by Lemma 4.5 z,y, z generate a homomorphic image
of Iy (Figure 4.5). Computing in this lattice, we have bc = z(z + y) = zy = ba and
b+a=z+y==z+(x+y)=>b+c ,which implies N(¢/a,b). a

COROLLARY 4.7 Suppose u/v and ¢/a are nontrivial quotients in a semidistributive lattice
L that excludes L11 and Lyy. If b € L and (a,c¢) € con(u,v), then N(u/v,b) implies
N(c/a,b).

Proor. By Lemma 1.11 there is a sequence ¢ = ¢y < €7 < ... < €, = ¢ such that
u/v projects weakly onto e;/e; 1 for each ¢+ = 1,...,n. By Lemma 4.6 N(u/v) implies
N(ei/ei1,b), hence ;b < e¢; 1 and e; 1 +b > e;. It follows that ab = e1b=...=¢e,b=¢b
and a4+ b = ¢+ b, whence N(c/a,b). m|

Figure 4.7 (ii) shows that the above result does not hold if L includes L1 or (by
duality) Ly2. The next result shows just how useful the preceding few lemmas are.

THEOREM 4.8 (Rose [84]). Let L be a subdirectly irreducible semidistributive lattice that
excludes L1y and Li3. Then L has a unique critical quotient.

PROOF. Suppose to the contrary that ¢/a and p/q are two distinct critical quotients of
L. Then (p,q) € con(a,c), hence by Lemma 1.11 there exists p’ € p/¢ such that p’ > ¢
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and c¢/a projects weakly onto p’/q in k steps. We may assume that ¢/a € p/q (else p/c
or a/q is critical and can replace p/q), and p/q € ¢/a. Consequently k > 1, p'/q € ¢/a
and therefore we can find a nontrivial quotient w/v € ¢/a such that ¢/a ~,, w/v. By
duality, suppose that ¢/a /" u/v, and put o’ = cv. Since ¢/a’ is also critical, we get
(a’,c¢) € con(a’,v). Again by Lemma 1.11 there exists ¢’ € ¢/a, ¢ > a' such that v/a’
projects weakly onto ¢//a’ (see Figure 4.7 (iii)). Consider a shortest sequence

’U/(L, - iﬂo/yo ~w wl/yl ~w - N 'Ln/yn - C,/(L,-

Clearly n > 2 since ¢/ £ v. Observe also that if n = 2, then we cannot have v/a’ N\,
z1/y1 /w ¢'/d, since that would imply ¢/ = o’ + 27 < v.

First suppose that v/a’ /' 1/y1 \w *2/y2. Then only (i) or (ii) of Lemma 4.2 can
apply, since the sequence cannot be shortened if n > 3, and for n = 2 this follows from
the observation above. If (i) holds, then there exist a”,b,¢” € L such that N(¢"/a”,b) and
b/bc"” C w/a'. Since ¢'/d’ is critical, (a’,¢’) € con(a”,c”), whence by Corollary 4.7 we have
N(c'/d',b). If (ii) holds, then there exist a”,b,¢”,t € L such that N(c¢"/a”,b),t/a” Cv/a
and t/a' /' a"” 4+ b/b. Again we get N(c'/a’,b) from Corollary 4.7. But in both cases we
also have b < d’, so this is a contradiction.

Now suppose that v/a’ N 21/v1 /w T2/y2. As we already noted, this implies n > 3,
so we may only apply the dual parts of (i) or (ii) of Lemma 4.2. That is, there exist
a”,b,c" t € L with N(c¢"/a”,b) and either «” +b/b C v/a' or v/t C v/a’, v/t . b/bc".
Again Corollary 4.7 gives N(¢'/a’,b). In the first case this contradicts b > o', and in the
second, since b/be” / v/t, we have v = b+t > b+ a’ > ¢/, and this contradicts ¢’ = v¢'.0

Notice that if a lattice has a unique critical quotient ¢/a, then this quotient is prime
(i.e. ¢ covers a), ¢ is join irreducible, a is meet irreducible, and con(a, ¢) identifies no two
distinct elements except ¢ and a. To get a feeling for the above theorem, the reader should
check that the lattices N, Lg, L7, Lg, Ly, L19, I3, I14 and Ly5 each have a unique critical
quotient, where as L1 and Lq9 each have two.

4.3 Almost Distributive Varieties

Recall the definition of the identities (SD;,) and (SD}) in Theorem 4.2. Of course (SDy)
and (SD{) only hold in the trivial variety, while

(SD3) o(y +2) = z(y + vz)

holds in the distributive variety, but fails in M3z and N (Figure 4.8). Thus (SDj) (and by
duality (SD7)) is equivalent to the distributive identity. The first identities that are of
interest are therefore

(D) aly+e) = aly+alz+ o)
(SbT) r+yz=uz+ylz+z(z+y)).

Neardistributive lattices. A lattice, or a lattice variety, is said to be neardistributive
if it satisfies the identities (SDj) and (SDF). This definition appears in Lee [85]. By
Theorem 4.2 every neardistributive lattice is semidistributive, and it is not difficult (though
somewhat tedious) to check that N, L, ..., L1o, L13, L14 and Lj5 are all neardistributive.
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Figure 4.8

On the other hand Figure 4.8 (iii) shows that (SD;) fails in L1, and by duality (SDF)
fails in Lqq.

THEOREM 4.9 (Lee [85]). A lattice variety V is neardistributive if and only if V is
semidistributive and contains neither Ly or Lqs.

Proor. The forward implication follows immediately from the remarks above. Conversely,
suppose that Ly, L12 ¢ V and V is semidistributive but not neardistributive. We show
that this leads to a contradiction. By duality we may assume that (SD;) does not hold in
V, so for some lattice L € V, z,y,z,a,¢c € L we have z(y+ 2(z + zy)) = ¢« < ¢ = x(y + 2).
Let L be a homomorphic image of L such that ¢/@ is a critical quotient in L. Clearly
L excludes Ly and Lqg, hence Theorem 4.8 implies that ¢/a@ is prime and @ is meet
irreducible. Thus@a =7 ora=y+z(z+ 7y). But ¢ <7 , whence a = g+ z(z + 77y) > 7.
This however is impossible, since 7 > y implies a =y + z(zy) =y +c = . a
For finite lattices we can get an even stronger result.

THEOREM 4.10 (Lee [85]). A finite lattice L is neardistributive if and only if L is semidis-
tributive and excludes Ly1 and Lq.

Proor. The forward direction follows immediately from Theorem 4.9. Conversely, sup-
pose L is finite, semidistributive and excludes L7 and Lq3, but is not neardistribu-
tive. Then by Theorem 4.9, {L}V contains a lattice K, where K is one of the lattices
Ms, Ly,...,Ls, L11, L12. Since K is subdirectly irreducible, Jonsson’s Lemma implies
K € HS{L}. It is also easy to check that every choice of K satisfies Whitman’s condition
(W), hence Theorem 2.47 implies that K is isomorphic to a sublattice of L. This however
contradicts the assumption that L is semidistributive and excludes L1, L12. a

It is not known whether the above theorem also holds for infinite lattices. Note that
Theorem 4.8 implies that any finite subdirectly irreducible neardistributive lattice has a
unique critical quotient.

Rose [84] observed that any semidistributive lattice which contains a cycle must in-
clude either Ly; or Lqg (refer to Section 2.3 for the definition of a cycle). This fol-
lows easily from Corollary 4.7 and the fact that if pyopeo...op,opo is a cycle then
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Figure 4.9

con(pi, pin) C con(pit1,pit+1.) (see Figure 2.6), whence all the quotients p;/p;, gener-
ate the same congruence. In particular, Theorem 4.10 and Corollary 2.35 therefore imply
that every finite neardistributive lattice is bounded.

Almost distributive lattices. The next definition is also from Lee [85]. A lattice or
a lattice variety is said to be almost distributive if it is neardistributive and satisfies the
inclusion

(AD") v(u+¢) <u+clv+a), where a = a2y + 2z, ¢ = 2(y + ©2),

and it dual (ADY).

Every distributive lattice is almost distributive, since the distributive identity implies
w+c(v+a)=(u+c)(u+v+a)> (u+c)v. On the other hand L1y and L;o fail to be
almost distributive, since they are not neardistributive. Further investigation shows that
(AD) fails in Lg, Lg and Lg (see Figure 4.9), and by duality (AD%) does not hold in L7
and Lqg, while the next lemma shows that N, L3, L14 and Lq5 are almost distributive.

Recall from Section 2.3 Day’s construction of “doubling” a quotient w/v in a lattice
L to obtain a new lattice L[u/v]. Here we only need the case where L is a distributive
lattice D, and v = v = d € D. In this case we denote the new lattice by D[d]. Note that
N, Li3, L14 and Lq5 can be obtained from a distributive lattice in this way.

LEMMA 4.11 (Lee [85]). For any distributive lattice D and d € D, the lattice D[d] is
almost distributive.

ProOF. By duality it suffices to show that D[d] satisfies (SD;) and (AD"). If (SD5) fails,
then we can find z,y,2,a,c¢ € D[d] such that z(y + z(z + 2y)) = a < ¢ = z(y + z). Let
w be the image of u € D[d] under the natural epimorphism D[d] — D (i.e. uw = u for
all w # d, and (d,0) = (d,1) = d). Since D is distributive, we must have @ = ¢, whence
a = (d,0) and ¢ = (d,1). Clearly @ is meet irreducible by the construction of D[d], and
this leads to a contradiction as in Theorem 4.9. To show that (AD") holds in D[d], let us
now denote by u,v,z,y,z,a,c the elements of D[d] corresponding to an assignment of the
(same) variables of (AD"). If a = ¢, then (AD") obviously holds. If a # d (i.e. a < ¢),
then the distributivity of D again implies that @ = ¢, hence a = (d,0) and ¢ = (d,1). Now
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v < a implies u+ c¢(v+a) =u+a > v > v(a+ c), while v £ @ and the meet irreducibility
of @ imply v+ ¢ > ¢, whence u + ¢(v+ a) = u+ ¢ > v(u+ ¢). Thus (AD") holds in all
cases. (W

Of course not every almost distributive lattice is of the form D[d] (take for example
2 X 2, or any one element lattice), but we shall see shortly that all subdirectly irreducible
almost distributive lattices can indeed be characterized in this way.

LEMMA 4.12 (Jénsson and Rival [79]). Let L be a semidistributive lattice which excludes
L12, and suppose that a,b,c,a’,b’ € L with N(c/a,b) and c¢/a / ¢'[a’. Set r = a’b+ ¢ and
s=(b+c)d'. Then
(i) ¢/a /g r/a'r or L includes Lg or Lyg;
(ii) ¢'/a’ \p ¢+ s/s or L includes L7 or Ly;
(iii) r/a'r /"5 ¢+ s/s or L includes Lg.
Proor. (i) Note that the lattice in Figure 4.10 (i) is isomorphic to Fy in Figure 4.5.

Assume L excludes Lg and Lqg (as well as Lqg), and take 2 = ¢, y = o', z = b in
Lemma 4.5 (iii). Then L is a homomorphic image of F3, and since we have N(¢'/a’,b) and
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ra’ = a'b+ a in Fj, the same is true in L. For ¢t € ¢/a we must have (¢ + a'b)c = t, else
b,a'r,t,(t+ a'b)c generate a sublattice isomorphic to Lig (see Figure 4.10 (ii)). Similarly,
for ¢ € r/a’r we must have ¢t’ + a’b = t' to avoid Ls(t',¢,b) (see Figure 4.10 (iii)). This
shows that ¢/a transposes up onto r/a’r and also proves that this transposition is bijective.
(ii) is dual to (i). Lastly (iii) hold because for t € r/a’r and t' € ¢ + s/s, we must have
(t+ s)r = tand t'r +s = t/, to avoid Lg((t + s)r/t,s,b) and Lg(t'r + s/t',r,b) (see
Figure 4.11). ]

Characterizing almost distributive varieties. The next theorem is implicit in Jonsson
and Rival [79] and appeared in the present form in Rose [84].

THEOREM 4.13 Let L be a subdirectly irreducible semidistributive lattice. Then the
following conditions are equivalent:

(1) L excludes L()', L7, Lg, Lg, L](), L117 L]z,’
(ii) L has at most one N-quotient;

(iii) L = DId] for some distributive lattice D and some d € D.

PrROOF. Assume that (i) holds, and consider an N-quotient u/v in L. By Theorem 4.8, L
has a unique critical quotient which we denote by c/a. It follows that ¢/a is prime, and
Lemma 1.11 implies that u/v projects weakly onto ¢/a, say

U/’U:ib'o/’yo S w 46'1/’!/1 \w---/w -Ln/yn:C/a

Of course this implies that z;/y; € con(u,v) for each ¢+ = 0,1,...,n, and since u/v
is assumed to be an N-quotient, we have N(u/v,b) for some b € L. Thus Corollary 4.7
implies N(z;/yi,b) for each ¢. In particular, it follows that ¢/a is an N-quotient. We show
that it is the only one. Note that z;/y; \w Zit1/vi+1 implies z41/viv1 /" i + Tiv1/Yis
whence by Lemma 4.12 (i), (ii) and (iii) this transposition is bijective. Similarly the dual
of Lemma 4.12 shows that z;/y; /v Ziy1/yi+1 implies z;41/yit1 \g zi/ziyiy1. Hence c/a
is projective to a subquotient of u/v (see Figure 4.12). By Theorem 4.8 this subquotient
must equal ¢/a, otherwise I would have two critical quotients. Furthermore u < v implies
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that u/c is also an N-quotient, and for the same reason as above, ¢/a would have to be a
subquotient of u/c. But this is clearly impossible, hence u = ¢, and similarly v = a.

If (i) holds then L excludes Li; and L1z, so again Theorem 4.8 implies that ¢/a is a
prime quotient and con(a, ¢) identifies no two distinct elements of L except a and c. Let
D = L/con(a,c). Clearly D cannot include Mz, otherwise the same result would be true
for L, contradicting semidistributivity. D also excludes the pentagon N, since con(a,c)
collapses the only N-quotient of L. Hence D is distributive. Let d = a,c € D, then it is
easy to check that the map « — {«} (¢ # ¢,a), ¢ — (d,1)and a — (d,0)is an isomorphism
from L to D[d]. To prove that (iii) implies (i), we first note that since D is distributive,
the natural homomorphism from D[d] to D must collapse any N-quotient in D[d]. Hence
(d,1)/(d,0)is the only N-quotient, and as each of the lattices Lg, L7, ..., L12 has at least
two N-quotients, (i) must hold. O

The following corollary summarizes the results that have been obtained about almost
distributive lattices and varieties.

COROLLARY 4.14
(i) A subdirectly irreducible lattice L is almost distributive if and only if L = D[d] for
some distributive lattice D and d € D.

(ii) A lattice variety is almost distributive if and ounly if it is semidistributive and contains
none of the lattices Lg, L7,. .., L.

(iii) Every finitely generated subdirectly irreducible almost distributive lattice is finite.

(iv) Every almost distributive variety that has finitely many subvarieties is generated by
a finite lattice.

(v) Every join irreducible almost distributive variety of finite height is generated by a
finite subdirectly irreducible lattice.

(vi) Every finite almost distributive lattice is bounded (in the sense of Section 2.3).

Proor. (i) The forward implication follows from Theorem 4.13, since L is certainly
semidistributive and, as Lg, L7, ..., L12 all fail to be almost distributive, L must exclude
these lattices. Theorem 4.11 provides the reverse implication.



92 CHAPTER 4. NONMODULAR VARIETIES

(ii) The forward direction is trivial. Conversely, if V is semidistributive and contains
none of Lg, L7, ..., L1, then Theorem 4.11 and Theorem 4.13 imply that every subdirectly
irreducible member, and hence every member of V is almost distributive.

(iii) If the lattice L = D[d] in (i) is finitely generated, so is the distributive lattice D.
It follows that D is finite, and since |L| = |D[d]| = |D| + 1, L is also finite. Now (iv) and

(v) follow from Lema 2.7, and (vi) is a consequence of Leminas 2.40 and 2.41. O

In particular the last result shows that any finite subdirectly irreducible almost dis-
tributive lattice is a splitting lattice.

Part (iii) above says that almost distributive varieties are locally finite, and this is the
reason why they are much easier to describe than arbitrary varieties. More generally we
have the following result:

LEMMA 4.15 (Rose [84]). Let L be a finitely generated subdirectly irreducible lattice all
of whose critical quotients are prime. If ¢/a is a critical quotient of L, and if L/con(a,c)
belongs to a variety that is generated by a finite lattice, then L is finite.

ProoOF. Since every critical quotient of L is prime, each congruence class of con(a, ¢) has
at most two elements. Thus the assumption that L is infinite implies that L/con(a,c)
is infinite as well. However, this leads to a contradiction, since the lattice L/con(a,c) is
finitely generated and belongs to a variety generated by a finite lattice, hence L/con(a, c)
must be finite. a

Subdirectly irreducible lattices of the form D[d]. We continue our investigation of
semidistributive lattices that exclude L1 and Lq2, which will then lead to a characteriza-
tion of all the finite subdirectly irreducible almost distributive lattices.

LEMMA 4.16 (Rose [84]). Let L be a subdirectly irreducible semidistributive lattice that

excludes L1 and L1z, and suppose c¢/a is the (unique) critical quotient of L. Then

(i) the sublattices [a) and (c] of L are distributive;

(ii) for any nontrivial quotient u/v of (¢| there exist b,v" € L with v < v' < u such that
N(c/a,b),b<u,bLv and v' +b/v" \ a+b/(a+ b)v' (Figure 4.13).

(iii) if w > v = ¢ in (ii), then we also have u = a + b.

Proor. (i) By semidistributivity, L excludes M3. Suppose that for some u,v,b € L we
have N(u/v,b). Then Corollary 4.7 implies N(c/a,b), whence b ¢ [a) and b ¢ (¢|. It
follows that [a) and (c] also exclude the pentagon, and are therefore distributive.

(ii) Choose a shortest possible sequence

u/v = 2o/Yo ~w T1/Y1 ~w - - ~w T/ Yn = €/ a.

Since v > ¢, we must have n > 3. Suppose that u/v /4 z1/y1 \w ¢2/y2. By the mini-
mality of n, only part (i) or (ii) of Lemma 4.3 can apply. That is, there exist a/,b,¢/,u' € L
with N(¢’/a’,b) and v < v/ < w such that b/bc’ C u/v or w'/v /W @ + b/b. But Corol-
lary 4.7 implies N (¢/a, b, which is impossible since in both cases b > a. Thus we must have
u/v \w 1/y1 /" ©2/y2. By the dual of Lemma 4.3 (i) and (ii), there exist a/,b,¢/,v" € L
with N(¢'/a’,b) and v < o' < u such that either ¢’ + b/b C u/v or u/v' . b/bc’. Only
the latter is possible, since we again have N(c/a,b) by Corollary 4.7. Now a,b < u implies
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a+b < u,and ¢ < v implies v' + b = v' + (a + b), hence v' + b/v" N\, a + b/(a + b)v'.
Also bv' = b’ # b implies b £ v, and the bijectivity of the transposition follows from the
distributivity of [a) (part (i)). (iii) is a special case if (ii). a

THEOREM 4.17 (Rose [84]). Let D be a finite distributive lattice and d € D. Then D[d]
is subdirectly irreducible if and only if all of the following conditions hold:

(i) every cover of d is join reducible,
(ii) every dual cover of d is meet reducible, and

(iii) every prime quotient in D is projective to a prime quotient p/q with p = d or ¢ = d.

