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1 Closed-form transition matrices

In this section we show how to construct the transition matrix Q for decen-

tralized punishment schemes associated to the following grim strategy.

Definition 1. On t = 0, agent i is in state s = C and selects action C. On
all t > 0, agent i is either in state s = C or s = D, and selects action s.

• If agent i is in state C in period t, then i switches state on t+ 1 only if
some agent in Oi(t) selected D. Otherwise, i remains in state C.

• State D is absorbing.

Let j denote the number of mixed pairs in a generic period.

For generality, consider the case in which an agent can see the actions of

a = 0, . . . , N − 2 agents in addition to his current opponent, i.e., |Oi(t, a)| =

a + 2 in each period t for each agent i. It is assumed that these additional
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agents are randomly selected with a uniform probability, iid across agents (for

example, due to random proximity). A player in state s = C switches to

state s = D as soon as he observes one agent defect, either his opponent

or someone else. Consequently, decentralized punishment proceeds either by

direct contagion, when cooperators end up in mixed matches, or by indirect

contagion, when cooperators do not meet defectors but see someone defecting

in another match.

1.1 Private monitoring: direct contagion (a = 0)

Let a = 0, i.e., Oi(t) = {i, oi(t)} in each period t for all agents i. Suppose that

there is an outcome of the random matching in which j pairs are mixed, then

j additional agents will be defectors from next period on because if a defector

meets a cooperator, then the cooperator becomes a defector from next period

on (Definition 1).

Here, the contagious process has a key property: the number of defectors

can only increase by an even number when k is even, and by an odd number

when k is odd. Hence, the possible number of mixed pairs is

j ∈ Jk :=


{0, 2, 4, . . . , J} if k = even

{1, 3, 5, . . . , J} if k = odd
with J := min(k,N − k) (1)

To prove it, let the number of defectors k be even (resp. odd) and show that the
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number of mixed pairs cannot be odd (resp. even). By means of contradiction,

suppose there is an odd (resp. even) number of mixed pairs. Recall that each

agent is matched in each period. Hence, we must pair among themselves all

remaining odd cooperators, and we must do the same for all remaining odd

defectors; but this is impossible. This gives us the desired contradiction.12

Lemma 1. Consider N − k cooperators and k = 0, . . . , N defectors. The
number of all possible random pairings that create j mixed pairs is given by

Λkj :=
{
j!
(
k
j

)(
N−k
j

)
(k − j − 1)!!(N − k − j − 1)!! if j ∈ Jk

0 if j /∈ Jk.
(2)

where
N∑
j=0

Λkj =
J∑
j=0

Λkj = Λ00 = (N − 1)!!

Proof of Lemma 1. Fix k = 0, 1, . . . , N defectors, and N − k cooperators.
Consider j /∈ Jk; As explained above it is not feasible to create j mixed pairs
(e.g., k is even and j is odd). Hence Λkj = 0 for j /∈ Jk.

Now consider j ∈ Jk. Start by randomly choosing the j defectors that
must be matched to j cooperators. There are

(
k
j

)
possible ways to choose j

agents from a set of k defectors. Similarly, there are
(
N−k
j

)
possible ways to

choose j agents from the set of N −k cooperators. Hence, the number of ways
in which we can choose j defectors and j cooperators is(

k

j

)(
N − k
j

)

Having selected j defectors and j cooperators, consider all possible ways to
form j mixed pairings. Fix an agent from the first set (say, a defector); we
can match him to any of the j agents from the second set (cooperators). Now,
fix another agent from the first set; we can match him to any of the j − 1
remaining agents from the second set. Repeating the process until we run out

12If everyone follows the strategy in Definition 1, then the number of defectors can only
increase over time and only in even numbers (after the first defection). So, either k = 1, or
k = 0, 2, 4, . . .. However, for generality we also consider the cases of odd number of defectors
when k > 1.
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of agents in each set, all possible ways to randomly pair each of the j defectors
to one of the j cooperators is

j · (j − 1) · (j − 2) · · · 3 · 2 · 1 = j!

Hence, given j the number of all possible mixed parings is

j!
(
k

j

)(
N − k
j

)

Now consider all possible ways in which the remaining k − j defectors can be
matched among themselves and the remaining N − k − j cooperators can be
matched among themselves. Recall that k − j and N − k − j are necessarily
even numbers. Considering the defectors, fix an agent in that set and match
him to one of the remaining k − j − 1 defectors. Now fix another defector
and match him to one of the k − j − 3 defectors who are left. Repeating this
procedure until all k− j defectors have been matched among themselves, gives

(k − j − 1) · (k − j − 3) · · · 3 · 1 = (k − j − 1)!!

possible pairings. Similarly, we have (N − k− j− 1)!! possible pairings among
the cooperators.

