
Supplementary Material:
Endogenizing the regularity properties

Key properties of matching and payoff functions are usually assumed in the literature
to prove existence of equilibrium in the entire game.1

Here, we show that such properties emerge endogenously in a symmetric outcome.
In doing so, we consider ρ(i) = 1−θi

i , for all i = 1, . . . , I, as it generalizes the typical
case where θ = 0.

Proposition. Let qi(I, π) := I!
i!(I−i)!π

i(1−π)I−i for all i = 0, . . . , I and ρ(i) = 1−θi
i ,

for all i = 1, . . . , I. For each π ∈ [0, 1], we have

• M(π) is twice continuously differentiable, strictly increasing, and concave.

• H(π) is twice continuously differentiable, strictly decreasing, and convex.

• H(π)−1 is convex, i.e. 2(H′(π))2 −H′′(π)H(π) ≥ 0

• H(π)v is quasiconcave.

Proof. Consider a generic seller.

The function M(π). Notice that

Iπ

i+ 1
qi(I − 1, π) =

Iπ

i+ 1
· (I − 1)!

i!(I − 1− i)!
πi(1− π)I−1−i

=
I!

(i+ 1)!(I − (i+ 1))!
πi+1(1− π)I−(i+1) = qi+1(I, π) .

From (2) in the paper, the functions M(π) and H(π) are twice continuously differ-
entiable, because qi(I, π) is smooth in p for all i. Now notice

M(π) =

I∑
i=1

qi(I, π)−
I∑
i=1

qi(I, π)θi = 1− q0(I, π)−
I∑
i=1

qi(I, π)θi

= 1−
I∑
i=0

qi(I, π)θi = 1−
I∑
i=0

(
I

i

)
(πθ)i(1− π)I−i

= 1− (1− (1− θ)π)I

1For a recent example consider properties (i)-(iii) in [1, Assumption 2].
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where the last line follows from the binomial formula. It is clear that M′(π) > 0
and M′′(π) < 0 by direct differentiation.
The functions H(π) and 1/H(π). Without loss of generality, set θ = 0. Thus

H(π) =
M(π)

Iπ
=

1− (1− π)I

Iπ

H′(π) =
1

Iπ2
[
(1− π)I−1(1− π + Iπ)− 1

]
.

• We show that H′(π) < 0 for I ≥ 2.
The proof is by induction on I. Define the term

A(π, I) := (1− π)I−1(1− π + Iπ)− 1.

We have

H′(π) =
1

Iπ2
A(π, I)

Clearly A(π, 1) ≤ 0. Consider the following induction hypothesis: A(π, I) < 0
for some I ≥ 2. We need to prove that A(π, I + 1) < 0. We have

A(π, I + 1) = (1− π)I(1− π + Iπ + π)− 1 = (1− π)I−1(1− π)(1 + Iπ)− 1

= (1− π)I−1(1− π + Iπ − Iπ2)− 1 < (1− π)I−1(1− π + Iπ)− 1

= A(π, I)

Hence A(π, I) < 0 for all I ≥ 1. It follows that H′(π) < 0.

• We show that H′′(π) > 0 for I ≥ 2. By direct differentiation we have:

H′′(π) =
π

Iπ4
{
A′(π, I)π − 2A(π, I)

}
where

A′(π, I) := −I(I − 1)(1− π)I−2π.

Hence, if A′(π, I)π − 2A(π, I) > 0, then H′′(π) > 0. The proof is by induction
on I:

A′(π, I)π − 2A(π, I) = −I(I − 1)(1− π)I−2π2 − 2(1− π)I−1(1− π + Iπ) + 2

For I = 2 we have A′π − 2A = 0. For the induction hypothesis suppose
A′π − 2A > 0 for some I ≥ 3, that is

2[(1− π)I−1(1− π + Iπ)− 1] < −I(I − 1)(1− π)I−2π2
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We need to show that this is true for I + 1, i.e.,

2(1− π)I(1− π + Iπ + π)− 2 ≤ −I(I + 1)(1− π)I−1π2

2[(1− π)I−1(1− π)(1 + Iπ)− 1] ≤ −I(I − 1)(1− π)I−1π2 − 2I(1− π)I−1π2

2[(1− π)I−1(1− π + Iπ)− 1] ≤ −I(I − 1)(1− π)I−1π2

By virtue of the induction hypothesis we have

2[(1− π)I−1(1− π + Iπ)− 1] < −I(I − 1)(1− π)I−2π2 < −I(I − 1)(1− π)I−1π2

so the statement is true for I + 1.

• We prove H′′(π)H(π)− 2 (H′π))2 < 0.
Notice that

H′′(π)H(π)− 2
(
H′π)

)2
=

π

Iπ4
{
A′(π, I)p− 2A(π, I)

} 1− (1− π)I

Iπ
− 2

(
1

Iπ2

)2 [
(1− π)I−1(1− π + Iπ)− 1

]2
∝
[
A′(π, I)π − 2A(π, I)

] [
1− (1− π)I

]
− 2 [A(π, I)]2

We want to prove that[
A′(π, I)π − 2A(π, I)

] [
1− (1− π)I

]
− 2 [A(π, I)]2 < 0.

Using the definition for A′ and A this can be rearranged as

−(I − 1)π
[
1− (1− π)I

]
< 2A(π, I)(1− π).

Again, we use the proof by induction. Notice that for I = 2 the inequality
above holds. For the induction hypothesis, suppose it also holds for some
I ≥ 2. Then we must show that it holds for I + 1, i.e.

−Iπ
[
1− (1− π)I+1

]
< 2A(π, I + 1)(1− π).

This inequality is rearranged as

−Iπ
[
1− (1− π)I

]
+ Iπ2(1− π)I < (1− π)2[(1− π)I−1(1− π + Iπ)− 1]

= 2(1− π)A(π, I)
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The left hand side can be rearranged as follows:

−(I − 1)π
[
1− (1− π)I

]
− π

[
1− (1− π)I

]
+ Iπ2(1− π)I

= −(I − 1)π
[
1− (1− π)I

]
+ π

[
−1 + (1− π)I−1(1− π + Iπ)− Iπ2(1− π)I−1

]
= −(I − 1)π

[
1− (1− π)I

]
+ π

[
A(I, π)− Iπ2(1− π)I−1

]
,

therefore it is smaller than 2(1 − π)A(π, I) because (i) A(π, I) − Iπ2(1 −
π)I−1 < 0 due to A(π, I) ≤ 0, and (ii) by induction hypothesis above. Hence
H′′(π)H(π)− 2 (H′(π))2 < 0 for all I ≥ 2.

Quasiconcavity of H(π)v. If H(π)v = r ≥ 0, then the superior set is defined
by Sr = {(π, v) ∈ [0, 1] × [v, v] : H(π)v ≥ r}. The set Sr is convex because if
(π, v), (π′, v′) ∈ Sr then for λ ∈ (0, 1), we have

r

H(πλ)
≤ λ

r

H(π′)
+ (1− λ)

r

H(π)
≤ λv′ + (1− λ)v

where πλ = λπ′ + (1− λ)π. The first line follows from convexity of 1
H(π) ; the second

line follows from (π, v), (π′, v′) ∈ Sr.
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