PROOF. Suppose L = D[d] is subdirectly irreducible. Let a = (d,0) and ¢ = (d,1). Notice
that D = d implies that (i), (ii) and (iii) are satisfied vacuously. If v € D covers d, then
u covers ¢ in L, whence by Lemma 4.16 (iii) there exists b € L noncomparable with ¢,
and u = a + b. Thus w is join reducible in L and also in D. Dually, every element that is
covered by d is meet irreducible. To prove (iii), consider a prime quotient u/v # ¢/a in L,
and choose a sequence

’U,/'U:.’EO/yO ~aw 'Tl/yl N e Ny ',E’fl/yn Qc/a

with n as small as possible. For i < n none of the quotients x;/y; contains ¢/a, and is
therefore isomorphic to z;/y; in D (where = denotes the image of z under the natural
epimorphism D[d] — D). Since D is distributive and u/v is prime, each z;/7; is prime,
whence zo/y0 ~ z1/y1 ~ ... ~ T, [y, It follows that z,, = d or g, = d, so (iii) holds with
P/ = %n/Yn-

Conversely, suppose (i), (ii) and (iii) hold. Since D and hence L are finite, it suffices to
show that every prime quotient of L projects weakly onto ¢/a. We begin by showing that
every prime quotient u/v # ¢/a is projective to a prime quotient z/y with z = a or y = ¢.
Since ¢ is the only cover of a (and dually), we cannot have v = a or u = ¢. Alsoif u = a
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or v = ¢, then we take 2/y = u/v. Otherwise, using (iii), we may assume by duality, that
u/v is projective to a prime quotient z/d with z > ¢. Since D is distributive, this means
that w £ d and w/v /" u+z/v+¢ \\ z/¢,ie. u+c=u+7 =7+ v, u(v+¢) =vand
z(v+¢)=c. Hence u+ ¢ =u+ 2 =z + v, and further more v # d implies u(v + ¢) = v
and z(v + ¢) = ¢ (since a < ¢). Thus u/v /" w+ z/v+ 2\, z/c. Now we apply (i) to
obtain be L withb< zand z =¢+b. It follows that s =c+b=a+ b (since a is meet
irreducible), while the join-irreducibility of ¢ implies ¢b = ab. Thus we have N(c¢/a,b), and
since con(u,v) identifies « and ¢, it also identifies ¢ and a. Consequently L is subdirectly
irreducible. |

Varieties covering that smallest nonmodular variety. From the results obtained so
far one can now prove the following:

THEOREM 4.18 The variety N is covered by precisely three almost distributive varieties,
£13, [:14 'cLIld ,615.

Proor. With the help of Jonsson’s Lemma it is not difficult to check that each of the
varieties £;(= {L;}V) cover N (i = 1,...,15). So let V be an almost distributive variety
that properly includes A'. We have to show that V includes at least one of L3, L14 or
L15. Every variety is determined by its finitely generated subdirectly irreducible members,
hence we can find such a lattice L € V not isomorphic to N or 2. By Corollary 4.14 (i)
and (iii), L = D[d] for some finite distributive lattice D, d € D. We show that DI[d|
contains one of Ly3, L14 or Lys as a sublattice. D is nontrivial since D[d] 2 2. Let Op
and 1p be the smallest and largest element of D respectively. Theorem 4.17 (i) and (ii)
imply that d # 0p,1p. Also, 0p < d < 1p would imply D[d] = N, so by duality we can
find w,v € D such that v < u < d. By Theorem 4.17 (iii) u/v is projective to a prime
quotient p/gq such that p = d or ¢ = d. Since D is distributive and u < d, the case ¢ = d
is excluded, hence u/v is projective to d/q. Again, by the distributivity of D, u # ¢ and
therefore d = u + ¢ (see Figure 4.14 (i)). By Theorem 4.17 (ii) u and ¢ are meet reducible,
so there exist x,y € D such that u = xd, ¢ = yd and since D is finite we may assume that
¢ > u and y > v. The sublattice D’ of D generated by «,d,y is a homomorphic image of
the lattice in Figure 4.14 (ii) (the distributive lattice with generators z,d, y and defining
relation d = zd = yd). Since z > v and y > v, D’ must in fact be isomorphic to the lattice
in Figure 4.14 (iii) or (iv). Counsequently D’[d], as a sublattice of D[d], is isomorphic to
Lq4 or Lys. A sublattice isomorphic to Ly3 is obtained from the dual case when d < v < u.

O

The above theorem and Corollary 4.14 (ii) now imply:

THEOREM 4.19 (Jénsson and Rival [79]). In the lattice A of all lattice subvarieties, the
variety N is covered by exactly 16 varieties: M3+ N, Ly, La,. .., L15.

Representing finite almost distributive lattices. Building on Theorem 4.17, Lee [85]
gives another criterion for the subdirect irreducibility of a lattice D[d], where D is distribu-
tive, and he also sets up a correspondence between finite subdirectly irreducible almost
distributive lattices and certain matrices of zeros and ones. Before discussing his results,
we recall some facts about distributive lattices which can be found in [GLT].
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Figure 4.14

LEMMA 4.20 Let D and D' be finite distributive lattices and denote by J(D) the poset
of all nonzero join irreducible elements of D. Then

(i) any poset isomorphism from J(D) to J(D') can be extended to an isomorphism from
D to D"

(ii) every maximal chain of D has length |J(D)|.

Given a finite distributive lattice D and d € D, let B = {by,...,b,} be the set of all
meet reducible dual covers of d, C' = {cq,...,¢,} the set of all join reducible covers of d,
and consider the set

Xy D)={zeD:zd<d<z+d}.

We define two partitions {By,..., B,,} and {Cy,...,C,} of X4(D), referred to as the
natural partitions of Xq(D), as follows:

B ={z € Xq4(D): zd = b;}, Ci={2eXy(D):z+d=cj}.

(We assume here, and subsequently, that the index ¢ ranges from 1 to m and j ranges
from 1 to n.) By the distributivity of D, two blocks B; and C; have at most one element
in common, so we can define an m X n matrix A(D[d]) of 0’s and 1’s by a;; = |B N C/|.
(If any, and hence all, of the sets B, C or X4(D) is empty, then A(D[d]) = (), the 0 x 0
matrix with no entries.)

A(DId]) is called the matrix associated with D[d], but notice that because the elements
of B and C were labeled arbitrarily, A(D[d]) is determined only up to the interchanging of
any rows or any columns. Observe also that A(D[d]) does not have any rows or columns
with just zeros, since {B;} and {C;} are partitions of the same set Xy(D). As examples
we note that A(2) = (), A(N) = (1), A(L13) = (1,1), A(L14) = (}) and A(Lys) = (g) ‘1))
or <(1) (1)> (see Figure 4.15).

We will also be concerned with the sublattice D* of D generated by the set U =
Xa(D)u{d}. Let 1* =3 U, 0* =[] U, then clearly the elements ¢y, ..., ¢, will be atoms
in the quotient 1*/d and )~ ; ¢; = 1%, so by Lemma 1.12, 1*/d is isomorphic to the Boolean
algebra 2™ and the elements cq,...,c, are the only covers of d in D*. Dually we have
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that d/0* is isomorphic to the Boolean algebra 2™ and that by,...,b,, are the only dual
covers of d in D*. It follows that D* has length m + n and therefore, by Lemma 4.20 (ii),
|J(D*)| = m + n. We can in fact describe the elements of J(D*):

LEMMA 4.21 (Lee [85]). J(D*) = {b},...,b.,,¢},...,c.} where b} is the complement of
b; in d/0%, and ¢, = []C;. All elements of J(D*) are incomparable except: b < ¢/ if and
only if B;nNC; = 0.

ProOOF. It is clear that the b are distinct atoms of D* and therefore pairwise incomparable
and join irreducible in D*. As for the ¢}, we first note that in a distributive lattice every
join irreducible element is a meet of generators. Thus if ¢ is join irreducible and ¢ < ¢/, then
c < c}L for some z € U — ;. Now cé +d=c; #x+d, hence cgwd = (cg +d)(z+d) =d,
which shows that ¢ < ¢jz < d. But ¢ £ d and therefore ¢} cannot be a join of join
irreducibles strictly less that itself. It follows that ¢} is join irreducible. Also ¢i,..., ¢},
are pairwise incomparable, since ¢ < ¢} for some j # k implies ¢} = ¢j¢} < clw for any
& € Ck, and ¢jo < d as above, which contradicts ¢j £ d. Clearly also ¢} £ b; for any ¢ and
J, since b; < d. Therefore it remains to show that b; < ¢} if and only if B; N C; = 0. If
z € BiNCj, then b} < d and ¢; <, s0 bic) = b;(d¢)c; = (b;»b,-)c;- = 0*c¢} = 0* and hence
b, £ ¢;. Conversely B; N Cj = () implies C'; C U — B;, and since b} is a meet of generators,
b; = 11U — Bi <]1C; = ¢j. |

So, given any m X n matrix A = (a;;) of 0’s and 1’s, we define a finite distributive
lattice D4 and an element d4 as follows:

Suppose 2™t" be the Boolean algebra generated by the m + n atoms pq,...,pm,
q1,---,q,. Put

da =Y pi, bp=D) p and @y =bi+gj,
itk

and let X4 = {z;; : aj; = 1}. Now we let Dy be the sublattice of 2™*" generated by
XaU {dA}
LEMMA 4.22 (Lee [85]). For no proper subset U of X4(D) does U U {d} generate D*.
PrROOF. We may assume that X4(D) is nonempty. Suppose to the contrary that U =
Xq(D) — {zo} for some zg € X4(D), and U U {d} generates D*. Then z¢ € C; for some
block C; of the natural partition {C1,...,Cpn} of Xg(D). Let ¢ = [[C; € D*. By
Lemma 4.21 ¢} is join irreducible, and since U U {d} is a generating set, ¢ is the meet
of a subset V of U U{d}. Notice that 2 < « +d = ¢} for each € Cj, so by the dual
of Lemma 1.12 C; generates a Boolean algebra with least element ¢}. Hence V is not a
proper subset of C; and, as 29 ¢ V, we also cannot have V = (. Choose z € V — ;.
Then z +d # 2o+ d = ¢j, s0

d=(z+d)(zo+d)=wzx0+d> w29 ZHC]- :HV :c;-.
However this contradicts ¢ £ d. O

THEOREM 4.23 (Lee [85]). Let D be a finite distributive lattice and d € D. Then the
following are equivalent:

(i) D[d] = Dalda] where A = A(DI[d]) and d € D corresponds to da € D 4;
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(ii) the set X4(D)U {d} generates D (i.e. D* = D);
(iii) D[d] is subdirectly irreducible.

Proor. (i) implies (ii): Let d4,bg,2;; and X4 be defined as above. Clearly z;;dq <
da < zi; +dg for all ¢,7, hence X4 C Xy,(D4). Since X4 U {d} generates D4, so does
Xgq,(Da)U{d}. Notice that D% = Dy, and by Lemma 4.22 X4 = Xq4,(Da4).

(ii) implies (i): Again suppose 2™%" is the Boolean algebra generated by the atoms
Pls--sPms @1y - - qn, and let €5 = dg+¢;. We claim that the elements by, ..., by, ¢1,. ..,
are all in D 4. This follows because zi;d4 = (b; +¢;)da = bjda+ qjda = b; and z;; +ds =
bi+qj+ds=ds+qj=c; forall i,j,and A = A(D[d]) has no rows or columns of zeros,
hence for any given ¢ (or j) there exists j (respectively ¢) such that z;; € X 4. Clearly the
¢; are covers of d4, and they are the only ones, since by Lemma 1.12 }"¢; = 3~ X4 = 1%.
Dually the b; are all the dual covers of dg. Let {Bq,...,B,,} and {Cy,...,C,} be the
natural partitions of X4,(D4) = Xa. By Lemma 4.21 J(D%) = {b},...,0 ,ci,...,c
where bj = p; and Z =T1I1C;. Now B;nC; # 0 iff a;; = 1 in A(D[d]) iff b; < 25 < ¢ in
Dy iff B;nC; # 0. Counsequently the map b} — b, ¢ — Z from J(D*) to J(D%) is a
poset isomorphism which extends to an isomorphism D* = D% by Lemma 4.20 (i). D* is
the sublattice of D generated by X4(D)U {d}, so by assumption D* = D, and we always
have D% = Dy. Clearly also d = 3~ b% is mapped to d, = ZF; by the isomorphism.

(ii) implies (iii): We verify that the conditions (i), (ii) and (iii) of Theorem 4.17 hold.
By Lemma 1.12, the join reducible covers of d in D* = D are in fact all the covers of d,
and dually, which implies that the first two conditions hold. Also, if © < v in D, then
the length of D/con(u,v) is less that the length of D. It follows that con(wu, v) identifies d
with one of its covers or dual covers, hence condition (iii) of Theorem 4.17 holds.

(iii) implies (ii): Suppose DI[d] is subdirectly irreducible, but D* is a proper sublattice
of D. Let 0* be the smallest and 1*the largest element of D*, and choose an element
z€D— D*.

Case 1: z £ 1* or z 2 0*. Then one of the quotients z + 1*/1* or 0*/z0* is nontrivial.
Observe that in any distributive lattice, if v < u < v' < «/, then the quotients u/v and
u' /v’ cannot project onto each other. Hence no prime quotients in z + 1*/1* or 0*/z0*
project onto any prime quotient p/¢ with p = d or ¢ = d, since p,¢q € D* by condition (i)
and (ii) of Theorem 4.17. This however contradicts condition (iii) of the same theorem.

Case 2: 0* < z < 1*. Choose z such that the height of z is as large as possible, and let
z* be a cover of z. Then z* € D*, and z* is the only cover of z, else z would be the meet
of two elements from D* and would also belong to D*. By Theorem 4.17 (iii), the prime
quotient z*/z projects onto a prime quotient p/q with p = d or ¢ = d, and since D is
distributive, this implies z*/z / u/v \ p/q for some quotient u/v. Since z* is the unique
cover of z, we must have u/v = z*/z \, p/q. Suppose p = d. Then z*/z \ d/zd, and
the two quotients are distinct, otherwise Theorem 4.17 (ii) implies z € D*. Consequently
z*/d g z/zd. As before Lemma 1.12 implies that 1*/d is a Boolean algebra, hence z*/d
is a Boolean algebra, and so is z/zd (via the bijective transposition). Therefore z is the
join of the atoms of z/zd, which are in fact elements of X4(D). This implies z € D*, a
contradiction. Next suppose ¢ = d. Since, by Lemma 1.12, 1* C D* we would again have
z € D*, a contradiction. Thus we conclude that D* = D. a

Given any matrix A of 0’s and 1’s with no rows or columuns of zeros, the equivalence of
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(ii) and (iii) tells us that D 4[d 4] is subdirectly irreducible. Conversely, for any subdirectly
irreducible lattice D[d], the matrix A(D[d]) has no rows or columns of zeros, and it is
not difficult to see that, up to the interchanging of some rows or columns, the matrices
A and A(Dalda]) are the same. Furthermore, given any lattice D[d] and X' C X4(D),
the sublattice D’ generated by X' U {d} is subdirectly irreducible, and by Lemma 4.22
X4(D") = X’. Rephrased in terms of the matrices that represent the lattices D and D’
we have the following:

COROLLARY 4.24 Let A = A(DId]) for some finite distributive lattice D, d € D, and
suppose D' is the sublattice generated by some X' C X4(D). Then the matrix A’ which
represents D'[d]| is obtained from A by changing each 1 corresponding to an element
of X4(D) — X' to 0 and deleting any rows or columns of zeros that may have arisen.
Conversely any matrix obtained from A in this way represents a (subdirectly irreducible)

sublattice of D[d].

Covering chains of almost distributive varieties. The next lemma, which was proved
by Rose [84] directly from Theorem 4.17, can now be derived from the above corollary.

LEMMA 4.25 Let L be a finite subdirectly irreducible almost distributive lattice, L 2 2, N .

(1) IfL14,L15 ¢ {L}V then L = L]f3,
(ii) if L3, L1s ¢ {L}Y then L = L%, and
(iii) if L1z, L1ga ¢ {L}Y then L = Lk, for some k € w (see Figure 2.2).

Proor. (i) By Corollary 4.14 (i) L = DId] for some finite distributive lattice 1 and
de D. Let A = A(DI[d]) be the matrix representing D[d] and suppose A has more than
one row. If A has no column with two 1’s in it, then it has at least two columns (since it
has at least two rows, and no rows of 0’s), and we can therefore find two entries equal to
1 in two different columns and rows. Deleting all other rows and columus, it follows from
Corollary 4.24 that Lys is a sublattice of L. Hence if L4, L1s ¢ {L}V, then A has only
one row with all entries equal to 1. This is the matrix representing L¥, , where k + 2 is
the number of columns of A (see Figure 4.16 (i)). Similar arguments prove (ii) and (iii).0

THEOREM 4.26 (Rose [84]). For each i € {13,14,15} and n € w the variety L't is the
only join irreducible cover of L.

PrOOF. Let ¢ = 13 and suppose V is a join irreducible variety that covers L7y = {L75}V.
V must be almost distributive, otherwise, by Corollary 4.14 (ii), V contains one, say L, of
the lattices M3, Ly, La, ..., L1, in which case V > Lf3 + {L}Y > L, hence either V is
not a cover of L5 or V is join reducible. V is of finite height, thus by Corollary 4.14 (i),
(iii) and Lemma 2.7 V is generated by a finite subdirectly irreducible lattice L = DI[d],
where D is distributive. Since V is join irreducible, L14, L15 ¢ V so by Lemma 4.25 (i)
L = L%,, and since V covers Lf5, we must have k = n + 1. The proof for i = 14 and 15 is
completely analogous. a

The smallest subdirectly irreducible almost distributive lattice that is not of the form 2,

N or L? for i = 13,14,15, n € w is represented by the matrix <i (1)) (see Figure 4.16 (iii)).
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'Z'n+2,n+2

Figure 4.16
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Further results on almost distributive varieties.

THEOREM 4.27 (Lee [85]). Every almost distributive lattice variety of finite height has
only finitely many covers.

ProoF. Let V be an almost distributive variety of finite height. Then V is gener-
ated by finitely many subdirectly irreducible almost distributive lattices, and by Corol-
lary 4.14 (i) these lattices are of the form D[d4],..., Dy[d,] for some finite distributive
lattices Dq,...,D,. Let k = max{|Xq,(D;)| :7=1,...,n}. By Corollary 4.14 (iv), each
join irreducible cover of V is generated by a finite subdirectly irreducible lattice D[d], and
clearly we must have |X4(D)| = k+ 1. By Theorem 4.23 D[d] can be represented by a
matrix of 0’s and 1’s with at most £+ 1 rows and k& 4+ 1 columns, hence V has only finitely
many join irreducible covers. On the other hand, each join reducible cover of V is a join
of V and a join irreducible cover of a subvariety of V. Therefore V also has ounly finitely
many join reducible covers. a

LeEMMA 4.28 (Lee [85]). Let D be a sublattice of a finite distributive lattice D, andd € D.
If D|[d] is subdirectly irreducible, then D[d| = D'[d]|, where D’ is generated by d and a
subset of X4(D).

Proo¥r. Let {Bi,..., By} and {C1,...,C,} be the natural partitions of Xy(D), and let
b; = xd with z € B;, ¢; = +d with 2 € ;. Choose b},...,b,,¢c},...,¢c, € D such that
bi < b < dand d < c; < ¢;. For each z € X4(D) we have z € B; N C; for unique ¢, j,
in which case we define 2/ = Lc; + bi. By distributivity 2'd = (ch + b)d = zd + b’ and
' +d=(x+ d)c;, hence xzd = b; implies 2'd = b}, and « + d = ¢; implies 2z’ +d = c"7 It
follows that the set X' = {2/ : # € X4(D)} is a subset of X4(D), and since the elements
b; and ¢} all have to be distinct, the map « — 2’ is bijective. Let D’ be the sublattice
of D generated by X’ U {d}. By Lemma 4.22 X4(D') = z'. We show that D and D’
have the same matrix representation, then it follows from Theorem 4.23 that D =~ D'.
By Lemma 1.12 the elements ¢, ..., ¢, are all the (join reducible) covers of d, and dually
for b1,...,b;,. Let Bl = {2’ € X' :a'd = b} and (] = {z' € X' : 2’ +d = c}} be
the blocks of the natural partitions of X’. Clearly « € B; implies 2’ € B! for all 7, and
the converse must also hold, since the map = — 2’ is bijective and the blocks B;, b} are
finite. Similarly z € C; if and only if 2’ € C}. Hence |B; N (| = |B] N C, which implies
A(DId]) = A(d'[d]). |

LEMMA 4.29 (Lee [85]). Let D be a finite distributive lattice, d € D, and let D* be the
sublattice of D generated by X4(D)U{d}. Then D*[d] is a retract of D[d|. In particular,
D*[d] is the smallest homomorphic image of D[d] separating (d,0) and (d,1).