Clearly, we have ∑N
j=0 Λkj = ∑

j∈Jk
Λkj because Λkj = 0 if j /∈ Jk. To prove

that ∑j∈Jk
Λkj = (N−1)!!, one can use direct calculation. Alternatively, notice

that the summation ∑N
j=0 Λkj is simply the number of all possible pairings

in an economy of N agents, irrespective of whether they are cooperators or
defectors. It should be clear that ∑N

j=0 Λkj is independent of k because the
matching process is random, and so it does not depend on the actions taken
by agents. To obtain it, use the following recursive procedure.

Let SN denote the number of all possible pairings among N individuals.
Fix an agent; There are N − 1 agents that can be matched to him. Once
the agent is paired, there remain N − 2 agents, who can be matches in SN−2
possible ways. Hence we have SN = (N − 1)SN−2. Now recursively repeat the
procedure above, fixing another agent among the remainingN−2. The number
of pairings is recursively defined by Sm = (m− 1)Sm−2 for m = 2, . . . , N , with
S0 = 1. It follows that SN = (N − 1)!!. Clearly, SN = Λkj with k = j = 0.

Clearly, Λ00 = (N − 1)!! is the number of pairings we can have in a popu-
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lation of N cooperators or, equivalently, all possible pairings we can have for

any configuration of mixed matches, i.e., ∑J
j=0 Λkj.

When the economy has k defectors, we let

λk(j) = Λkj

(N − 1)!! (3)

denote the probability associated to a pairing with j mixed pairs. This is also

the probability that economy transitions to a state with k + j defectors, i.e.,

letting j = k′ − k we have

Qkk′ =


λk(k′ − k) if 1 ≤ k ≤ k′ ≤ min(2k,N)

0 otherwise.
(4)

Note that (i) Q is upper-triangular; (ii) Qkk′ = 0 for k′ > min(2k,N); (iii) for

all k we have Qkk′ = 0 for k′ odd because Λkk′ = 0 when k′ is odd. This last

feature arises because the increment in defectors k′− k depends on whether k

is even or odd; the increment is even when k is even, and is odd when k is odd

because each mixed match generates exactly one additional defector. Hence,

in the case of a = 0 we have

Q :=



0 1 0 0 0 0 . . . 0 0 0
0 Q22 0 Q24 0 0 . . . 0 0 0
0 0 0 Q34 0 Q36 . . . 0 0 0
...

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 0 . . . QN−2,N−2 0 QN−2,N
0 0 0 0 0 0 . . . 0 0 1
0 0 0 0 0 0 . . . 0 0 1


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1.1.1 Conditional probabilities ηkk′ (private monitoring)

Consider a = 0, i.e. private monitoring. We wish to find exact expressions for

the conditional probabilities ηkk′ . Suppose agent i is one of k defectors. Fix a

pairing in which k′− k defectors meet k′− k cooperators. Conditional on this

pairing, the probability that defector i meets a cooperator is

ηkk′ = k′ − k
k

, for k ≤ k′ ≤ min(2k,N).

Clearly if k′ = k (which occurs with probability Qkk), then there are no mixed

matches so none of the k defectors meets a cooperator, hence ηkk = 0. If there

is only one mixed match, then the probability that i is in the mixed match is
1
k

. If there are k′ − k ≥ 2 mixed matches, then the random matching process

may pair defector i to any one of k′ − k ≥ 2 cooperators. For illustrative

purposes, suppose that pairings are formed sequentially. With probability
1
k

agent i is selected in the first round with equal probability among all k

defectors. With probability
(
1 − 1

k

) 1
k − 1 agent i is not selected in the first

round and is selected in the second, and so on. Agent i is selected in a generic
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round j = 2, . . . , (k′ − k) with round-invariant probability

(
1− 1

k

)
×
(
1− 1

k − 1
)
× · · · ×

(
1− 1

k − j + 2
)
× 1
k − j + 1

= k − 1
k
× k − 2
k − 1 × · · · ×

k − j + 1
k − j + 2 ×

1
k − j + 1

= 1
k
.

Hence, since there are summing all probabilities to be selected in each round

j = 1, . . . , k′ − k we have that the defector is matched to a cooperator with

probability

ηkk′ = 1
k

+
k′−k∑
j=2

1
k

= k′ − k
k

.

It is easy to verify that

σk =
N∑
k′=k

Qkk′ηkk′ .

where σk = N − k
N − 1 . In particular, σ1 = Q12 = 1, because from k = 1 the

economy can only reach the state k′ = 2.