Proor. Since (d,0) < (d,1), by Lemma 1.11 there is a unique subdirectly irreducible
homomorphic image D[d] of D[d] such that (d,1)/(d,0) is a critical quotient of D[d]. By
Theorem 4.23 D*[d] is also subdirectly irreducible with critical quotient (d,1)/(d,0), hence
D*[d] is isomorphic to its image D*[d] C D[d]. We have to show that D*[d] = D|d|. The

epimorphism D[d] — D|d] induces an epimorphism D — D, where D is obtained from
D[d] by collapsing the quotient (d,1)/(d,0). Then D* = D* C D, and it suffices to show
that D= = D. Consider z € D such that 7 € Xg(ﬁ). 2 must be noncomparable with d,

so we can find b,c € D with 2d < b <d < ¢ <z +d. Let xg = zc + b, then one easily
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1 1 00 0 0
110 0 0
0 11 0 0
A(I(i) = .
0000 11
1 0 00 1
Figure 4.17

checks that zg € X4(D*) and b, ¢ € D*. Notice that d # ¢, for otherwise the epimorphism
D[d] — DI[d] would collapse the quotient ¢/(d, 1) and, as zq, (d,0) and (d, 1) generate a
pentagon, it would also identify (d,0) and (d,1). Similarly b # d, whence b < d < ¢ in
D*. Because T € X5(D), it follows that Td = b, T 4+ d = ¢ and since b,¢ € D*, we in fact
have z € X4(D*). Thus X5(D) C X4(D*) C D* C D. By Theorem 4.23 X(D)U {d} is a
generating set for D, hence D™ = D, and therefore D*[d] = D*[d] = D[d]. O

LEMMA 4.30 (Lee [85]). Let D be a finite distributive lattice and d € D. Then every
subdirectly irreducible member of { D[d]}V is isomorphic to D'[d], where D' is a sublattice
of D generated by d and a subset of X4(D).

PrROOF. Let L be a subdirectly irreducible member of {D[d]}V. By Jénsson’s Lemma
L € HS{D|[d]}, so there is a sublattice Ly of D[d] and an epimorphism f : Ly — L. If
(d,1)/(d,0) € Lg, then Ly is distributive and hence L = 2. If (d,1)/(d,0) C Ly then
Lo = Dgld] for a sublattice Dg of D. But if (d,1)/(d,0) is collapsed by f, then again
L =~ 2. Suppose (d,1)/(d,0) is not collapsed by f. Since L is subdirectly irreducible, and
f(d,1)/f(d,0) is critical, L is a smallest homomorphic image of Dg[d| separating (d,0)
and (d,1). By Lemma 4.29, the same holds for Dj[d]. Hence L = Dg[d]. Also Dj is a
sublattice of D, and D§[d] is subdirectly irreducible, therefore Lemma 4.28 implies that
L = D§[d] is isomorphic to D’[d], where D' is a sublattice of D generated by d and a
subset Xy4(D). a

Notice that there are at least | X4(D)| + 1 nonisomorphic subdirectly irreducible mem-
bers in {D[d]}Y, since if U, V are two subset of different cardinality, then U U {d} and
V U {d} generate two nonisomorphic sublattices.

We now consider an interesting sequence of almost distributive lattices which is given
in Lee [85], and was originally suggested by Jénsson.

Let K; be the finite subdirectly irreducible almost distributive lattice represented by
the (i 4+ 1) x (¢ + 1) matrix A(K;) in Figure 4.17, and let Vo = { Ky, K2, K3, ...}V,

V; = {I(l, .. .,I(i,],](“_l, .. .}V for 2 = 1,2,3,....

LEMMA 4.31 K; ¢ V; fori € {1,2,3...}.

Proor. By Corollary 4.14 (vi) K; = D;[d;] for some finite distributive lattice D;, d; € D;,
and K; is a splitting lattice, so it generates a completely join prime variety for each ¢
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(Lemma 2.8). Since V; = 3, {K;}Y it suffices to show that K; ¢ {K;}V for any i # j.
By the preceding lemma any subdirectly irreducible lattice in {K;} is isomorphic to a
sublattice of K; = Dj[d;] generated by a subset of Xq,(D;). If j < i then | Xy (D;)| <
| X4,(D;)| which certainly implies K; ¢ {K;}V. Now suppose j > i and let Xq4,(D;) =
{®1,..., 2242} with corresponding natural partitions

{B1, Bz, ..., Bix1} = {{z1, 22}, {3, 24}, - -, {®2i41, T2ig2}}
{C1,Co, ..., Ciga} = Hwo, 23}, {ws, s}, - {w2ige, 21}

and Xg,(D;) = {y1,- .., y2j+2} with natural partitions

{Biv Bév RN B§+l} = {{yla y2}7 {3/37 y4}7 ey {y2j+17 y2j+2}}
{61{7 Cvév R Cv‘;'-{-l} - {{y27 y3}7 {’!/47 y5}7 UEIS {’!/2j+27 yl}}

If fis an embedding of K; into K;, then we can assume without loss of generality that
f(z1) = y1. As an embedding f must map B-blocks onto B’-blocks and C-blocks onto

C’-blocks, hence f(z2) = ya,..., f(z2i42) = yait2. But f(Ciz1) = {f(w2i42), f(21)} =
{v2i+2, 91} € {C1, .., 41} which is a contradiction. Therefore K; is not isomorphic to
a sublattice of K, and consequently K; ¢ {K;}V. O

THEOREM 4.32 (Lee [85]). Let A be the variety of all almost distributive lattices and let
Vo, Vi be defined as above.

(i
(ii

)
)

(iii) Vo has infinitely many dual covers.
)

(iv

There is an infinite descending chain of almost distributive varieties.

There is an almost distributive variety with infinitely many covers in A 4.

ProoF. (i) By the preceding lemma, distinct subsets of { K1, K3, K3, ...} generate distinct
subvarieties of V.

(ii) Let V! = {K;, Ki41, Kit2,...}Y for each ¢ € w. Then Vo = V| > V} > Vi >
follows again by Lemia 4.31.

(iii) We claim that K is the only finitely generated (hence finite) subdirectly irreducible
member of Vy that is not in V;, from which it then follows that Vy > V; for each ¢ € w.

By Lemma 4.31 K; ¢ V;. Every finite subdirectly irreducible member L € 1y is a
splitting lattice, so L € {K;}V for some j. If i # j then L € V;, and if L € {K;}V and
L is not isomorphic to K; then, by looking at the matrix that represents L, we see that
L € {K,;}¥ for any j > 1, so we also have L € Vy. This proves the claim.

(iv) Let V; be the conjugate variety of K; relative to Ay (i € w), and let V = ;¢ Vi
We show that V < V + {K;}Y for each i. By Theorem 2.3 (i) every subdirectly irreducible
member of V + {K;}V belongs to V or {K;}V. Let L be a subdirectly irreducible lattice
in {K;}V. Lemma 4.30 implies that L is a sublattice of K;, so K; ¢ {L}Y for any j # i.
It follows that L € V or I = K;, hence K; is the only subdirectly irreducible lattice in
V + {K;}V which is not in V. ]
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4.4 Further Sequences of Varieties

In Section 4.3 we saw that above each of the varieties L13, £14 and Lq5 there is exactly
one covering sequence of join irreducible varieties (Theorem 4.26). These results are due
to Rose [84], and he also proved the corresponding results for Lg,...,L10. Since these
varieties are not almost distributive, the proofs are more involved. Here we only consider
the sequence L£g above Lg.

Some technical results. Let L be a lattice and X a subset of L. An element z € L is
said to be X -join isolated if z = ¢ + y and z,y < z implies z,y € X. The notion of an
X -meet isolated element is defined dually. A quotient u/v of L is said to be isolated if
every element of u/v is u/v-join isolated and u/v-meet isolated.

The next four lemmas (4.32 4.35) appear in Rose [84], where they are used to prove
that the variety E’f+1 is the only join irreducible cover of £ for ¢ € {6,7,8,9,10} (see
Figure 2.2). These lemmas only apply to lattices satisfying certain conditions summarized
here as
CONDITION (*). L is a finite subdirectly irreducible neardistributive lattice with critical
quotient ¢/a (which is unique by Theorem 4.8). Furthermore ¢’/a’ is a quotient of L such
that

(i) «/ <a<ec<L
(ii) any z € ¢'/a’ — {d'} is ¢//d’-join isolated;

(iii) any z € ¢!/d’ — {c'} is ¢’ /a’-meet isolated.

Observe that if b ¢ ¢//a’ and b is noncomparable with some z € ¢//a’, then b is
noncomparable with all the elements of ¢//a’. Moreover, '’ +b=24+b=¢ 4+ b and a’'b =
zb = ¢'b, which implies N(¢’/a’,b). Hence, for any b ¢ ¢’/a’, the conditions N(¢'/a’,b) and
N(c/a,b) are equivalent.

LEMMA 4.33 Suppose L satisfies condition (x).
(i) Ifu > ¢ in L, then there exists b € L such that N(c'/a',b) and u = a'+b > b > a'b.
(ii) If L excludes L7, then we also have a’ > a'b.

Proor. (i) By Lemma 4.16 (iii) there exists b € L such that N(¢/a,b), b < u, b £ ¢
and u/c’ g a+ b/(a+ b)c'. bis noncomparable with ¢/, so N(c',d’,b) follows from the
remark above, and we cannot have (a +b)c’ < ¢, since (a + b)c’ is not ¢//a’-meet isolated.
So (e + b)c’ = ¢ and therefore v = a + b = @’ + b. Since L is finite we can choose ¢ such
that b < ¢ < a’ + b. t is also noncomparable with ¢/, so we get N(c’/d/,t), and of course
u = a' + 1. Hence we may assume that u > b. Also b > a'b, since a’b < t < b would imply
N(b/t,a’), hence N(b/t,a), and by Corollary 4.7 N(c/a,a), which is impossible.

(ii) Suppose to the contrary, that @’b < t < «' for some t € L. By the dual of part
(i) there exists bg € L with N(c'/a’,bo) and t = a’by < by < @’ + by (Figure 4.18 (i)).
Since a' + b > b, we have t + b = @’ + b and so N(a'/t,b). Now d'/t / & + bg/by and
Corollary 4.7 imply N(a' + bo/by,b). Thus o' + by 7 @' + b, which clearly implies that by
and @’ + by are noncomparable with a’ 4+ b. Since @’ + b > ¢, b > a’b and by > y, we must
have (¢’ +b)(a' +bo) = ¢/, (¢’ +bo)b = a’b and (a’ +b)bg = t. Hence the elements o', b and
by generate L7 (Figure 4.18 (i)), and this contradiction completes the proof. a
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(if)

Figure 4.18

We now add the following condition.
CONDITION (). b is an element of L such that N(¢'/a’,b) and &’ + b/a’d = {b,a’ +
b,a’b}uc/d.

LEMMA 4.34 If L satisfies conditions (%), (%) and excludes Ly4, then for x,y € L,

(i) a +b=a"+y >y impliesy < b;
(ii) @ + b=z + b > x implies x < ¢'.

Proor. (i) If y £ b, then y is noncomparable with b and with «’. We claim that y
can be chosen so that @/, ¢/, b, y generate L14 (see Figure 4.18 (ii)). We may assume that
y <d +y Ifdy <t <y, then we would have N(y/t,a’), hence N(y/t,a), and by
Corollary 4.7 N(c/a,a), which is impossible. Therefore y > a’y. By semidistributivity

ad+b=d+y=b+y=2db+dy+by.

From this it follows that the elements a’b = ¢’b, ¢’y = 'y and by are noncomparable, and
therefore
a =db+dy, b=dab+by and y=d'y+ by.

This shows that a’, b and y generate an eight element Boolean algebra. Since N(¢'/a’,b)
and N(c¢'/d’,y) hold, L includes Lq4.

(i)If 2 £ ¢, then @' + 2 = @’ + b, and since we cannot have z < b, part (i) implies that
L includes Lqy4. a

LEMMA 4.35 If L satisfies conditions (x), (%) and excludes Lz, L1s and Lis, then ¢’ is
meet irreducible.

ProOOF. Suppose ¢’ is meet reducible. Then there exists an element x covering ¢’ such
that ¢ = «(a’ + b). By Lemma 4.33 (i) there exists bg € L with N(c'/d,bg) and & =
a' + by > bg > a'byg. The elements o' + b, @’ + by and b + by generate a lattice K that
is a homomorphic image of the lattice in Figure 4.19 (i). If K is isomorphic to that
lattice, then bbg < d', since bbg £ ¢’ would imply bbg + o' € ¢//a’ — {a’}, contradicting the
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Figure 4.19

a +y
C/
z
a/
a'y
(i)

Figure 4.20

assumption that every element of ¢//a’ — {a’} is ¢//a’-join isolated. In fact we must have
bby < d', since @' is ¢’/a’-meet isolated. Thus K U {a'} is a sublattice of L isomorphic
to Lys, contrary to the hypothesis. We infer that K is a proper homomorphic image of
the lattice in Figure 4.19 (i), and since a’ + b, a’ 4+ bg and ¢’ are distinct, it follows that
¢/ < b+ by. Now Figure 4.19 (ii) shows that if «’b and a’by are noncomparable, then L
includes Lis, while a’b < a’bg or a’by < a’b imply that L includes L;. Finally, we cannot
have a’b = a'bg, since then L includes Lq, which contradicts the semidistributivity of L.O

LEMMA 4.36 If L satisfies conditions (), (%) and excludes Lg, L13, L14 and Lq5 then b
is meet irreducible.

Proor. To avoid repetition, we first establish two technical results:

(A) If N(u/v,z) for some uf/v € ¢'/a’ and z ¢ ¢'/d’, then there exists y € L with
N(cd'/d',y) such that N(a' + y/d',z), N(y/d'y,z) and @' +y > ¢ (Figure 4.20 (i)) or
dually.

Consider a sequence u/v = xo/yo ~w T1/Y1 ~w --- ~w Tn/yn = ¢/a. Since c¢/a is a
subquotient of ¢//a’ and u/v is not, there is an index 7 > 0 such that z;/y; € ¢’/d’ and
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ziy1/viv1 C ¢’ /d’. By duality, suppose that z;/y; \w it1/Yit1- Since y;4q is ¢’/a’-meet
isolated, y; € ¢’/a’, and since z;¢’ < ¢/ would also imply z; € ¢’/a’, we must have z;¢/ = ¢/,
and therefore z; > ¢’ > y;. Now Lemma 4.6, and the fact that u/v projects weakly onto
z;/y; and ¢/a imply N(z;/y;,z) and N(c/a,z). Since z ¢ ¢//a’ we must have N(c'/d, z).
Choose z € L such that ¢’ < 2 < #;, then clearly N(z/d/, 2) holds (Figure 4.20 (ii)). By
Lemma 4.33 (i) there exists y € L with N(c'/d’,y) and = = o' + y. Since z/a’ N\, y/d'y,
Lemma 4.6 again implies N(y/a'y, z). This proves (A).

(B) If for some u,v,z € L with z > b we have N(u/v,z), then u/v C '/d’.

Suppose u/v € ¢'/a’. Since clearly z € ¢//a’, (A) implies that there exists by € L such
that n(c’/d’,bg) and either

(1) N(a' +bg/d’,z), N(bp/a'bg,z) and ¢' < a' + by or
(2) N(/a'by, z), N(a' + by, z) and a’by < a’.

We will show that, contrary to the hypothesis of the lemma, the elements a',¢’;b and
by generate Lys. Since we already know that N(c¢'/a’,b) and N(c'/d’,bg), it suffices to
check that a'b + a’by = ¢’ and (¢’ + b)(e’ + by) = ¢’. Either of (1) or (2) imply that z is
noncomparable with a’bg and a’ + bg. Since a'b < b < z we must have a’by £ a’b. Strict
inclusion a’b < a'bg is also not possible, because ¢’b < ¢’ and a’bg < /. Thus «'b and
a’bg are noncomparable, and since a’b < o', it follows that a’b + a’by = /. Next note that
a'z = d'b, because a'b < ¢’ and a'b < o’z < ¢’. Hence o'z = a'b > a’bbg = d'bgz, so we
cannot have N(¢'/a'bg, z) in (2). Therefore (1) must hold, and in particular N (a'+by/d, z),
whence it follows that a’ +bg 2 b. Thus ¢/ < (a’+b)(a’+bo) < @'+, and since ¢’ < a’+ b,
¢ = (a'+b)(a' + by). This proves (B).

Proceeding now with the proof of the lemma, suppose b is meet reducible. Then we
can find z > b such that b = (LL’ + b)z. Consider a shortest sequence

z[b = zo/yo ~w T1/Y1 ~w - - - ~w En/Yn = ¢/ a.

Clearly n > 2. The case n = 2 can also be ruled out, since z/b is a transpose of 21 /y;, while
Theorem 4.8 implies that ¢/a is a subquotient of z,,_1/y, 1, hence z1/y1 = @ 1/Yyn1
would imply z = z14+b > o'+ b or b = yyz < ab, both of which are impossible. Thus n > 3.
If z/b /" @1/y1 \\ w2/y2, then x1/yy is prime, since y; < t < 1 would imply N(¢/y1,2),
and by (B) t/y1 C ¢’/a’, which leads to a contradiction, as b £ ¢’. Similarly z3/y, must be
prime, because y2 < t < 2 would imply N(wg,t,y1), whence (B) gives x5/t C ¢//a’. This
contradicts the semidistributivity of L, since 27 = y1 + z = y1 + @9, but 2922 = 'z < y;.
Hence 2/b /g z1/1h \p 22/y2, and now Lemma 4.4 implies that the sequence can be
shortened, contrary to our assumption. Consequently we must have z/b \ z1/y1 /" @2/ ys.
Observe that z1 ¢ ¢//a’, for otherwise z = 7 + b = o’ + b. Again the quotient z1/y; is
prime, since y; < t < 1 would imply N(z1/t,b), contradicting (B). However z3/y2 cannot
be prime because of the minimality of n. So there exists w € L with y3 < v < u < x4
such that N(u/v,z1) holds (Figure 4.21 (i)). By Corollary 4.7 we have N(c¢/a, 1), and
since 21 ¢ ¢'/a’, N(c¢'/d',z1) holds. Notice that y; = (¢/ 4+ b)zz1 = (a/ + b)z1 > a'z1. We
claim that y; = @’z;. Suppose to the contrary that a’z; < y;. Then u/v € ¢'/a’ since
uzy = 4 # a’z1. By (A) there exists by € L with N(c'/a’,by) such that N(a' + bo/a’, 1)
and o’ + by > ¢/, or dually N(¢'/a’bg, z1) and a’by < @'.

First suppose that N(a’ 4 bo/a’,z1). We cannot have ¢’ 4+ by < a’ + b since o' + b > ¢.
Oun the other hand o’ + b < a’ + by implies N(a'+b/a’, z1), whence a’z1 = (a' 4+ b)z1 = 1,
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Figure 4.21

a contradiction. Therefore @’ + b and a’ 4 by are noncomparable and (a’ + b)(a’ + bg) = ¢'.
Since L excludes Liz and Lqs, it follows as in the proof of Lemma 4.35 that the o/, ¢/, b
and by generate L7. Thus a’ +b < b+ by, and as a' > a'b, we can only have a’bg < a’b.
By Lemma 4.6 N(a' + bo/a’,z1) and a' + bo/a’ \, bo/a’by imply N(bo/a'b,z1). Hence
a’by + ©1 = by + 21, and together with a’by and z7 < z this implies by < by + 21 =
a'bg + w1 < z. It follows that ¢’ + b < b+ bg < z, which is a contradiction.

Now suppose that N(c¢'/a'bg,x1). Since we are also assuming that L excludes Lqq,
we can dualize the above argument to again obtain a contradiction. Thus y; = a@'z;.
We complete the proof by showing that «',¢’;b and z, generate Lg (Figure 4.21 (ii)).
Clearly a’' > a'zq1 = y implies ¢'b > y16 = y1. In fact we must have a’b > yy, since
a'b =y = d'z; < z1 would imply z; > b by the dual of Lemma 4.34 (i), a contradiction.
Also a/(a'b+ z1) = a’b < d'b + 24, since @’ > a'b, and now the dual of Lemma 4.34 (i)
implies a’b + 21 > b. Hence a’b+ 21 = b+ 21 = z. Finally o' + b/’ \ b/a’b, N(b/a'b,z1)
and Lemma 4.6 imply N(a' + b/¢', x1), whence a’z1 = (¢’ + b)z1. O

The sequence Lg. The next theorem is in preparation to proving the result due to
Rose [84] that £ZT! is the only join irreducible cover of £Z. A quotient ¢/a of a lattice is
an L{-quotient if for some b, by, ..., b, € L the set {a,c,b,bo,...,b,} generates a sublattice
of L isomorphic to Lg, with ¢/a as critical quotient (Figure 2.2). In this case we shall
write Lg(c/a,b,bo,...,b,).

THEOREM 4.37 (Rose [84]). Let L be a subdirectly irreducible lattice, and assume that
the variety { L}V contains none of the lattices M3, Ly, ..., Ls, Lz,..., L1s. Suppose further
that, for some k € w, ¢/a is an LE-quotient of L. Then

(i) if L does not have any Lé+1—quotiellts, then ¢/a is a critical quotient of L and
L/con(a,c) has no LE-quotients.
(ii) if L is finite and I, % L%, then c/a is an LET'-quotient.

PrOOF.(i) By Theorem 4.1 {L}V is semidistributive, and by Theorem 4.8 L has a unique
critical quotient, which we denote by z/y. Choose b, by, . .., by, so that LE(c/a,b, by, . .., bg)
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Figure 4.22

holds. We will prove several statements, the last of which shows that «/y = ¢/a. The first
three are self-evident.

(A) Any nontrivial subquotient ¢'/a’ of ¢/a is an L§-quotient.

(B) Suppose that for some a',¢',z € L we have N(c'/a’,z) witha < d'z < d' + 2z < c.
Then Lg"'l(c’/a’, z,b,bg, . ..,b;) holds (see Figure 4.22).

(C) Suppose that for some z € L we have N(a + b;/ab;,2) (¢ € {0,...,k}). Then
LitY(¢/a,b,by, . .., b;, 2) holds, and similarly if N(a + b/ab, z) then we have L(¢/a,b, z).

(D) For any quotients u/v and p/q in L, ifu/v / p/q \ ¢/a, then u/v \, uc/va /" c/a,
and all four transpositions are bijective.

By Lemma 4.5 the lattice generated by ¢, ¢, b is a homomorphic image of the lattice in
Figure 4.23 (i). The pentagon N(r/d,b) is contained in a + b/ab, whence it follows that
LE(r/d,b,bg, ..., bg). From this we infer that r/d is distributive, for otherwise r/d would
contain a pentagon N(c¢'/a’,b") (by semidistributivity L excludes M3z), and we would have

LI [a! b b, by, . . ., by).

Hence the transposition r/s N\ e¢/d is bijective. By Lemma 4.6, the transpositions p/q \,
r/s and e/d \ ¢/a are also bijective, and we consequently have p/q \ 3 c/a.

Again by Lemma 4.5, the lattice generated by ¢, u,b is a homomorphic image of the
lattice in Figure 4.23 (ii). Note that ab < bg < b < a + b, whence N (b/bg,bg). Since
v+ b/d N, b/bq, it follows by still another application of Lemma 4.5 that the lattice
generated by d’,b and by is a homomorphic image of the lattice in Figure 4.23 (iii) and
by Lemma 4.12 the transposition v 4+ b/d’ N\, r”/s" is bijective. Put ¢t = (b + by) to
obtain N(t/s” b) and therefore LE(t/s,b,bg, . ..,bg). This implies that ¢/s” is distributive,
and so is ’'/d’, since the two quotients are isomorphic. The transposition e’/d" / +'[s’
is therefore bijective, and the bijectivity of w/v /" € /d" and +'/s' / p/q follows from
Lemma 4.12. Consequently u/v /g p/q. Now semidistributivity (Lemma 4.4) implies
u/v \, uc/va / ¢/a. By duality, these two transpositions must also be bijective.

(E) If ¢/a projects weakly onto a quotient u/v, then u/v \, uc'/va’ / ¢'[/a’ for some
subquotient ¢'/a’ of ¢/a

Assume that ¢/a = zo/yo ~w T1/¥1 ~w - - - ~w &Tn/Yn = u/v, where the transpositions
alternate up and down. We use induction on n. The cases n = 0,1 are trivial, so by
duality we may assume that ¢/cy1 /" x1/y1 2 y1 + 22/t \ 22/y2. Since ¢/cyy is also
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Figure 4.23

a LE-quotient we can apply (D) to conclude that the first transpose must be bijective.
Hence y; + @2/y1 transposes bijectively onto a subquotient ¢’/a’ of ¢/a (¢’ = cy1). A
second application of (D) gives ¢//a’ N\, 'z2/a’y2 /" x2/y2, proving the case n = 2, while
for n > 2 the sequence can now be shortened by one step. The result follows by induction.

(F) z/y = ¢/a.

Since /y is critical and prime, ¢/a projects weakly onto z/y. By (E) «/y projects
onto a subquotient ¢’/a’ of ¢/a and since z/y is the only critical quotient of L, we must
have z/y = ¢//d’. If © < ¢, then the hypothesis of part (i) (of the theorem) is satisfied
with @ replaced by z, and we infer that z/y is a subinterval of ¢/z, which is impossible.
Hence z = ¢, and similarly y = a, which also shows that ¢/a is the only L%-quotient of L.

To complete the proof of part (i), suppose I = L/con(a,c) contains an L§-quotient,
i.e. for some u,v,d,dy,...,dy € L we have LE(u/,d,dg,...,dg)in L. If ¢ = uin L,
then « = ¢ > a > v and Lf(u/v,d,dy,...,dy), which would contradict the fact that ¢/a
is the only LE-quotient of L. Thus ¢ # u and, similarly, ¢ # « and ¢,a # v. If a = d,
then we must have N(u/v,a) in L. But by Corollary 4.7 this would imply N(c/a,a),
which is impossible. So a # d and, more generally, ¢,a ¢ {d,dy,...,d;}. Since con(a,c)
identifies only a and ¢, we infer that L(u/v,d,dy,...,dy) in L with u/v # ¢/a, and this
contradiction concludes part (i).

For the proof of part (ii), we will use the concept of an isolated quotient and all
its implications (Leminas 4.33  4.36). Let ¢//a’ be an isolated quotient of L such that
cla Cd/d.

(G) Suppose that for some b € L we have N(c'/a’,b) with a'b < @, ¢’ < a' + b and
a'b<b<a +0b. Then

(1) ' +b/a’b=c"/a' U{a'b,b,a’ +b};
(2) @' +b/a’b is an isolated quotient of L.

Assume (1) fails. Then there exists € L such that « € @’ + b/a’b but 2« ¢ ¢'/a’ U
{a'b,b,a’ + b}. Since a'b < z < o’ +b and @'b < b < &' + b, it follows that b and z
are noncomparable and zb = a’'b, x + b = o/ + b. Furthermore, as ¢’/a’ is isolated, x is
noncomparable with ¢’ and ¢’ , whence o’ + « = o/ + b. This, however, contradicts the
semidistributivity of L, since @’ + b # @' + 2b = a’. Therefore (1) holds.
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To prove (2), it suffices to show that

3) d' is join irreducible and ¢’ is meet irreducible;

(3)

(4) b is both join and meet irreducible;

(5) € Land o' +b=a+b>z imply z € ¢'/d';
(6) ye Land ¢/ +b=a"4+y > yimply y = b;
(7) 2 € L and a'b = 2b < @ imply = € ¢'/a’;
(8)

8) y € L and a'b = d'y < y imply y = b.

(3) and (4) follow from Lemmas 4.35 and 4.36 and their duals respectively. Suppose
a"+b=z+b>u2 Then z < ¢ by Lemma 4.34 (ii) and, since z + b # b, we have
z L c'b=da'b. Now z £ d’, because a'b is the only dual cover of a’. Since ¢//a’ is isolated,
this implies € ¢//a’, whence (5) holds. If ' +b = a’+y, then Lemma 4.34 (i) implies that
y < b, and from the join irreducibility of b we infer y = b, thereby proving (6). Finally,
(7) and (8) are the duals of (5) and (6).

(H) If LE(c/a, b, b, . . .,by), then the elements b, b, ... b, € L can be chosen such that

a+b/ab=c/aU{ab,b,a+ b},
a+ bo/abg = a + b/ab U {abg, by, a + bo},
a+ b,’/abi =a+ b,-,l/ab,',l U {abi,bi,a—l— b,’} for 1€ {1,2,...,k},

and all these quotients are isolated.

By Lemma 4.35 and its dual, the quotient ¢/a is isolated. Choose z € L with ¢ <
¢ < a+b. Since L excludes L7, Lemma 4.33 (i), (ii) and (G) above imply the existence
of b € L with N(c¢/a,b') and a + 0" = z, such that this sublattice is an interval in L
and is isolated. Since a is join irreducible and ¢ < ab’, we infer that ab’ > ab. Thus
ab < ab < b <z < a+b, whence it follows that LE(c/a, ¥, bg,...,b). So we may replace
b by V', and continuing in this way we prove (H).

Since ¢/a is a prime L%-quotient of L, (H) implies that we can find b,bg,...,bg in L
such that the sublattice generated by c/a and these b’s is an interval of L. Since L = L§,
there exists v € L with u > a 4+ b or u < ab = k and from Lemma 4.33 (i) or its dual
we obtain b € L such that N(a + bg/aby,V’), which implies LETY(¢/a,b,bg,. .., by, 2) as
required. a

After much technical detail we can finally prove:
THEOREM 4.38 (Rose [84]). L2+ is the only join irreducible cover of L.

PROOF. Suppose to the contrary that for some natural number n, the variety £2 = {L2}V
has a join irreducible cover V # L&, Choose n as small as possible. Since V has finite
height in A, it is completely join irreducible, so it follows from Theorem 2.5 that V = {L}V
for some finitely generated subdirectly irreducible lattice L. Note that L2 € {L}V

Using the results of Section 2.3 one can check that Lg is a splitting lattice, and since
it also satisfies Whitman’s condition (W), Theorem 2.19 implies that L is projective in
L. By Lemma 2.10 Lg is a sublattice of L, so for some a,c,b,bg,...,b, € L we have
L%(¢/a,b,bo,...,b,). By Theorem 4.37 (i) ¢/a is critical, and L/con(a,c¢) has no L2-
quotients. Again, since Lg is subdirectly irreducible and projective, Lemma 2.10 implies
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that LZ is not a member of the variety generated by L/con(a,c). This, together with the
minimality of »n implies that, for n = 0, L/con(a,c¢) is a member of N and, for n > 0,
L/con(a,c) is in L£g*. By Lemma 4.15 L is finite and, since L % L%, it follows from
Theorem 4.38 (ii) that L includes Lg"'l. This contradiction completes the proof. a

By a similar approach Rose [84] proves that £*! is the only join irreducible cover
of £ for i = 7 and 9 (the cases i = 8 and 10 follow by duality). A slight complication
arises due to the fact that L7 and L§ are not projective for n > 1, since the presence of
doubly reducible elements implies that (W) fails in these lattices. As a result the final
step requires an inductive argument. For the details we refer the reader to the original
paper of Rose [84].

Further results about nonmodular varieties. The variety M3+ A is the only join re-
ducible cover of N (and M3), and its covers have been investigated by Ruckelshausen [78].
His results show that the varieties V;,..., Vs generated by the lattices Vq,..., Vs in Fig-
ure 2.4 are the only join irreducible covers of M3 + N that are generated by a planar
lattice of finite length.

The techniques used in the preceding investigations make extensive use of Theorem 4.8,
and are therefore unsuitable for the study of varieties above £q7 or £12. Rose [84] showed
that L£19 has at least two join irreducible covers, generated by the two subdirectly ir-
reducible lattices L}, and G respectively, (see Figure 4.24, dual considerations apply to
L11)-

Using methods developed by Freese and Nation [83] for the study of covers in free
lattices, Nation [85] proves that these are the only join irreducible covers of L3, and that
above each of these is exactly one covering sequence of join irreducible varieties £y and
G" = {G"} (Figure 4.24).

By a result of Rose [84], any semidistributive lattice which fails to be bounded con-
tains a sublattice isomorphic to Li; or Liz (see remark after Theorem 4.10). Thus it is
interesting to note that the lattices L}, and G™ are again splitting lattices.

In Nation [86] similar techniques are used to find a complete list of covering varieties
of £1 (and L2 by duality). The ten join irreducible covers are generated by the subdirectly
irreducible lattices Lg, ..., Los in Figure 4.25.



4.4. FURTHER SEQUENCES OF VARIETIES 113

&

1
L12

%
%

Figure 4.24



114 CHAPTER 4. NONMODULAR VARIETIES

L16 L17 L18 g
L19 % L20 %
L22 L23

Figure 4.25



Chapter 5

Equational Bases

5.1 Introduction

An equational basis for a variety V of algebras is a collection & of identities such that
V = Mod€. An interesting problem in the study of varieties is that of finding equational
bases. Of course the set IdV of all identities satisfied by members of V is always a basis,
but this set is generally highly redundant, so we are interested in finding proper (possibly
minimal) equational basis for V. In particular we would like to know under what conditions
V has a finite equational basis.

It might seem reasonable to conjecture that every finitely generated variety is finitely
based, but this is not the case in general. Lyndon [54] constructed a seven-element al-
gebra with one binary operation which generates a nounfinitely based variety, and later a
four-element and three-element example were found by Visin [63] and Murskil [65] respec-
tively. On the other hand Lyndon [51] proved that any two element algebra with finitely
many operations does generate a finitely based variety. The same is true for finite groups
(Oates and Powell [64]), finite lattices (even with finitely many additional operations,
McKenzie [70]), finite rings (Kruse [77], Lvov [77]) and various other finite algebras.

Shortly after McKenzie’s result, Baker discovered that any finitely generated congru-
ence distributive variety is finitely based. Actually his result is somewhat more general
and moreover, the proof is constructive, meaning that for a particular finitely generated
congruence distributive variety one can follow the proof to obtain a finite basis. However
the proof, which only appeared in its final version in Baker [77], is fairly complicated and
several nonconstructive shortcuts have been published (see Herrmann [73], Makkai [73],
Taylor [78] and also Burris and Sankappanavar [81]). The proof that is presented in this
chapter is due to Jonsson [79] and is a further generalization of Baker’s theorem.

In contrast to these results on finitely based lattice varieties, McKenzie [70] gives an
example of a lattice variety that is not finitely based. Another example by Baker [69], con-
structed from lattices corresponding to projective planes, shows that there is a nonfinitely
based modular variety.

Clearly an equational basis for the meet (intersection) of two varieties is given by the
union of equational bases for the two varieties, which implies that the meet of two finitely
based varieties is always finitely based. An interesting question is whether the same is
true for the join of two finitely based varieties. This is not the case, as was independently
discovered by Jonsson [74] and Baker. The example given in Baker [77’] is included in
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this chapter and actually shows that even with the requirement of modularity the above
question has a negative answer. In Jonsson’s paper, however, we find sufficient conditions
for a positive answer and these ideas are generalized further by Lee [85°]. One consequence
is that the join of the variety M of all modular lattices and the smallest nonmodular variety
N is finitely based. This variety, denoted by M*(= M + N), is a cover of M, and an
equational basis for Mt consisting of just eight identities is presented in Jonsson [77].

Recently Jénsson showed that the join of two finitely based modular varieties is finitely
based whenever one of them is generated by a lattice of finite length. A generalization
of this result and further extensions to the case where one of the varieties is nonmodular
appear in Kang [87].

Although Baker’s theorem allows one to construct, in principle, finite equational bases
for any finitely generated lattice variety, the resulting basis is usually too large to be of
any practical use. In Section 5.4 we give some examples of finitely based varieties for
which reasonably small equational bases have been found. These include the varieties M,
(n € w, from Jonsson [68]), V' (McKenzie [72]) and the variety M™T referred to above.

5.2 Baker’s Finite Basis Theorem

Some results from model theory. A class K of algebras is an elementary class if it is
the class of all algebras which satisfy some set S of first-order sentences (i.e. K = Mod §),
and K is said to be strictly elementary if & may be taken to be finite or, equivalently,
if K is determined by a single first-order sentence (the conjunction of the finitely many
sentences in §).

(These concepts from model theory are applicable to any class of models of some given
first-order language. Here we assume this to be the language of the algebras in K. For a
general treatment consult Chang and Keisler [73] or Burris and Sankappanavar [81].)

The problem of finding a finite equational basis is a particular case of the following
more general question: When is an elementary class strictly elementary?

Recall the definition of an ultraproduct from Section 1.3. The nonconstructive short-
cuts to Baker’s finite basis theorem make use of the following well-known result about
ultraproducts:

THEOREM 5.1 (Los[55]). Let A = [[;c; Ai and suppose ¢y is the congruence induced
by some ultrafilter U over the index set I. Then, for any first-order sentence o, the
ultraproduct A/¢y satisfies o if and only if the set {1 € I : A; satisfies o} is in U.

In particular this theorem shows that elementary classes are closed under ultraprod-
ucts. But it also has many other consequences. For example we can deduce the following
two important results:

THEOREM 5.2 (Frayne, Morel and Scott [62], Kochen [61]). An elementary class K
of algebras is strictly elementary if and only if the complement of K is closed under
ultraproducts. The complement can be taken relative to any strictly elementary class
containing K.

PRrROOF. Suppose B is an elementary class that contains K. If K is strictly elementary, then
membership in K can be described by a first-order sentence. By the preceding theorem the
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negation of this sentence is preserved by ultraproducts, so any ultraproduct of members
in B — K must again be in B — K.

Conversely, suppose K is elementary and is contained in a strictly elementary class B.
Assuming that B — K is closed under ultraproducts, let § be the set of all sentences that
hold in every member of K, and let I be the collection of all finite subsets of §. Since B
is strictly elementary, B = Mod &y for some Sy € 1.

If K is not strictly elementary then, for each ¢ € I, there must exist an algebra A4; not
in K such that A; satisfies every sentence in the finite set : U Sg. Note that this implies
A; € B— K. We construct an ultraproduct A/¢y € K as follows:

Let A = [[;e7 Ai and, for each @ € I define J; = {j € 1 : j O i}. Then J; # 0 and
JiNJg = Jiug for all o,k € I, whence F ={J C I :J; C J for some i} is a proper filter
over I, and by Zorn’s Lemma F can be extended to an ultrafilter /. We claim that A/¢y
satisfies every sentence in §. This follows from Theorem 5.1 and the observation that for
each o0 € §,

{J € 1: Aj satisfies 0} D Jy;y € U.

Since K is an elementary class, we have A/¢y € K. But the A; are all members of 5 — K,
so this contradicts the assumption that 5 — K is closed under ultraproducts. Therefore K
must be strictly elementary. a

THEOREM 5.3 Let K be an elementary class, and suppose § is some set of sentences such
that K = ModS. If K is strictly elementary, then K = Mod Sy for some finite set of
sentences Sg C S.

PRrOOF. Suppose to the contrary that for every finite subset So of §, Mod &g properly
contains K. As in the proof of the previous theorem we can then construct an ultraprod-
uct A/¢y € K of algebras A; not in K. This, however, contradicts the result that the
complement of K is closed under ultraproducts. a

Every identity is a first-order sentence and every variety is an elementary class, so the
second result tells us that if a variety is definable by a finite set of first-order sentences,
then it is finitely based. The following theorem, from Joénsson [79], uses Theorem 5.2 to
give another sufficient condition for a variety to be finitely based.

THEOREM 5.4 Let V be a variety of algebras contained in some strictly elementary class
B. If there exists an elementary class C such that Bgy is contained in C and VNC is strictly
elementary, then V is finitely based.

PrOOF. Suppose V is not finitely based. Then Theorem 5.2 implies that B — V is not
closed under ultraproducts. Hence, for some index set I, there exist A; € B —V and an
ultrafilter ¢ over I such that the ultraproduct A/¢y € V, where A =[], A;.

Each A; has at least one subdirectly irreducible image A’ not in V. On the other hand,
if welet A" = [];c; Al then A’/¢y € V since it is a homomorphic image of A/¢y.