1.1.2 Noisy transitions (private monitoring)

An interesting extension is to take in account the possibility of noise in im-

plementing punishment; for instance, cooperators may hesitate to switch state

and start punishing when they become aware of a defection. In order to cap-

ture this feature, we amend the strategy in Definition 1 by assuming that a

player in state s = C who observes a defection, switches to state s = D with

7



probability ε. We will say that in this economy transitions are “noisy” and we

wish to find a closed form for the transition matrix Q in this noisy scenario.

The central implication is that, given k initial defectors, if on date t a

realization of the random matching generates j ≤ J := min(k,N − k) mixed

matches, then the number of defectors may increase by h ≤ j. Conditional on

j mixed matches, the probability to have h additional defectors is

εj(h) =
(
j

h

)
εh(1− ε)j−h.

It is immediate that for ε = 1 we have εj(h) = 0 for all j > h, while εj(j) = 1

(which is the case previously discussed).

Now, note that we can have h additional defectors as a consequence of

having at least hmixed matches (= every cooperator in a mixed match switches

state) and at most J mixed matches (= only the cooperators in h mixed

matches switch state). The matching process randomly selects a pairing with

equal probability among all possible pairings. Hence, the probability of having

mixed matches that may generate h new defectors is

J∑
j=h

λk(j) ,

where λk(j) is the probability in (3). When the economy has k defectors, the

probability that the number of defectors in the economy increases from k to
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k′ = k + h given in (4) must be is modified as

Qkk′ =


J∑

j=k′−k
λk(j)εj(k′ − k) if 1 ≤ k ≤ k′ ≤ min(2k,N)

0 otherwise.
(5)

Clearly, because of the noise in transitions, Qkk′ is no longer equivalent to the

probability associated to obtaining a random pairing with k′ − k mixed pairs.

1.2 Public monitoring: direct & indirect contagion (a ≥
0)

Here we study the general case in which each agent i in period t observes the

actions of a set of agents denoted Oi(t, a), which includes agent i, i’s opponent

oi(t), and a = 0, . . . , N−2 other randomly selected agents, i.e., |Oi(t, a)| = a+2

in each period t for each agent i. These additional a agents are randomly

selected with a uniform probability, iid across agents (for example, due to

random proximity). Again, we will presume that a player in state s = C

switches to state s = D as long as he observes one defection. This implies that

the probability that a cooperator in a mixed match switches to state s = D

does not depend on whether defections were observed outside the match. For

a cooperator not in a mixed match, the probability to switch to state s = D

depends on the probability he observes at least one defection in some other

match.
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Let there be k ≥ 1 defectors in a generic period. Start by noting that if

a + 2 > N − k, then each cooperator necessarily sees at least one defection,

because the number of agents whose actions are observed, a + 2, is greater

than the number of cooperators, N − k. Hence, in this case, every cooperator

will become a defector form next period on, with probability 1.

Now, consider a + 2 ≤ N − k. Here, each player observes the actions

of a number of agents that is at most equal to the number of cooperators,

N−k. Each realization of the random matching process partitions cooperators

into two sets: those who are in mixed matches and those who meet other

cooperators. Indirect contagion may only spread among the latter group of

cooperators. Suppose that an outcome of the random matching generates j

mixed pairs. Consequently, there are N − k − j cooperators who are not in

mixed matches. These cooperators may or may not observe a defection. Since

for any agent i the a agents in Oi(t) \ {i, oi(t)} are randomly selected by an

independent process, a cooperator who is not in a mixed match sees at least a

defection in Oi(t) \ {i, oi(t)} with probability

δka :=



0 if a = 0

1−∏a−1
m=0

(
1− k

N−m−2

)
if a = 1, . . . , N − k − 2

1 if a > N − k − 2.

To obtain δka, consider a cooperator, say, agent i, whose opponent oi(t) is also
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a cooperator. Agent i observes the actions of a ≥ 0 individuals, in addition

to the actions of agents {i, oi(t)} and he starts defecting only if he sees at

least one defection. Switching state does not depend on how many defections

are observed; one is all that is needed. For illustrative purposes, suppose

that agent i draws a observations sequentially, one at a time. Partition the

population into cooperator i, cooperator oi(t), and N − 2 remaining agents.

Clearly if a = 0, then there is no additional observation so we are back

to the case of private monitoring and δka = 0. Now consider the case a > 0.