B need not be closed under homomorphic images, so the A! are not necessarily in
B, but A'/¢yy € V C B and B strictly elementary imply that {¢ € I : A} € B} is in
U. Therefore, restricting the ultraproduct to this set, we can assume that every A! €
Bsi € C and, because C is an elementary class, it follows that A’/¢y € V N C. This
contradicts Theorem 5.2 since V NC is strictly elementary (by assumption), and A’/¢y is
an ultraproduct of algebras not in YV NC. a
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Finitely based congruence distributive varieties. Let V be a congruence distributive
variety of algebras (with finitely many operations). By Theorem 1.9 this is equivalent to
the existence of n + 1 ternary polynomials tg,q,...,%, such that V satisfies the following
identities:
to(z,y,2) =, tn(z,y,2) = z, ti(e,y,z) =
ti(z,2,2) = tip1(w,z, 2) for i even
ti(z,z,2) = tiya(z, z,2) for ¢ odd.

In the remainder of this section we let V; be the finitely based congruence distributive
variety that satisfies these identities. Clearly V C V;.

Translations, boundedness and projective radius. The notion of weak projectivity
in lattices and its application to principal congruences can be generalized for an arbitrary
algebra A by counsidering translations of A (i.e. polynomial functions on A with all but
one variable fixed in A).

A O-translation is any map f : A — A that is either constant or the identity map. A
1-translation is a map f : A — A that is obtained from one of the basic operations of A by
fixing all but one variable in A. For our purposes it is convenient to also allow maps that
are obtained from one of the polynomials #; above. Equivalently we could assume that the
t; are among the basic operations of the variety. A k-translation is any composition of k
1-translations and a translation is a map that is a k-translation for some k € w.

For a,b € A define the relation I'y(a,b) on A by

(Cv d) € Fk(av b) if {C, d} = {f(a)v f(b)}

for some k-translation f of A. Let I'(a,b) = Ugeo, I'k(a,b). This relation can be used to
characterize the principal congruences of A (implicit in Mal’cev [54], see [UA] p.54) as
follows:

For a,b € A we have (¢,d) € con(a,b) if and only if there exists a sequence ¢ =
€0,€1,-.-,6m = d in A such that (e;,e;+1) € 'x(a,b) for i < m.

Two pairs (a,b),(a’,b") € A X A are said to be k-bounded if I'x(a,b) N T'x(a’,b’) £ 0
and they are bounded if I'(a,b) N I'(a/,b') # 0. Observe that if A has only finitely many
operations, then k-boundedness can be expressed by a first order formula.

The projective radius (2-radius in Baker [77]) of an algebra A, written R(A), is the
smallest number k£ > 0 such that for all a,b,a’,b' € A

con(a,b)Ncon(a’,b’) #0 implies Tx(a,b)NTr(a’,b") #0

(if it exists, else R(A) = o0). For a class K of algebras, we let R(K) = sup{R(A): A € K}.

The next few lemmas show that under certain conditions a class of finitely subdirectly
irreducible algebras (see Section 1.2) is elementary if and only if it has finite projective
radius. These results first appeared in a more general form in Baker [77] (using n-radii)
but we follow a later presentation due to Jonsson [79].

LEMMA 5.5 If A € V;, ep,€1,-..,€, € A and ey # €,,, then there exists a number p < m
such that (eg, en,) and (e,, e,41) are 1-bounded.

Proor. Counsider the 1-translations fi(z) = t;(eo,2,€,,), ¢ < n. Then fy(e;) = e and
fu(ej) = ey, for all ¢ < m, hence there exists a smallest index ¢ < n such that the elements
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fy(e;) are not all equal to eg. If ¢ is odd, then f,(eq) = f,_1(e0) = €o, so we can choose
p < m such that ¢ = f,(e,) = eo # fy(ep41) = d. 1t follows that (¢,d) € I'1(e,, €,41) and
the 1-translation f(z) = t,(eo, €p41,2) shows that (¢,d) € I'y(eq, €y, ). For even ¢ we have
folem) = fy—1(em) = eo. Choosing p < m such that ¢ = f,(e,) # e0 = fy(ept1) = d,
we again see that (¢,d) € I'1(e,, €,41), and now the 1-translation g(z) = ¢,(eq, €,, ) gives
(¢,d) € T'1(eg, €)-

In either case (¢, d) € I'1(eg, € )N'1(€p, €p41), which implies that (eg, €5, ) and (e,, €p41)
are 1-bounded. a

LEMMA 5.6 Forall A € V; and a,b,d’,b' € A,

con(a,b)N con(a’,b") # 0 implies T(a,b)NT(a’,d") # 0.

ProOF. Suppose (¢,d) € con(a,b) N con(a’,b’) for some ¢,d € A, ¢ # d. Since (¢,d) €
con(a,b), there exists (by Mal’cev) a sequence ¢ = eg,€1,...,€, = d in A such that
(ei,eit1) € I'(a,b) for i < m. As before let fi(z) = ti(eo,z,€m), and choose p < m,
g < n such that ¢ = f,(e,) # fy;(ep41) = d’. By composition of translations (¢/,d’) €
I'(a,b). Also (¢/,d') € con(a',b'), since con(a’,b’) identifies ey with e, and hence all
elements of the form ¢;(eq, €, €,,) with t;(eg, €, e0) = €g. Again there exists a sequence
' =ep,€eq,... e, =d with (el,el ) € I'(a’,b’) for e < m/. From Lemma 5.5 we obtain an
index p < m/ such that (¢’,d") and (e}, €/ ;) are 1-bounded and it follows via a composition
of translations that (a,b) and («’,b’) are bounded. a

Recall from Section 1.2 that an algebra A is finitely subdirectly irreducible if the
0 € Con(A) is not the meet of finitely many non-0 congruences, and that Vgsr denotes
the class of all finitely subdirectly irreducible members of V.

LEMMA 5.7 Let C be an elementary subclass of V;. Then R(Cgsy) is finite if and only if
Crsr is elementary.

ProOF. By assumption algebras in V; have ounly finitely many basic operations, so there
exists a first order formula ¢g(z,y,2’,y') such that for all A € Vi, A satisfies ¢x(a,b,a’,b")
if and ounly if (a,b) and (', b’) are k-bounded. Suppose R(Crsr) = k < co. Then an algebra
A € C is finitely subdirectly irreducible iff it satisfies the sentence oy: for all z,y, ', v/,
z=yora =y or ¢p(x,y,2’,y"). Hence Crgr is elementary. Conversely, suppose Crgr is
an elementary class. Lemma 5.6 implies that A € V; — Cggy iff A satisfies the negation of
oy for each k € w. So V; — Cpgy is also elementary and hence (by Theorem 5.2) strictly
elementary, i.e. it is defined by finitely many of the —oj. Since —op4; implies -0y, we in
fact have A € V; — Cpgr iff A satisfies —oy, for just one particular k (the largest). 1t follows
that all algebras in Crgr satisfy o, whence R(Crsr) = k. a

LEMMA 5.8 If R(VEsy) = k < oo, then R(V) < k + 2.

PRrOOF. Let R(Vpsr) = k < oo and suppose (¢, d) € con(ag, bg)Ncon(a,by) for some A € V
and ag, bo, a1,b1,¢,d € A, ¢ # d. Then there exists a subdirectly irreducible epimorphic
image A’ of A with ¢ # d' and hence qf, # b, and @} # b} (primes denote images in
A"). By assumption (ag, bj) and (af, b)) are k-bounded, i.e. for some distinct u,v € A’,
(u,v) € T'r(ag, b)) N Tr(al, by). For i = 0,1 choose u;, v; € A such that (u;,v;) € I'k(ai, b;)
and u} = u, v/ = v. Such elements exist since if f’ is a k-translation in A’ with f'(a}) = u
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and f'(b}) = v, then we can construct a corresponding k-translation f in A by replacing
each fixed element of A’ by one of its preimages in A and we let u; = f(a;) and v; = f(b;).
Now choose j < n such that u* = t;(ug, u1,v0) # t;(ug, v1,v9) = v*. This is possible since
in A’, t;(u,u,v) and t;(u,v,v) must be distinct for some j < n, else

u = to(u,u,v) = t1(u,u,v) = t1(u,v,v) = ta(u,v,0) = ... = t,(u,v,v) = v.

The 1-translations ¢;(uo,z,v0), t;(uo,u1,2) and ¢;(ug,v1,z) now show that (u*,v*) €
I'y(uq,v1) and (u*, up), (ug, v*) € I'1(ug, vp). Lemma 5.5 applied to the sequence u*, ug, v*
implies that either (u*,v*) and (u*,up) are 1-bounded or (u*,v*) and (ug,v*) are 1-
bounded. In either case (ug,vg) and (uy,v;) are 2-bounded and therefore (ag,bg) and
(a1,b1) are (k + 2)-bounded. a

With the help of these four lemmas and Theorem 5.4, we can now prove the following
result:

THEOREM 5.9 (Jousson [79]). If V is a congruence distributive variety of algebras and
Vrsr is strictly elementary, then V is finitely based.

Proor. By Lemma 5.7 R(VEsr) = k for some k € w, and by the above Lemma R(V) =
k+2. Let B be the class of all A € V; with R(A) < k+2. Since the condition B(A) < k+2
can be expressed by a first-order formula, and since V; is strictly elementary, so is B.
Clearly R(Brsr) < k+2, hence Lemma 5.7 implies that Brgr is elementary. By assumption
VNBrst = Vrsr is strictly elementary, so applying Theorem 5.4 with C = Bgsr, we conclude
that V is finitely based. O

Assuming that V is a finitely generated congruence distributive variety, Corollary 1.7
implies that up to isomorphism Vggr is a finite set of finite algebras. Since such a collection
is always strictly elementary, one obtains Baker’s result from the preceding theorem:

THEOREM 5.10 (Baker [77]). If V is a finitely generated congruence distributive variety
of algebras then V is finitely based.

5.3 Joins of finitely based varieties

In this section we first give an example which shows that the join of two finitely based
modular varieties need not be finitely based.

LEMMA 5.11 (Baker [77’]). There exist finitely based modular varieties V and V' such
that the complement of V + V' is not closed under ultraproducts.

Proor. Let M be the modular lattice of Figure 5.1 (i) and let N(M) be the class of
all lattices that do not contain a subset order-isomorphic to M regarded as a partially
ordered set). By Lemma 3.10 (ii) M ¢ N(M), so there exists an identity ¢ € Id N(M)
that does not hold in M. Let V be the variety of modular lattices that satisfy ¢ (i.e.
V = Mod{e, €.}, where €, is the modular identity) and let V' be the variety of all the
dual lattices of members in V. Since the modular variety is self-dual, V' is defined by ¢,
and the dual identity €’ of €. Hence V and V'’ are both finitely based.
Let K, be the lattice of Figure 5.1 (ii).
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(i) M (i) d F,

Figure 5.1

We claim that, for each n € w, K,, ¢ V + V'. Note that K, is subdirectly irreducible
(in fact simple), and since K, contains a copy of M and its dual as sublattices, both ¢
and ¢’ fail in K,,. Hence K, ¢ VUV’ and the claim follows from Theorem 2.3 (i).

Now let K = [],e, K, and choose any nonprincipal ultrafilter ¢/ over w. We show
that the ultraproduct K = K/¢y is in V + V'. Notice that an order-isomorphic copy
of M is situated only at the bottom of each K,,. This fact can be expressed as a first-
order sentence and, by Theorem 5.1, also holds in K. Similarly, the dual of M can only
be situated at the top of K. The local structure of the middle portion of K, can also
be described by a first order sentence, whence K looks like an infinite version of K.
Interpreting Figure 5.1 (ii) as a diagram of K, we see that M is not order-isomorphic to
any subset of K /con(c,d) since con(c, d) collapses the only copy of M in K. Consequently
K /con(c¢,d) € V and by a dual argument K /con(a,b) € V'. Observe that K is not a
simple lattice since principal congruences can only identify quotients reachable by finite
sequences of transpositions (Theorem 1.11). In fact con(a,b) N con(c,d) = 0, and hence

K can be embedded in K /con(a,b) x K /con(c,d). Therefore K € V + V. o
Together with Theorem 5.2 and Theorem 5.3, the above lemma implies:

THEOREM 5.12 (Baker [77°]). The join of two finitely based (modular) varieties need not
be finitely based.

In view of this theorem it is natural to look for sufficient conditions under which the
join of two finitely based varieties is finitely based. In what follows, we shall assume that
V. is a congruence distributive variety, and that V and V' are two subvarieties defined
relative to V. by the identities p = ¢ and p’ = ¢’ respectively.

By an elementary result of lattice theory, any finite set of lattice identities is equivalent
to a single identity (relative to the class of all lattices, [GLT] p.28). Moreover Baker [74]
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showed that this result extends to congruence distributive varieties in general. Conse-
quently, the above condition on the varieties V and V' is equivalent to them being finitely
based relative to V.. The next two lemmas are due to Jonsson [74], though the second
one has been generalized to congruence distributive varieties.

If p is an n-ary polynomial function (= word or term with at most n variables) on
an algebra A and uq,...,u, € A then we will abbreviate p(uy,...,u,) by p(u), u € A,
thereby assuming that only the first n components of u are used to evaluate p.

LEMMA 5.13 An algebra A € V. belongs toV + V' if and ounly if for all u,v € A%
(%) con(p(u), g(u)) N con(p'(v),q'(v)) = 0.

Proor. Let 8 = > {con(p(u),q(v)) : u € A¥} and ' = Y {con(p'(u),¢'(u)) : u € A¥}.
By the (infinite) distributivity of Con(A) we have that (x) holds if and only if § N 6" = 0.
This in turn is equivalent to A being a subdirect product of A/8 and A/6'. Since A/0 € V
and A/0" € V', it follows that A € V + V'. On the other hand Jénsson’s Lemma implies
that any A € V +V’ can be written as a subdirect product of two algebras A/¢ and A/¢'.
Notice that @ and 6 above are the smallest congruences on A for which A/6 € V and
A/0" € V' hence § C ¢ and ¢ C ¢'. Since ¢ N ¢’ = 0 we conclude that N6 = 0. a

Recall the notion of k-boundedness defined in the previous section. It is an elementary
property, so we can construct a first-order sentence oy such that an algebra A € V, satisfies
oy if and only if for u,v € A% (p(u), q(u)) and (p'(v), ¢'(v)) are not k-bounded.

LEMMA 5.14 V 4+ V' is finitely based relative to V. if and only if the following property
holds for some positive integer n:
P(n): For any A € V., if A satisfies 0, then A satisfies oy, for all k > 1.

Proor. Firstly, we claim that, relative to V., the variety V 4+ V' is defined by the set of
sentences § = {01, 02,03,...}. Indeed, by Lemma 5.6 we have that

con(p(u),q(u))N con(p'(v),¢'(v)) =0
if and only if
Lr(p(u), q(w)) N Tr(p'(v), ¢'(v)) = 0

for all £ > 0. Hence by Lemma 5.13 an algebra A € V. belongs to V 4+ V' if and only if A
satisfies oy, for all & > 0. We can now make use of Theorem 5.3 to conclude that V + V'’
will have a finite basis relative to V, if and only if it is defined, relative to V., by a finite
subset of §, or equivalently by a single sentence oy, since oy implies o, for all m < k. If
P(n) holds, then clearly V + V' is defined relative to V. by the sentence o,. On the other
hand, if P(n) fails, then there must exist an algebra A € V, such that A satisfies o,, but
fails o, for some m > n. If this is true for any positive integer n, then V + V' cannot be
finitely based relative to V.. a

Although P(n) characterizes all those pairs of finitely based congruence distributive
subvarieties whose join is finitely based, it is not a property that is easily verified. For-
tunately, for lattice varieties, k-boundedness can be expressed in terms of weak projec-
tivities. More precisely, if we exclude the use of the polynomials ¢; in the definition of a
k-translation then a k-translation from one quotient of a lattice to another is nothing else
but a sequence of k weak transpositions. Two quotients a/b and a’/b’ are then said to
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be k-bounded if they both project weakly onto some nontrivial quotient ¢/d in less than
or equal to k steps. Furthermore, if p = ¢ is a lattice identity then we can assume that
the inclusion p < ¢ holds in any lattice (if not, replace p = ¢ by the equivalent identity
pq = p + ¢) and the sentence o} can be rephrased as:

L € V. satisfies oy if and only if, for all uw,v € L“, the quotients ¢(u)/p(v) and
q'(v)/p'(v) do not both project weakly onto a common nontrivial quotient in k (or less)
steps.

The following is a slightly sharpened version (for lattices) of Lemma 5.8.

LEMMA 5.15 Let L be a homomorphic image of L and let x/y be a prime quotient in L.
For any quotient a/b of L, if a/b projects weakly onto z/7y in n steps, then a/b projects
weakly onto «/y in n+ 1 steps if n > 0, and in two steps if n = 0.

PROOF. Suppose @/b projects onto /7 in 0 steps, i.e. @ = 7 and b = 5. Then

a/b /wa+y/b+yN\w (at+y)a/(b+y)r=u/y
anda/b Now (L.’L‘/b:L' /w al‘+y/bw+y: .L/y,

since y < (b+y)r < (a+y)r <z and y <br+y < ar +y < z. Now suppose that a/b
projects weakly onto /g in n > 0 steps. Since the other cases can be treated similarly,
we may assume that @/b /o @1/b1 \w --- \w @n_1/bn_1 /w T/7 for some b;,a; € L,
i=1,...,n— 1. In this case b < by implies that there exists | € L with b; = by and
b < b}. Letting o} = b} + a we have @} = @ and a/b ", a|/b}. Next, there exists a, € L
such that @) = @2 and @) < af. Letting b)), = abd] we have 3{2 = by and a} /by N\ ab/bh.
Repeating this process we get

afb /w @y [V New a3 /by S N g, 1 [y w2 Y

where 7/ = 7 and §' = y. By the first argument 2'/y’ /' o' + ¢ /y' + & \w z/y, so a/b
projects weakly onto z/y in n + 2 steps. One of the steps (2'/y’) can still be eliminated,
hence the result follows. a

Given a variety V, we denote by (V)" the variety that is defined by the identities
of V which have n or less variables for some positive integer n. Clearly V C (V)" and
Fy(m) = F(V)n(m) for any m < n. Another nice consequence of this definition is the
following lemma, which appears in Jonsson [74].

LEMMA 5.16 If Fy(n) and Fy/(n) are finite for some lattice varieties V and V', then
(V + V)" is finitely based.

ProoOF. In general, if Fy(n) is finite, then (V)™ is finitely based. Now Fy y/(n) is a
subdirect product of the two finite lattices Fy(n) and Fy/(n), hence finite, and so the
result follows. a

We can now give sufficient conditions for the join of two finitely based lattice varieties

to be finitely based. This result appeared in Lee [85’] and is a generalization of a result
of Jonsson [74].

THEOREM 5.17 If V and V' are finitely based lattice varieties with V NV’ = W and
R(Wsr) = r < oo and if Fy(r 4 3) and Fy/(r + 3) are finite, then V + V' is finitely based.
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Figure 5.2

PROOF. We can assume that V and V' are defined by the identities p = ¢ and p' = ¢
respectively, relative to the variety of all lattices, and that the inequalities p < ¢ and
p’ < ¢ hold in any lattice. Let K and K’ be the classes of (r + 3)-generated subdirectly
irreducible lattices in V and V' respectively, and define h = max(R(K), R(K)). We only
consider h > 0 since if h = 0, then V,V’ C D, the variety of distributive lattices, in
which case the theorem holds trivially. Let V., = (V + V)3, then V, is finitely based by
Lemma 5.16. If we can show that the condition P(n) in Lemima 5.14 holds for some n,
then V + V' will be finitely based relative to V., and hence relative to the variety of all
lattices.

So let L € V. and suppose that for some u,u’ € L“ the quotients ¢(u)/p(u) and
¢'(u')/p'(u') are bounded, that is they project weakly onto a common quotient ¢/d of L
in m and m’ steps respectively. Property P(n) demands that m,m’ < n for some fixed
integer n. Take n = max(2h + 5,h + 7 + 5) and assume that u,u’, ¢, d have been chosen
so as to minimize the number m + m'. We will show that if 7n > n then there is another
choice for u,u, ¢, d such that the corresponding combined number of steps in the weak
projectivities is strictly less than m + m’. This contradiction, together with the same
argument for m/', proves the theorem.

By assumption ¢(u)/p(u) = ag/bo ~y a1/b1 ~u ... ~y @y /by, = ¢/d for some
quotients a;/b; in L which transpose weakly alternatingly up and down onto a;41/b;41
(¢ =0,1,...,m — 1). Since m > max(2h 4+ 5,h + r + 5), we can always find an integer
k such that max(h + 2,7+ 2) < k < m —h — 2. Consider the r + 3 quotients up to and
including ay /by in the above sequence. Since the other cases can be treated similarly, we
may assume that

ak77"72/bk77"72 /u} (karfl/bkfrfl \rw ... /w (Lk/bk.

Let Lg be the sublattice of L generated by the r + 3 elements
Ap—r—2,0p—r_1,Q_p,. .., Qf_1,bp.

Notice that Lo € V+V’, and Lg is a finite lattice because Fy yi(r+3) = Fy (r+3)isa
subdirect product of Fy(r+3) and Fy/(r+3), and is therefore finite. ar /by (= ag_1+bx/bi)
can be divided into (finitely many) prime quotients in Lg and at least one of these prime
quotients, say x/y, must project weakly onto a nontrivial subquotient of ¢/d. Let Lo be
the unique subdirectly irreducible quotient lattice of Lg in which /7 is a critical quotient.
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Then Lo € V + V', and hence Theorem 2.3 (i) implies Ly € V U V. We examine each of
the three cases that arise:

Case 1: Lo € V and Lo ¢ V'. Since Lo ¢ V', there exists v € Lo¥ such that p'(v) <
¢'(v). Lo € V implies R(Lo) < h. Also p/(v) = p/(v) and ¢'(v) = ¢'(v). So by Lemma 5.15
q'(v)/p'(v) projects weakly onto z/y in h + 1 steps. Now ¢(u)/p(u) projects weakly onto
¢/d in k steps, hence onto z/y in k 4+ 1 steps. But A+ 14+ k+ 1 < m < m + m/, so this
contradicts the minimality of m + m/.

Case 2: Lo ¢ V and Lo € V'. Since Lo ¢ V, p(v) < ¢(v) for some v € Lo“. As above,
since Ly € V', R(Lg) < h, and hence g(v)/p(v) projects weakly onto z/y in h + 1 steps
and from there onto a nontrivial subquotient ¢’/d’ of ¢/d in m — k steps. By the choice of
k wehave h + 1+ m —k < m— 1. Also ¢'(u')/p'(u') projects weakly onto ¢/d in m’ + 1
steps so again we get a contradiction.

Case 3: Lo € VNV’ = W. First suppose that r > 0, hence W # D. R(Wsy) = 7 implies
@ 2/bp_r_o projects weakly onto z/y in r steps, so by Lemma 5.15 a_, 2/bp » o
projects weakly onto z/y in r 4+ 1 steps. Now either

akf'er/bkf'rf? \w a;gf'rf]/b;gfrfl /w e \.w akfz/b;ng /w w/y or
ak7772/bk7772 S w asgfrfl/b;g,Tfl Nw -+ w a;gfg/bzfz \ow 'L'/y

for some quotients af, . /b} . 4,...,a} 5/b} 5 in L. Since

ak—r—3/bk—r_3 \w @k—r—2/bk_r_2 and ar/bp \w Gr41/bk+1,

we have that ¢(u)/p(u) projects weakly onto z/y in k — 2 steps and hence onto a nontrivial
subquotient ¢’/d" of ¢/d in m — 2 steps. As before ¢(u')/p(u’) projects weakly onto ¢'/d’
in m’ 4+ 1 steps which again contradicts the minimality of m + m/’.

Now suppose that » = 1, which implies W = D and Lg = 2. Hence in Ly we have

ar—2/bg_2 /ar_2+y/br_2+y \ z/y and

ax—2/br_2 \, ax_2x/by_ox / x/y.

It follows that we can shorten the sequence of weak projectivities from ¢(u)/p(u) onto a
nontrivial subquotient ¢’/d’ of ¢/d to m —2 steps. Again ¢'(u")/p'(u') projects weakly onto
/d in m' + 1 steps, giving rise to another contradiction. This concludes the proof. O

We end this section with a theorem that summarizes some conditions under which the
join of two finitely based varieties is known to be finitely based. Parts (i) and (ii) are from
Lee [85°], and they follows easily from the preceding theorem. Part (iii) is due to Jénsson

and the remaining results are from Kang [87].
THEOREM 5.18 Let V and V' be two finitely based lattice varieties. If one of the following
conditions holds then V + V' is finitely based:

(i) V is modular and V' is generated by a finite lattice that excludes Ms.
(ii) V and V' are locally finite and R(V NV') is finite.
(iii) V and V' are modular and V' is generated by a lattice of finite length.
)

(iv) V is modular and V' is generated by a lattice with finite projective radius.
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(v) YNV =D, the distributive variety.

Lee [85°] also showed that any almost distributive (see Section 4.3) subdirectly irre-
ducible lattice has a projective radius of at most 3. Since any almost distributive variety
is locally finite, it follows from Theorem 5.17 that the join of two finitely based almost
distributive varieties is again finitely based.

5.4 Equational Bases for some Varieties

A variety V is usually specified in one of two ways: either by a set £ of identities that
determine V (i.e. V = Mod &) or by a class K of algebras that generate V (i.e. V = KV).
In the first case &£ is of course an equational basis for V, so here we are interested in the
second case.

A lattice inclusion or inequality of the form p < ¢ will also be referred to as a lattice
identity, since it is equivalent to the identity p = pq.

Theorem 3.32 shows that the variety M,,, generated by all lattices of length 2, has an
equational basis consisting of one identity : zg(z1 + zoz3)(z2 + 23) < 21 + 2oz + Toxs.
Jounsson [68] observed that if one adds to this the identity

en: w0 ] (witaz;)< D wom

1<4,5<n 1<i<n

then one obtains an equational basis for M,, = {Aln}v (3 < m € w). To see this, note that
€, holds in a lattice of length 2 whenever two of the variables zg,21,..., 2, are assigned
to the same element or one of them is assigned to 0 or 1, but fails when they are assigned
to n + 1 distinct atoms. Therefore ¢, holds in M,, and fails in M, 1.

For M3 this basis may be simplified even further by observing that €3 implies €, hence

M3z = Mod{zo(z1 + z2)(z2 + 23)(23 + 1) < 201 + ToZ2 + To2s.}
An equational basis for /' was found by McKenzie [72]. It is given by the identities

m: a(y+u)(y+o) <a(y+uv)+zu+av
ne: z(y+u(z+v))=a(y+uz)+ z(zy + uv)

McKenzie shows that 7y and 72 hold in any lattice of width < 2, whence N' C Mod{n, 72},
and then proves by direct computation that any identity which holds in A is implied by
7 and 72. In view of Theorem 4.19 the second part may now also be verified by checking
that either 7y or 7 fail in each of the lattices Ms, L1, Lg, . .., L15 (see Figure 2.2).

Theorem 5.17 implies that the variety Mt = M+ N is finitely based (M is the variety
of all modular lattices). Note that since A/ is the only nonmodular variety that covers
the distributive variety, M™ is the unique cover of M. Jonsson [77] derives the following
equational basis for Mt consisting of 8 identities:

() (o4 A+ e+ 2+ ) = (e + @y + 2
(i) (z+c)y<z+ (y+a)
(i) ((t+2)y +a)e = (et + )y + a)e + (Bt + )y + 0)e
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(iv) ((ct+2)y+a)e=(((ct+ z)c+a+zy)y+ a)c
(v) (bt +z)y+ a)e=((bt+ a)c+ zy)((b+ z)y + a)c

and the duals of (iii), (iv) and (v), where a = pg + pr, b = g and ¢ = p(q + rq)-
(Note that (ii) is the identity (AD") which forms part of the equational basis for the
variety of all almost distributive lattices in Section 4.3.)

Varieties generated by lattices of bounded length or width. Let V™ be the lattice
variety generated by all lattices of length at most m and width at most n (1 < m,n < )
and recall from Section 3.4 the varieties M7 which are defined similarly for modular
lattices. For m,n < oo all these varieties are finitely generated, hence finitely based
(Theorem 5.10), and it would be interesting to find a finite equational basis for each of
them. Apart from several trivial cases, and the case M2 = M,,, not much is known about
these varieties.

Nelson [68] showed that V$° = N (= V7 for n > 3). With the help of Theorem 4.19,
this follows from the observation that each of the lattices M3, Ly, Lo, ..., L15 has width
> 3.

Baker [77] proves that V§° and Mg° are not finitely based, and the same holds for
Ve, MS n > 5. The proofs are similar to the proof of Lemma 5.11.

As mentioned at the end of Chapter 3 M5° = M3, and by a result of Freese [77] M
is finitely based. Whether V$° is finitely based is apparently still an unresolved question.



Chapter 6

Amalgamation in Lattice
Varieties

6.1 Introduction

The word amalgamation generally refers to a process of combining or merging certain
structures which have something in common, to form a larger or more complicated struc-
ture which incorporates all the individual features of its substructures. In the study of
varieties, amalgamation, of course, has a very specific meaning, which is defined in the
following section. This leads to the formulation of the amalgamation property, which has
been of interest for quite some time in several related areas of mathematics such as the
theory of field extensions, universal algebra, model theory and category theory.
Amalgamations of groups were originally considered by Schreier [27] in the form of
free products with amalgamated subgroup. Implicit in his work, and in the subsequent
investigations of B. H. Neumann [54] and H. Neumann [67], is the result that the variety
of all groups has the amalgamation property. The first definition of this property in a
universal algebra setting can be found in Fraissé [54]. The strong amalgamation property
appears in Jonsson [56] and [60] among a list of properties used for the construction
of universal (and homogeneous) models of various first order theories, including lattice
theory. Omne of the results in the [56] paper is that the variety £ of all lattices has the
strong amalgamation property. Interesting applications of the amalgamation property to
free products of algebras can be found in Jonsson [61], Gratzer and Lakser [71] and [GLT].
The property also plays a role in the theory of algebraic field extensions (Jonsson [62])
and can be related to the solvability of algebraic equations (Hule [76],[78],[79]).
However, it soon became clear that not many of the better known varieties of algebras
satisfy the amalgamation property. Counterexamples showing that it fails in the variety
of all semigroups are given in Kimura [57] and Howie [62], and these can be used to
construct counterexamples for the variety of all rings. As far as lattice varieties are con-
cerned, it follows from Pierce [68] that the variety of all distributive lattices does have the
amalgamation property, but Gritzer, Jonsson and Lakser [73] showed that this was not
true for any nondistributive modular subvariety. Finally Day and Jezek [84] completed
the picture for lattice varieties, by showing that the amalgamation property fails in ev-
ery nondistributive proper subvariety of £. A comprehensive survey of the amalgamation

128
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property and related concepts for a wide range of algebras can be found in Kiss, Marki,
Prohle and Tholen [83].

Because of all the negative results, investigations in this field are now focusing on the
amalgamation class Amal(K) of all amalgamation bases of K, which was first defined in
Gratzer and Lakser [T1]. A syntactic characterization, and some general facts about the
structure of Amal(K), K an elementary class, appear in Yasuhara [74]. Bergman [85]
gives sufficient conditions for a member of a residually small variety V of algebras to be
an amalgamation base of V, and Jonsson [90] showed that for finitely generated lattice
varieties these conditions are also necessary and, moreover, that it is effectively decidable
whether or not a finite lattice is a member of the amalgamation class of such a variety. In
Section 6.3 we present some of Bergman’s results, and a generalization of Jonsson’s results
to residually small congruence distributive varieties whose members have one-element
subalgebras (due to Jipsen and Rose [89]).

In Grétzer, Jonsson and Lakser [73] it is shown that the two-element chain does not
belong to the amalgamation class of any finitely generated nondistributive lattice variety,
and that the amalgamation class of the variety of all modular lattices does not contain any
nontrivial distributive lattice. On the other hand Berman [81] constructed a nonmodular
variety V such that the two-element chain is a member of Amal(V).

Lastly, whenever the amalgamation property fails in some variety V, then Amal(V)
is a proper subclass of V, and it would be of interest to know what kind of class we are
dealing with. In particular, is Amal(V) an elementary class (i.e. can membership be
characterized by some collection of first order sentences)? Using results of Albert and
Burris [88], Bergman [89] showed that the amalgamation class of any finitely generated
nondistributive modular variety is not elementary. In contrast Bruyns, Naturman and
Rose [a] show that for the variety generated by the pentagon, the amalgamation class is
elementary, and is in fact determined by Horn sentences.

6.2 Preliminaries

The amalgamation class of a variety. By a diagram in a class K of algebras we mean
a quintuple (4, f,B,g,C) with A, B,C € K and f: A — B,¢g : A — C embeddings. An
amalgamation in K of such a diagram is a triple (f/,¢’, D) with D € Vand f': B — D,
¢’ : C — D embeddings such that f'f = ¢’g (see Figure 6.1).

A strong amalgamation is an amalgamation with the additional property that

F'(B)ng'(C) = f'1(A).
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An algebra A € K is called an amalgamation base for K if every diagram (A, f, B, g, C) can
be amalgamated in K. The class of all amalgamation bases for K is called the amalgamation
class of K, and is denoted by Amal(K). K is said to have the (strong) amalgamation
property if every diagram can be (strongly) amalgamated in K. We are interested mainly
in the case where K is a variety.

Some general results about Amal(}V). We summarize below some results, the first of
which is due to Gritzer, Jonsson and Lakser [73] and the others are from Yasuhara [74].

THEOREM 6.1 Let V be a variety of algebras.

(i) If f: A— A’ € Amal(V), and for every g : A — C, f and g can be amalgamated in
V, then A € Amal(V).

(ii) Every A’ € V can be embedded in some A € Amal(V), with |A| < |A'| + w.
(iii) Amal(V) is a proper class.
(iv) The complement of Amal(V) is closed under reduced powers.

)

(v) If A x A" € Amal(V), and if A’ has a one element subalgebra, then A € Amal(V').

In general we know very little about the members of Amal(V). Take for example
YV = M, the variety of all modular lattices: as yet nobody has been able to construct a
nontrivial amalgamation base for M. In fact, we do not even know whether Amal(M)
has any finite members except the trivial lattices. As we shall see below, the situation is
somewhat better if we restrict ourselves to residually small varieties (defined below).

Essential extensions and absolute retracts. An extension B of an algebra A is said to
be essential if every nontrivial congruence on B restricts to a nontrivial congruence on A.
An embedding f: A — B is an essential embedding if B is an essential extension of f(A).
Notice that if A is (a,b)-irreducible (i.e. con(a,b) is the smallest nontrivial congruence on

A) and f: A — B is an essential embedding, then B is (f(a), f(b))-irreducible.

LEMMA 6.2 If h: A — B is any embedding, then there exists a congruence § on B such

that h followed by the canonical epimorphism from B onto B/0 is an essential embedding
of A into B/#6.

Proor. By Zorn’s Lemma we can choose 6 to be maximal with respect to not identifying
any two members of h(A). a

An algebra A in a variety V is an absolute retract of V if, for every embedding f :
A — B with B € V, there exists an epimorphism (retraction) ¢ : B — A such that the
composite ¢ f is the identity map on A.

THEOREM 6.3 (Bergman [85]). Every absolute retract of a variety V is an amalgamation
base of V.

PROOF. Suppose A is an absolute retract of V and let (A, f, B,¢,C) be a diagram in V.
Then there exist epimorphisms h and k such that fh = idg = kg. To amalgamate the
diagram, we take D = B X C' and define f': B — D by f'(b) = (b,gh(b))and ¢’ : C — D
by ¢'(¢) = (fk(¢),c), then f'f(a) = (f(a),g9(a)) = ¢'g(a) for all a € A. O
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Recall that Vg denotes the class of all subdirectly irreducible algebras of V and counsider
the following two subclasses (referred to as the class of all mazimal irreducibles and all
weakly mazimal irreducibles respectively):

Vmr = {M € Vsy : M has no proper extension in Vgr}
Vwmr = {M € Vs : M has no proper essential extension in Vgr}.

Clearly Vmr € Vwwmr -
LEMMA 6.4 M € Vywny if and only if M € Vsr and M is an absolute retract in V.

Proor. Let M € Vg and suppose f: M — B € V is an embedding. By Lemma 6.2,
f induces an essential embedding f' : M — B/6 for some 6§ € Con(B). Since M has
no proper essential extensions, f’ must be an isomorphism, so the canonical epimorphism
from B to B/# followed by the inverse of f’ is the required retraction. The converse
follows from the observation that an absolute retract of V cannot have a proper essential
extension in V. a

Theorem 6.3 together with Lemma 6.4 implies that Viya C Amal(V). Observe also
that if V is a finitely generated congruence distributive variety, then Vgr is a finite set of
finite algebras (Corollary 1.7), and so we can determine the members of Vs by inspection.

Residually small varieties. A variety V is said to be residually small if the subdirectly
irreducible members of V form, up to isomorphism, a set, or equivalently, if there exists an
upper bound on the cardinality of the subdirectly irreducible members of V. For example,
any finitely generated congruence distributive variety is residually small.

THEOREM 6.5 (Taylor [72]). If'V is a residually small variety, then every member of Vsy
has an essential extension in Vwur.

ProoF. The union of a chain of essential extensions is again an essential extension, so
we can apply Zorn’s Lemma to the set Vg (ordered by essential inclusion) to obtain its
maximal elements. Clearly these are all the elements of Viyagr. a

In fact Taylor [72] also proved the converse of the above theorem, but we won’t make
use of this result. Note that if V is a finitely generated congruence distributive variety
then every member of Vg; has an essential extension in Vyyy.

Amalgamations constructed from factors. The following lemma is valid in any class
of algebras that is closed under products, and makes the problem of amalgamating a
diagram somewhat more accessible.

LEMMA 6.6 (Gritzer and Lakser [71]). A diagram (A, f,B,g,C) in a variety V can be
amalgamated if and only if for all w # v € B there exists a D € V and homomorphisms
f'+B— D andg :C — D such that f'f = ¢'g and f'(u) # f'(v), and the same holds
for C.

Proor. The condition is clearly necessary. To see that it is sufficient, we need ouly
observe that the diagram can be amalgamated by the product of these D’s, generated as
uw and v Tun through all distinct pairs of B and C. o
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Figure 6.2

6.3 Amal(V) for Residually Small Varieties

Property (Q). An algebra A in a variety V is said to have property (@) if for any
embedding f : A — B € V and any homomorphism h : A — M € Vypr there exists a
homomorphism ¢ : B — M such that h = ¢ f.

This property was used in Gratzer and Lakser [7T1], Bergman [85] and Jonsson [90] to
characterize amalgamation classes of certain varieties.

THEOREM 6.7 (Bergman [85]). Let V be a residually small variety. If A € V has property
(Q), then A € Amal(V).

ProOF. We use Lemma 6.6. Let (A, f, B,g,C) be any diagram in V and let u # v € B.
Choose a maximal congruence § on B such that @ does not identify w and ». Then
B/6 € Vg and hence by Theorem 6.5 B/68 has an essential extension M € Vypy. Let
f" be the canonical homomorphism B — B/, but considered as a map into M. Clearly
f'(u) # f'(v), and since A has property (Q), the homomorphismn f'f : A — M can be
extended to a homomorphism ¢’ : €' — M such that f'f = ¢g’g. We argue similarly for
u # v € C, hence Lemma 6.6 implies A € Amal(V). o
We show that, for certain congruence distributive varieties of algebras (including all
residually small lattice varieties), the converse of the above theorem also holds. We first
prove two simple results.
LEMMA 6.8 (Jipsen and Rose [89]). Let A and B be algebras in a congruence distributive
variety V, a € A and suppose {a} is a subalgebra of A. Let h, : B — A x B be an
embedding such that hy(b) = (a,b) for all b € B. Then the projection ng : A X B — B is
the only retraction of h, onto B.

PRrROOF. Suppose g : A X B — B is a retraction, that is gh, is an identity map on B. By
Lemma 1.3 there exist 8§ € Con(A) and ¢ € Con(B) such that for (z,y),(z',y') € A X B

(z,y) ker g (¢',y') if and only if 26z’ and yoy'.
Since gh, is an identity map on B, ¢ must be a trivial congruence on B. To prove that
g = mp it suffices to show that for any ¢’ € A we have afa’. Suppose the contrary. First

observe that for b,b" € B with b # b’ we always have

g(a,b)=b#b = g(a,b).
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Now if (a,a’) ¢ 0 for some o’ € A, then there exist b,b’ € B such that

g(a,b)=b#b = g(d,b).
Thus g(a,b’) = g(a’,b) and so Lemma 1.3 implies afa’ and bpb’, a contradiction. O

COUNTEREXAMPLE. The assumption that h = h, is a one-element subalgebra embedding
cannot be dropped. Indeed, let 2 = {0,1} be the two-element chain and consider a lattice
embedding h : 2 — 2 x 2 given by h(0) = (0,0) and hA(1) = (1,1). Then both projections
on 2 X 2 are retractions onto 2.

COROLLARY 6.9 Let V be congruence distributive, A, B € V, and suppose A has a one-
element subalgebra {a} and B is an absolute retract in V. If k: AX B — C €V is an
embedding, then the projection 1g : A X B — B can be extended to an epimorphism of
C onto B.

PrOOF. If hy : B — A X B is an embedding as in Lemma 6.8, then kh, is an embedding
of B into C'. Since B is an absolute retract in V there is a retraction p of C' onto B. It
follows from Lemma 6.8 that p|]AXx B = 7. a

The characterization theorem. The following theorem is a generalization of a result
of Jénsson [90]. There the result was proved for finitely generated lattice varieties.

THEOREM 6.10 (Jipsen and Rose [89]). Let V be a residually small congruence distributive
variety, A € V and suppose A has a one-element subalgebra. Then the following conditions
are equivalent:

(i) A satisfies property (Q);
(ii) A € Amal(V);

(iii) Let h: A — M € Vwnmr be a homomorphism and k : A — A X M be an embedding
given by k(a) = (a,h(a)) for alla € A. If f: A — B €V is an essential embedding
then the diagram (A, f, B,k, A X M) can be amalgamated in V.

Proor. (i) implies (ii) by Theorem 6.7, and trivially (ii) implies (iii). Suppose (iii) holds.
It follows from Lemma 6.2, that in order to prove (i), we may assume that the embedding
f: A — B isessential. Let h : A — M € Vwpr be any homomorphism, and define an
embedding k : A — A x M by k(a) = (a,h(a)) for all « € A. Notice that h = mprk where
7 is the projection from A x M onto M. By (iii) the diagram (A, f, B,k, A x M) has
an amalgamation (C, f/, k') in V. It follows from Corollary 6.9 that there is a retraction
p:C — M such that h = pk’k = pf'f (see Figure 6.3). Letting g = pf’ we have h = g .0

In case V is a finitely generated congruence distributive variety, we have that each
M € Vwnmr is embedded in some M’ € Vyr (= the set of all maximal extensions in the
finite set Vwagr). Since members of Vg are absolute retracts, we only have to test
property (Q) for all homomorphisms h : A — M’ € Vyy (this is how property (Q) is
defined in Jounsson [90]). If A € V is a finite algebra, then A has only finitely many
nonisomorphic essential extensions B € V and there are only finitely many possibilities
for the homomorphisms h : A — M’ € Vay. In each case one can effectively determine if
there exists a homomorphism g : B — M’ such that g|A = h. Thus we obtain:
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COROLLARY 6.11 (Jounsson [90]). Let V be a finitely generated congruence distributive
variety. If A € V is a finite algebra with a one-element subalgebra, then it is effectively
decidable whether or not A € Amal(V).

Property (P). We conclude this section by stating without proof further interesting
results from Bergman [85] and Jonsson [90].

For an algebra A in a variety V, we let A# be the direct product of all algebras A/6
with € Con(A) and A/6 € VgrNAmal(V), and we let g4 be the canonical homomorphism
of A into A#.

An algebra A in a variety V is said to have property (P) if pa is an embedding of A
into A#, and for every homomorphism ¢ : A — M € Vyr there exists a homomorphism
h: A#¥ — M with huy = g.

THEOREM 6.12 (Bergman [85]). For any finitely generated variety of modular lattices and
A €V, we have A € Amal(V) if and only if A is congruence extensile and has property
(P).

Bergman also showed that the above theorem holds for V = A/, the smallest non-
modular variety (see Jonsson [90]), and that the reverse implication holds for all finitely
generated lattice varieties, but it is not known whether the same is true for the forward
implication.

THEOREM 6.13 (Jousson [90]). A finite lattice L € N belongs to Amal(N ) if and only if L
is a subdirect power of N and L does not have the three element chain as a homomorphic
image.

It is not known whether this theorem is also true for infinite members of A.

6.4 Products of absolute retracts

It is shown in Taylor [73] that, in general, the product of absolute retracts is not an
absolute retract evenif V is a congruence distributive variety. Theorem 6.14 however shows
that absolute retracts are preserved under arbitrary products in a congruence distributive
varieties, provided that every member of this variety has a one-element subalgebra. The
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theorem is a generalization of a result of Jonsson [90], which states that if V is a finitely
generated lattice variety then any product of members of Vy is an absolute retract in V.

THEOREM 6.14 (Jipsen and Rose [89]). Let V be a congruence distributive variety and
assume that every member of V has a one-element subalgebra. Then every direct product
of absolute retracts in V is an absolute retract in V.

PrROOF. Suppose A = [];c; A; is a direct product of absolute retracts in V, and consider
an embedding f: A — B e V. Fori € I,let r; : A — A; be a projection. By Corollary 6.9
there is a homomorphism h; : B — A; such that «; = h;f. Counsider a homomorphism
h: B — A given by m;h = h; for each ¢ € I. Then m;hf = h;f =1, and sohf: A — Ais
the identity map. a

6.5 Lattices and the Amalgamation Property

Given the characterization of Amal(V) (Theorem 6.10), some well known results about
the amalgamation classes of finitely generated lattice varieties can be derived easily.

THEOREM 6.15 (Pierce [68]). The variety D of all distributive lattices has the amalga-
mation property.

Proor. We show that property (Q) is satisfied for any A € D. Dt = Dwmr = D = {2},
solet A, B € D with embedding f : A — B and homomorphism h : A — 2. If h(A4) = {0}
or h(A) = {1} then trivially there exists g : B — 2 such that h = ¢gf. On the other hand,
if h is onto, then kerh splits A into an ideal I and a filter F', say. Extend f(I) to the
ideal I' = {be B:b< ae€ f(I)} and f(F) to the filter F" ={be B:b>a € f(F)}.
Clearly I'N F' = (), hence by Zorn’s Lemma and the distributivity of B, I’ can be enlarged
to a maximal ideal P, which is also disjoint from F’. Define g : B — 2 by ¢(b) = 0 if
b e P, and g(b) = 1 otherwise. Then one easily checks that ¢ is a homomorphism and
that h = g f. a

In fact, one can show more generally that if V is any congruence distributive variety
which is generated by a finite simple algebra that has no nontrivial subalgebra, then V
has the amalgamation property. This result is essentially contained in Day [72].

THEOREM 6.16 For any nondistributive finitely generated lattice variety V we have 2 ¢
Amal(V) and consequently the amalgamation property fails in V.

PrROOF. Since V is nondistributive, M3 or N is a member of V. Let f be a map that
embeds 2 into a prime critical quotient of L = M3 or L = N, depending on which lattice is
in V. Also, since each M € Vyyy is finite, we can define the map h : 2 — M by h(0) = Op
and h(1) = 1p7. Now it is easy to see that there does not exist a homomorphism g : L — M
such that h = ¢gf (see Figure 6.4). o
Berman [81] showed that there exists a lattice variety V such that 2 € Amal(V). In
fact Berman considers the variety V = {L% : n € w}V (see Figure 2.2) and proves that all
of its finitely generated subdirectly irreducible members are amalgamation bases.
L has the strong amalgamation property. Next we would like to prove the result
of Jonsson [56], that the variety £ of all lattices has the strong amalgamation property.
Since £ is not residually small, we cannot make use of the results in the previous section.
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We first consider a notion weaker than that of an amalgamation: Let L; and Lo be
two lattices with L’ = L1 N Ly a sublattice of both Ly and Ls. A completion of Ly and
Lo is a triple (f1, f2, L3) such that Ls is any lattice and f; : L; — Lg are embeddings
(’t = 1,2) with f1|L, = f2|L,.

Suppose L; and Lo are members of some lattice variety V, and let us denote the
inclusion map L' — L; by j; (¢ = 1,2). Then clearly (f1, f2, L3) is an amalgamation of
the diagram (L', j1, L1, j2, L2) in V if and ounly if Lz € V.

How to construct a completion of Ly and L,? This can be done in various ways, of
which we consider two, namely the ideal completion and the filter completion. We begin
by setting P = L1 U Ly and defining a partial order <p on P as follows: on L; and Lg,
<p agrees with the existing order (which we denote by <; and <; respectively), and if
x€ L, ye L ({t,7} ={1,2}) then

r<;z and z<5y

Tspy 1L and only 1 for some z € LN Ly

(equivalently <p=<; U <3 U <30<5 U <30<y). It is straightforward to verify that <p is
indeed a partial order on P. Define a subset I of P to be a (L, Ly)-ideal of P if I satisfies

(1) x el and z<pax imply z€&€ [l and
(2) z,yelINnL; implies z+;,y€l (i=1,2).

Let Z(Lq, L2) be the collection of all (L1, Lg)-ideals of P together with the empty set.
(L1, Ly) is closed under arbitrary intersections, so it forms a complete lattice with [-J =
InJ and I+ J equal to the (Lq, Ly)-ideal generated by I U J for any I,J € Z(Lq, L2).
For each @ € Ly U Ly the principal ideal (z] is in Z(Lq, L2), so we can define the maps

fi:Li = ZI(L1,Ly) by fi(z)=(z] (1=1,2).

LEMMA 6.17 (f1, f2,Z(L1, L2)) is a completion (the ideal completion) of Ly and L.

Proor. Let z,y € L; (1 = 1 or 2). Then fi(z +;y) = (¢ +iy] 2 («] + (y] since
z,y <p & +; y. On the other hand we have z,y € (z] + (y] so by (2) z +; y € («] + (y],
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Figure 6.5

hence fi(z+;y) = fi(z) + fi(y). Similarly fi(z-iy) = fi(z)fi(y) and clearly f; and f; are
one-one, with fi|L = f3|L. a

The notion of a (L, Ly)-filter and the filter completion (g1,92,F (L1, L2)) are defined

dually. As an easy consequence we now obtain:
THEOREM 6.18 (Jousson [56]). £ has the strong amalgamation property.

Proor. Let (A, f,B,g,C) be a diagram in £. Since £ is closed under taking isomorphic
copies, we may assume that A is a sublattice of B and C, and that A = BN C with f
and ¢ as the corresponding inclusion maps. Now Z(B,C) € L, so the ideal completion
(f1, f2,Z(B,C)) is in fact an amalgamation of the diagram. To see that this is a strong
amalgamation we need only observe that if (z] € f1(B) N f2(C) then « € A. O

Observe that we could not have used the above approach to prove the amalgamation
property for the variety D, since the ideal completion of two distributive lattices need not
be distributive. Indeed, let B = Ms(a,b) (= 2 X 2 generated by a,b) and C = My(a,c)
with @ + b = a + ¢ and ab = ac (see Figure 6.5).

Then BUC = Ms(a,b,c) is already a lattice, and therefore a sublattice of Z(B, C).
However BUC is nondistributive, hence Z(B,C) ¢ D.The same holds for any other lattice
D in which we might try to amalgamate B and C, so it follows that D does not have the
strong amalgamation property.

6.6 Amalgamation in modular varieties

No nondistributive modular variety has the amalgamation property. In our
presentation of this result we follow Gritzer, Jonsson and Lakser [73]. We begin with a
technical lemma.

LEMMA 6.19 Let V be a variety of algebras that has the amalgamation property, and let
A B,C,DeV.

(i) If D is an extension of C, and f is any embedding of C into D, then there exists an
extension £ € V of D and an embedding g : D — E such that ¢g|C = f.

(ii) If B is an extension of A, and « is an automorphismn of A, then there exists an
extension B € V of B and an automorphism « of B such that a|A = a
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A= By By By B

o = ho hl h2 h3 h4 e a[

B =B B3 Bs B
Figure 6.6

Proor. (i) Let j be the inclusion map C' — D and cousider the diagram (C, f, D, j, D)
which by assumption has an amalgamation (f’, g, £). The result follows if we identify D
with its isomorphic image f'(D) in E. To prove (ii), let By = A, By = B, and consider
hy = « as an embedding of By into By. We now apply part (i), with C = hy(By) and
[ = hal to obtain an extension By of By and an embedding hy : By — B satisfying
hilho(Bo) = hg'. Repeating this process for n = 2,3,... we get a sequence of extensions
of A= By C By C By C...and a sequence of embeddings h, : B, — B,41 such that
hot1|hn(Br) = h, (see Figure 6.6).

We can now define

B = U B, and a= U hon,
new new
then clearly a is an embedding of B into B. To see that « is also onto, choose any
y € B, then there is an n € w such that y € Ba,41. Put @ = hg,p1(y), then a(z) =
honto(x) = y, since hg,q2 is an extension of hgnl_*_l. Hence a is an automorphism of B,
and by construction a|A = a. ad

THEOREM 6.20 (Gratzer, Jonsson and Lakser [73]). Any nondistributive subvariety of
the variety M of all modular lattices does not have the amalgamation property.

PROOF. Let us assume to the contrary that there exists a variety V such that D C V C M
and V has the amalgamation property. Under these assumptions we will prove a number of
statements about V that will eventually lead to a contradiction. The proof does require the
coordinatization theorem of projective spaces (see Section 3.2). As a simple observation
we have that M3 € V.
Statement 1: Every member of V can be embedded in a simple complemented lattice
that also belongs to V.
Clearly any lattice in V can be embedded into some lattice L € V, which has a least and
a greatest element, denoted by 07, and 17, respectively (e.g. we can take L to be the ideal
lattice). Given « € L, © # 0r, 17, we can embed the three element chain 3 = {0 < 1 < 2}
into L and into Ms(a,b, ¢) such that
0—0p, 1—uz, 21 in L
0O—ab, 1—a, 2—a+b in Ms(a,b,c).

By the amalgamation property, there exists a lattice Ly € V with L as a 0,1-sublattice
(i.e. 0f, = 0p, and 17, = 11, ) such that {0z, 2,1} is contained in a diamond sublattice of
L.
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Iterating this process for each z € L, « # 0p,11 we obtain a lattice C; € V that
contains L as a sublattice, and for each € L x # 0,1y, there exists y,z € Cy such that
{01, 2,y,2,11} form a diamond sublattice. Repeating this process, we obtain an infinite
sequence

L=CyCC,CCyC...CC,C...

of lattices in V, each with the same 0 and 1 as L and satisfying: for all n € w, all z € C,,, if
x # 0p, 1y, then z belongs to a diamond {0z, z,y, 2,1} in Chiq. Letting Coo = U,,c0, Cns
we have that Co, € V, and clearly C, is complemented. In a complemented lattice, a
congruence @ is determined by the ideal 07,/6, hence if 8 is a nontrivial congruence on C,,
then 2607, for some z € C,,  # 0. Now z = 17, implies that 6 collapses all of C,, and
z < 1, implies that z belongs to a diamond {0r,z,y, 2,11} in Cy, so again 6 collapses
all of Cy, since the diamond Ms is simple. Hence C, is a simple complemented lattice
in V containing L as a sublattice.

Note that since Hall and Dilworth [46] constructed a modular lattice that cannot be
embedded in any complemented modular lattice, this statement suffices to conclude that
M does not have the amalgamation property.

Statement 2: For every L € V there exists an infinite dimensional nondegenerate
projective space P such that L can be embedded in L(P) and L(P) € V.

We may assume that L has a greatest and least element, and that it contains an infinite
chain, for if it does not, then we adjoin an infinite chain above the greatest element of L
and the resulting lattice is still a member of V. By Statement 1, L can be embedded in
a simple complemented lattice C' € V, and by Theorem 3.3, C' can be 0,1-embedded in
some modular geometric lattice M € V. M can be represented as a product of modular
geometric lattices M; (¢ € I) which correspond to nondegenerate projective spaces P;, in
the sense that M; = L(P;). Let f; denote the embedding of C' into M followed by the ¢th
projection. Since f; preserves 0 and 1, it cannot map C' onto a single element, hence by
the simplicity of C, f; must be an embedding of C into M; = L(P;). Also P; is infinite
dimensional since C' contains an infinite chain.

Statement 3: There exists a projective plane @) such that £(Q) € V and @ has at least
six points on each line,

By Statement 2, there exists an infinite dimensional nondegenerate projective space P
such that £(P) belongs to V. If every line of P has at least six points, then we can take ¢
to be any projective plane in P, and £(()) € V since L(()) is a sublattice of L(P). If the
lines of P have less than six points, then by Theorem 3.5, L(P) is isomorphic to L(V, ),
where V is an infinite dimensional vector space and F is a field with 2, 3 or 4 elements.
Let K be a finite field extension of F' with |K| > 5, and let W be a three dimensional
vector space over K. As in Section 3.2, £L(W, K) determines a projective plane @), such
that L(W, K) = L£(Q).

Since F'is embedded in K, L(W, K) is a sublattice of L(W, F'), and since V' is infinite
dimensional, £(W, F) is isomorphic to a sublattice of £(V, ). It follows that £()) can
be embedded in £(P), and is therefore a member of V. By construction, every line of @
has at least |K|+ 1 > 6 points.

With the help of these three statements and Lemma 6.19 we can now produce the

desired contradiction. Let @) be the projective plane in the last statement. By Statement
2, there exists an infinite dimensional nondegenerate projective space P such that L(P) €
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V and £(Q) is isomorphic to a sublattice of £(P). By the coordinatization theorem
(see Section 3.2), there exists a vector space V over a division ring D such that £(P)
is isomorphic to L(V, D). So L£(Q) is embedded in £(V,D) C S(V) (= the lattice of
subgroups of the abelian group V'), which implies that the arguesian identity holds in
L£(Q). This means @) can be coordinatized in the standard way by choosing any line [ in
) and two distinct points ag, e, on [. The division ring structure is then defined on the
set K =1 {ac}. Here we require only the definition of the addition operation ¢ ([GLT]
p-208): Choose two distinct points p and ¢ of ¢ that are collinear with ag but are not on
l. Given z,y € K, let

(1) w=(e+p)g+ae) v=(y+9)(p+acx)
(2) 2y = (u+ o)l = (u+ v)(ao + o)
The operation 4 is independent of the choice of p and ¢, and (K, &, ap) is an abelian

group.

Any permutation of the points of [ induces an automorphism of the quotient (/0 C
L(Q). Since [ has at least six points, we can find z,y € K — {ao} such that z $ y # ao.
Let « be an automorphism of [/0 that keeps ag, ¢, 2, y fixed and maps « & y to a point
z # x @ y. By Lemma 6.19 (ii) there exists an extension L of £(@)) such that o extends to
an automorphism 3 of L. By Statement 2 and the same argument as above, there exists
an abelian group A and an embedding f : L — S§(A). We claim that f(z ¢ y) is the
subgroup of A which satisfies:

for some b€ f(z), cé€ f(y) wehave
acb acc€ flaww) and asbsc€ flag)
(where a 5 b = a & (5b) and Sb is the additive inverse of ). Indeed, let u, v be as in (1),
and assume ¢ € f(z B y). Since By < u+ v, we have f(e By) C f(ut+v) = f(u)+ f(v)
(={res:re f(u), s € f(v)}). So there exists d € A satisfying
de f(u) and acde f(v).
Since u < z 4+ p and v < y + g, it follows that there exist b,c¢ € A such that
be f(z), dobef(p) and cef(y), acdoce f(g).
a & b belongs to f(z $y)+ f(x) and f(v)+ f(p), and since
(& y)+a)(v+p) <U(v+p) < ac
we have that ¢ 5 b € f(as). Similarly ¢ S ¢ € f(aw) and a 5 b & ¢ € f(aop).

Conversely, assume the right hand side of (3) holds. Since ag < p + ¢, there exists

d € A such that

3) a€ flzay) iff

de f(p) and acbocade f(q).
Now (1) implies b+ ¢ € f(u) and a S b ¢ € f(v), and from (2) we get a € f(z B y).
Also, in the above argument we can replace f by f’ which we define by
1) = F(B(1)) for all € A.
Since f and f’ agree on ag, @, and y, it follows from (3) that
flegy) = feay) = f(2)

This is a contradiction, since f is an embedding and z # 2 $ y. a
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6.7 The Day — Jezek Theorem

In this section we will prove the result of Day and Jezek [84]: if V is a lattice variety that
has the amalgamation property and contains the pentagon N, then V must be the variety
L of all lattices. Together with the preceding result, this implies that 7, D and £ are the
only varieties that have the amalgamation property. The proof makes use of the result
that £ is generated by the class B of all finite bounded lattices (see Section 2.2). Partial
results in this direction had previously been obtained by Berman [81], who showed that
if a variety has the amalgamation property and includes N, then it must also include Lg,

Lg, L7, Lg, L1y and Lys.

The notion of A-decomposability of a finite lattice. This concept was introduced by
Slavik [83]. Let L be a finite lattice with L; and Ly proper sublattices of L and L = L;ULs.
L is said to be A-decomposable by means of Ly and Ly (written L = A(Lq, Ly)) if whenever
(f1, f2, L3) is a completion of Ly and Lg, then f = f; U f; is an embedding of L into Ls.
So in a sense A(Ljy, Lg) is the smallest completion of L; and Lg. In particular, if we let
Ji denote the inclusion map of Ly N Ly into L; (i = 1,2), then A(L1, L2) is by definition
embeddable into any amalgamation of the diagram (L N Lo, j1, L1, j2, L2). Hence if V
is a variety having the amalgamation property, and Li,Ls € V, then A(Lq,Ly) € V.
This, together with the fact that A-decomposability can be characterized by three easily
verifiable conditions on L; and Lg, makes it a very useful concept.

For any element z € L we define C(z) to be the set of all covers of z, and C?4(z) the
set of all dual covers of z.

LEMMA 6.21 (Day and Jezek [84]). Let L = L1 U Ly be a finite lattice with Ly and Ly
proper sublattices of L. Then L is A-decomposable by means of Ly and Loy if and ounly if
L1 and Ly also satisfy:

(1) 2 € Li, y € L; and « < y imply « < z < y for some z € L1 N Ly ({1,5} ={1,2});
(2) z € Ly N Ly implies C%(2) C Ly or C4(z) C Ly;
(3) z € L1 N Ly implies C(z) C Ly or C(z) C L.

Proor. Suppose L = A(L1, Ly) and let (f1, f2,Z(L1, L2)) be the ideal completion of L,
and Ly (see Lemma 6.17). By definition the map

f=hufe:L—1I(L1, L) given by f(z) = («]

is a lattice embedding. Let z € L;, y € L; ({¢,7} = {1,2}) and = < y. Then f(z) =
(z] € (y] = f(y) ,hence z <p y, which implies that there exists a z € Ly N Ly such that
z < z < y. Therefore (1) holds. Suppose to the contrary that (2) fails. Then there
exists z € L1 N Ly with dual covers ¢ € Ly — Ly and y € Ly — Ly. Clearly z = z + y
so f(z) = (2] = («] + (y]. But (2] U (y] is already a (L, Lz)-ideal, so we should have
(z] U (y] = (z] + (y]. This is a contradiction, since (2] # (z] U (y]. Dually, the existence of
the filter completion implies that (3) holds.

Conversely, suppose that (1), (2) and (3) hold, and let ( f1, f2, Ls) be any completion
of Ly and La. We must show that f = f1 U fy is an embedding of L into Ls. Firstly, z < y
implies f(z) < f(y), since if z,y € L; this follows from the fact that f; is an embedding,
and ifz € L; — L;,y € L; — L; then by (1) there exists a z € L1 N Ly such that z < z < y.
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Because @,y ¢ L1 N Ly, we must have z < z < y, giving f(z) < f(z) < f(y). This shows
that f is one-one and order preserving. To see that f is in fact a homomorphism, requires
a bit more work.

Since f|L; = f; is a homomorphism, we only have to consider € Ly — Ly, y € Ly — Ly,
and show that f(z + y) = f(«) + f(y) (f(zy) = f(x)f(y) follows by duality). We define
twomaps p; : L — L; (1 =1,2) by pi(u) = > {v € L; : v < u}. Note that the join is taken
in L,s0 >0 = 0g. Also, clearly y; is orderpreserving, and p;|L; is the identity map on L;.

Define two increasing sequences of elements «,, € Ly, y, € L by 29 = z, yo = y and

Tptl = Tp + ,Ml(yn), Yn+l = Yn + ,LI’Z('LTL)

By induction one can easily see that z, + y, = ¢ + y and f(z,) + f(yn) = f(z) + f(y)
for all n € w. We show that for some n = k we have 2, = ¢ + y or yp = = + y, then
J@ +9) = F(ok) + flge) = F(z) + F(y) as required.

Suppose z,,y, < x + y for all n. Since L is finite, this implies that there exists a k
such that 2541 = 2 and yry1 = Yk, so by definition pq(yr) < zx and p2(zr) < yp. We
always have py(yr) < yp and po(zr) < g, hence po(zr), pa(yr) < zrye. I 2pyp € Iy
then zryr < p1(yx), so we have py(yr) = zryr € L1. Since yr € Lg, condition (1) implies
that there exists z € Ly N Ly such that pi(yx) < 2z < yg. But then z < pi(yx), so
z = p(yx) = kY € L1 N Ly. Similarly, if 2y, € L2 then we also get 2y € L1 N Ly,
hence we actually have

po(r) = zpyr = pa(yx) € L1 N Lo.

However zi, ¢ L1 N Ly else pg(xy) = zx which gives yr41 = yr + @k, contrary to the initial
assumption that y, < z + y for all n. Similarly yr ¢ L1 N Ly, so there exist covers u,v
of zxyr such that v < zp and v < y,. But pa(zr) < u < zy implies u € Ly — Ly (else
u < po(zg)) and p1(yr) < v < yg implies v € Ly — Ly. Since this contradicts condition
(3), it follows that =, =  + y or y, = = + y for some n. a

Two easy consequences of the above characterization are:
COROLLARY 6.22

(i) f L = A(IL1, Lg) and, for t = 1,2, L; is a sublattice of L’, which in turn is a proper
sublattice of L then L = A(Lj, L}).

(ii) If L = [a) U (b] for some a,b € L with 0r, < a <b < 1y, then L = A([a), (b]).

L is the only nonmodular variety that has the amalgamation property.We also
need the following lemma about the lattice L[I] constructed by Day [70] (see Section 2.2).

LEMMA 6.23 Let I = u/v be a quotient in a lattice L, § € Con(L) and put J =
(u/0)/(v/0). If I =JJ, then L[I] is a sublattice of the direct product of L and L/0[J].

Proor. Recall that if 1, ¢ are two congruences on an algebra A such that ¥ N ¢ is the
zero of Con(A), then A is a subdirect product of A/ and A/¢. So we need only define
¥ and ¢ on L[I] in such a way that L[I]/ is a sublattice of L, L[I]/¢ is a sublattice of
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L/0[J], and ¥ N ¢ = 0. Let ¢ = ker~y, where v : L[I] — L is the natural epimorphism,
then L[I]/% is of course isomorphic to L. Define ¢ by

z,ye L —1 or

oy if and only if  ~7(z)fy(y) and syelx{i} (i=1,2).

With this definition ¢ is a congruence, since h is a homomorphism and ¢ € Con(L).
Moreover, it follows that I = J,

cel -1 implies z/¢p =2/ and
(z,0) € I x {i} implies (z,0)/d = (x/8,1) (:=0,1)

whence L[I]/¢ is a subset of L/@[J]. By examining several cases of meets and joins in
L[I]/¢, one sees that it is in fact a sublattice of L/8[J].

Suppose now that =,y € L[I] and 2(¥»N¢)y. Then h(z) = h(y) and z,y € L — I or
z,y € I x {1} (¢ = 0 or 1). In all cases it follows that z = y, so we have )y N ¢ = 0 as
required. a

Suppose L is a finite lattice. As in Section 2.2, welet k(p) =Y {e € L: @ # p and z >
P« }, where p is any join irreducible of L and p, is its unique dual cover. Dually we define
A(m)=1[{z € L: @ £ m and & < m*} for any meet irreducible m € L.

COROLLARY 6.24 Let L be a finite semidistributive lattice, and let I = u/v be a quotient
in L with 0, < v < u < 1p. Then L[I] is a sublattice of L x N, where N denotes the
pentagon.

Proor. Clearly v is join irreducible and u is meet irreducible. By semidistributivity, L is
the disjoint union of the quotients u/v, ux(v)/0r, 1r,/v+ A(u) and &(v)/A(u), where the
last quotient might be empty if kK(v) 2 A(w). This defines an equivalence relation 6 on
L with the quotients as f-classes. 6 is a congruence relation since L is semidistributive,
and L/ is isomorphic to a sublattice of 2 x 2. Letting J = (u/0)/(v/0) = {u/0} we have
UJ = u/v. Thus L/0[J] is isomorphic to a sublattice of N, and the result follows from
the preceding lemma. a

The following crucial lemma forces larger and larger bounded lattices into any non-
modular variety that has the amalgamation property.

LEMMA 6.25 Let V be a variety that has the amalgamation property and contains N. If
LeBrnNVand v <wue€ L, then L; = (L X 2)[(u,?)/(v,0)]€e BNV (1 =0,1).

Proor. It follows from Section 2.2 that all lattices in B are semidistributive, 2 € Br, Br
is closed under the formation of finite products and L € Bp implies L[I] € Bp for any
quotient [ of L, so L € Bp implies L; € By (i = 0,1). We proceed by induction on |L|.
Assume ¢ = 1. If w = 17, then L; is a sublattice of L x 3 € V, hence L1 € V. If u < 1,
then there is a co-atom w such that v < w < 1, and L = (w] U [A(w)). Therefore L x 2
can be pictured as in Figure 6.7 (i).

Let I = (w,1)/(0,1), then (L x 2)[{] is a sublattice of (L x 2) x N (by Corollary 6.21),
hence a lattice in V. The congruence classes modulo the induced homomorphism A :
(Lx2)[{] = N produce the diagram in Figure 6.7 (ii). Since By is one of these congruence
classes, we can double it, again using Day’s construction, to obtain a lattice L' as in

Figure 6.8.
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Figure 6.7
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Clearly L' = (L x 2)[I][Bo] € V by Lemma 6.23. Let J be the quotient u/v considered
as lying in the congruence class labeled B in Figure 6.8, and consider the lattice L'[J] =
AUBoUBUCUDUB|J]. If we define C; = AUByUB,UCUD and Cy = BoUB1UB[J], then
we have L'[J] = A(Cy1,Cq). Now Cy = (L x 2)[I] € V and Cy = A(Bo U B[J], B1 U B[J]),
hence Cy € V if and only if these two lattices belong to V. But B = w/0, so |B| < |L|,
and B; U B[J] = (B X 2)[(u,%)/(v,%)]. By induction then C3 € V and this gives L'[J] € V.
Since Ly is isomorphic to AU B[J]U C U D which is a sublattice of L'[J], Ly is also in V.
The proof for ¢ = 0 follows by symmetry. a

THEOREM 6.26 (Day and Jezek [84]). The only lattice varieties that have the amalga-
mation property are the variety 7 of all trivial lattices, the variety D of all distributive
lattices, and the variety L of all lattices.

Proor. If V is a nondistributive lattice variety that has the amalgamation property, then
N €V by Theorem 6.20. The preceding lemma implies that for every L € Br and any
v<wue L, if L €V then Llu/v] € V, since L{u/v]is a sublattice of (L x 2)[(u,?)/(v,?)].
It follows Theorem 2.38 that BF C V, and since the finite bounded lattices generate all
lattices (Theorem 2.36), we have V = L. o

6.8 Amal(V) for some finitely generated lattice varieties

Let V be a variety which fails to satisfy the amalgamation property. In this case Amal(V)
is a proper subclass of V, and it is interesting to find out whether or not Amal(V) is an
elementary class. In this section we outline the proofs of two results in this direction.
They concern the amalgamation classes of finitely generated lattice varieties, and they
are surprisingly contrasting with each other: If V is a finitely generated nondistributive
modular lattice variety then Amal(V) is not elementary; on the other hand if V is a
variety generated by a pentagon then Amal()V)is an elementary class determined by Horn
sentences.

Finitely generated modular varieties. We begin with the following:

DEFINITION 6.27 (Albert and Burris [88]).

(i) Let V be a variety, and suppose that the diagram (A, f, B,g,C) cannot be amal-
gamated in V. An obstruction is any subalgebra C’ of C such that the diagram
(A’ ', B,¢',C") cannot be amalgamated in V, where A’ = ¢g=Y(C’) and f" and ¢’
are the restrictions of f and g to A’.

(ii) Let V be a locally finite variety. Amal(V) is said to have the bounded obstruction
property with respect to V if for every k € w there exists an n € w such that the
following holds:

If C € Amal(V), |B| < k and the diagram (A, f, B, g,C) cannot be amalgamated in
V, then there is an obstruction C' < C' such that |C| < n.

THEOREM 6.28 (Albert and Burris [88]). Let V be a finitely generated variety of finite
type. Then Amal(V) is elementary if and only if it has the bounded obstruction property.
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Using the preceding theorem, Bergman [89] proved the following result.

THEOREM 6.29 Let V be a finitely generated nondistributive modular variety. T'hen
Amal(V) is not elementary.

OUTLINE OF PROOF. Let V be as in the theorem and let L be a finite modular nondis-
tributive lattice which generates V. If S is a subdirectly irreducible member of V then
S| < |L], since S is an image of a sublattice of L. Thus 5 is simple, and since S has a
diamond as a sublattice, we have | 5| > 5. Pick S with largest possible cardinality. Let z
be the bottom element of 5 and let @ € 5 such that a covers z.

Define B = $x2 and let f : 2 — B be an embedding with f(2) = {(2,0),(a,1)}. Then
there is C' € Amal(V) and embeddings g, : 2 — C such that for each n € w, the diagram
(2, f,B,g,,C) cannot be amalgamated in V, and every obstruction has cardinality at
least n. (For the details the reader is referred to Bergman [89].) Thus by Theorem 6.28,
Amal(V) is not elementary. a

The variety generated by the pentagon. As before, let AV be the variety generated
by the pentagon. The following result appears in Bruyns, Naturman and Rose [a].

THEOREM 6.30 Amal(N) is an elementary class. It is closed under reduced products and
therefore is determined by Horn sentences. Furthermore, if B is an image of A € Amal(N')
and B is a subdirect power of the pentagon then B € Amal(N).

The full proof of the above theorem is too long to give here. It requires several defini-
tions and intermediate results. We will list some of them first, and then outline the proof
of the theorem. For more details the reader is referred to Bruyns, Naturman and Rose [a].

DEFINITION 6.31

(i) Let @ be a congruence on a lattice A. We shall say that 0 is a 2-congruence if
Al0 = 2.

(ii) Let A be a subdirect product of lattices {A; : ¢ € I} and let B = }(A;. A subdirect
representation A < B is said to be regular if for any kernels 6; and 6; of two distinct
projections we have 0;|4 # 6;]4.

THEOREM 6.32 Let A be a nontrivial member of N'. The following are equivalent:

(i) A€ Amal(N).

(ii) If A < B € N, then every 2-congruence on A can be extended to a 2-congruence on
B, and 3 is not an image of A.

(iii) A is a subdirect power of N, and for any regular subdirect representation f : A — N
and any homomorphism g : A — N there is a homomorphism h : NI — N such that
g=~ht.

(iv) A is a subdirect power of N, 8 is not an image of A, and if A < N! is a regular
subdirect representation, then every 2-congruence on A can be extended to a 2-
congruence of N1.
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ProproSITION 6.33

(i) Let B € N, and assume that for any distinct 2-congruences 6y and 6, on B there
is A € Amal(N') and embeddings fo, f1 : A — B such that 6o|s,(a) and 61|, (4) are
two distinct congruences on A. Then B € Amal(N).

(ii) Let B be an image of A € Amal(N') and assume that B is a subdirect power of N.
If B < N! is a regular subdirect representation, then every 2-congruence on B can
be extended to a 2-congruence on NT.

OUTLINE OF THE PROOF OF THEOREM 6.30. We first consider the last statement of the
theorem. Let B be an image of A € Amal(N). Since 3 is not an image of A we have that
3 is not an image of B. Thus B € Amal(A) by Proposition 6.33 (ii) and Theorem 6.32
(iv).

Next we consider direct products. Let A = )¥_._ A, be a direct product of members

of Amal(N). Without loss of generality we may ;gsume that each A, is nontrivial. We
use Proposition 6.33 (i) to prove that A € Amal(N'). Thus we have to show that for any
distinct 2-congruences 6y, 6; on A there is a v € a and embeddings fo, f1 : A, — A
such that 00|fo(A~,) and ‘91|f1(A7) are two distinct congruences on A. Now if 8y and 6, are
distinct 2-congruences on A, then A/(6y N #) is isomorphic to either 3 or 2 x 2. In either
case we have u,v,z € A with v > v > z such that

(u,v) € g, (v,2)¢ 0y and (u,v)¢ b1, (v,z)€ ;.

By Jonsson’s Lemma there are congruences ¢g, ¢ on A induced by ultrafilters Dy and
Dy on a such that ¢g C 0y and ¢y C 6. Defining

R={Beca:ug> vz} S={Beca:vg> 23}
we have R € Dy and S € D,. There are three possible cases:

(i) For some 7 € a the set {7} belongs to both Dy and Dy.
(ii) For each v € a the set {7} belongs to neither Dy nor D.
(iii) There exists a 7 € « such that {7} belongs to one ultrafilter and not the other.

If (i) holds then we can choose u,v,z so that R = 5 = {7}, for some 7 € a. For
(3 € a with 8 # 7 let ag be an arbitrary but fixed element of Ag. In this case we can have
fo = f1 so that for 7 € {0,1} the embedding f; : A, — A is defined as follows:

For z € A, the 7th coordinate of f;(x) € Ais z, and if 3 € a with 3 # «a then the Sth
coordinate of fi(z) is a..

Suppose now that (ii) holds. Pick any v € a. We have (R —{7}) € Dy and (5 —{7}) €
D;. First observe that since A, is nontrivial it is a subdirect power of N (Theorem 6.32
(iii)). Thus there are at least two distinct epimorphisms r;s : A — 2 = {0,1}. The
embedding fo: A, — A is defined as follows:

For z € A, the yth coordinate of fy(z) € Ais . If 3 € (R — {7}) then the §th
coordinate of fo(z)is ug if r(z) = 1 and vg if 7(z) = 0. For § € a with 3 ¢ (RU {7}) the
(th coordinate is an arbitrary but fixed element of Ag.

The embedding f; : A, — A is defined as follows:
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For « € A, the 7th coordinate of fi(2) € Ais z. If 3 € (5 — {7}) then the Sth
coordinate of fi(z) is vg if s(z) = 1 and 25 if s(z) = 0. For g ¢ (S U {7}) the §Gth
coordinate is an arbitrary but fixed element of Ag.

The case (iii) is a combination of (i) and (ii). For instance if {7} € Dy and {7} ¢ D,
then (5 — {7}) € Dy, hence fy is defined as in case (i) and f; is as in case (ii).

Thus we have shown that every direct product of members of Amal(N') belongs to
Amal(N). Now if B is a reduced product of members of Amal(A) then it must be a
subdirect power of N (see Bruyns, Naturman and Rose [a] Lemma 0.1.9). On the other
hand B is an image of a product A of members of Amal(N'). Since A € Amal(N) it follows
that B € Amal(N). In particular every ultraproduct of members of Amal(A) belongs to
Amal(N), so that Amal(N) is elementary (see Yasuhara [74]). It is determined by Horn
sentences since it is closed under reduced products (Chang and Keisler [73]). o
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