Given k defectors, if 1 ≤ a ≤ N − 2 − k, then cooperator i sees a defection

with probability k
N−2 on his first observation, with probability

(
1− k

N−2

)
k

N−3

on his second observation, and so on. Therefore, agent i sees no defection after

a = 1, . . . , N − 2− k, observations with probability

(
1− k

N − 2

)
× · · · ×

(
1− k

N − 2− (a− 1)

)
=

a−1∏
m=0

(
1− k

N − 2−m

)

With complementary probability 1−
a−1∏
m=0

(
1− k

N − 2−m

)
cooperator i sees

at least one defection, when a = 1, . . . , N − 2 − k. This gives us the second

line, above.

Finally, if a > N−k−2 then cooperator i will certainly observe a defection

because he observes the actions of a number a of agents outside his match,

which is greater than the number of cooperators outside his match N − k− 2;
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hence, we have δka = 1 as in the last line of the expression above.13

Given k and j, we are interested in studying the probability ∆a
kj(m) that m

cooperators who are not in mixed matches, see at least one defection outside

of their match. Clearly, the number of cooperators outside of mixed matches

is N − j − k and so m ≤ N − k − j. Consequently,

∆a
kj(m) =

(
N − k − j

m

)
(δka)m (1− δka)N−k−j−m.

Now, consider the case in which we transition from k defectors today to

k + h ≥ k defectors tomorrow. The h additional defectors can be due to

a direct (private monitoring) or indirect (public monitoring) observation of

defections. As before, λk(j) is the probability that j cooperators are in j

mixed pairs, which leads to a direct observation of defections. In addition,

∆a
kj(m) is the probability that, conditional on having k defectors and j mixed

matches, m cooperators who are not in mixed matches observe outside of

their match that at least one of a agents has defected. Hence, the probability

to go from k to k + h defectors, where the number of additional defectors is
13Suppose the agent has observed the actions of a − 1 agents outside his match and has

only seen cooperation. Then, in his ath observation the probability to see a defection would
be min

( k

N − 2− (a− 1) , 1
)

and notice that k

N − 2− (a− 1) ≥ 1 whenever a+ 2 > N − k.
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h = j +m ≤ N − k, is given by

Qk,k+h :=



1 if a+ 2 > N − k and h = N − k

0 if a+ 2 > N − k and h < N − k
min(h,J)∑
j=0

λk(j)∆a
kj(h− j) if a+ 2 ≤ N − k and h ≤ N − k

It should be clear that Qk,k′ = 0 for k′ < k since there is no reversion to

cooperation. To understand the expression above recall that every agent i

observes the actions of a+ 2 agents in each period, where the number 2 refers

to the actions of i and her current opponent, and a refers to the actions of a

agents in some other pair(s).

The first two lines correspond to the case in which the number of agents

whose actions are observed exceeds the number of remaining cooperators in

the economy; clearly, in this case every cooperator must observe at least one

defection. Consequently, there is certainty to transition to a state of full

defection (h = N − k), while it is impossible to transition to any other state

with less than full defection (h < N−k). The last line corresponds to the case

when cooperators do not necessarily see a defection, i.e., the number of agents

whose actions are observed, a+2, is less than the number of cooperators in the

economy N − k. The summation is over j, which is the number of additional

defectors due to direct observation (in mixed matches). This number can

go from 0 (defections are only observed in matches other than the player’s
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own match) to min(h, J) (the smallest of the number of additional defectors

h, and the number of mixed matches, J); therefore, we need to sum across

j = 0, . . . ,min(h, J).

1.2.1 Noisy transitions (a ≥ 0)

Here we extend the analysis of the transition matrix to the case where there is

noise in implementing punishment. Again, assume that whenever a cooperator

observes a defection he switches to defection state with probability ε. In the

general case, a player in state s = C switches to state s = D with probability ε

if he observes one or more defections. This implies that the probability ε that

a cooperator in a mixed match switches to state s = D does not depend on

whether defections were observed outside the match. Similarly, a cooperator

who is not in a mixed match switches to state s = D with a probability ε that

is independent on how many defections he has observed, outside of his match.

That is to say, ε is not a function of the number of defections observed.

Supposed we have k defectors. Suppose that j + m ≤ N − k cooperators

observe a defection, where j denotes the number of cooperators who directly

observes a defection (they are in a mixed match), and m denotes the number

of cooperators who indirectly observes a defection (they randomly observes a

actions outside their match). Given the noise in the transition from a cooper-

ative state to a defection state, the probability to have h ≤ j + m additional
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defectors is

εj+m(h) =
(
j +m

h

)
εh(1− ε)j+m−h.

Hence, the probability that the number of defectors increases from k to k+ h,

due either to direct or indirect contagion, is

Qk,k+h =



J∑
j=0

λk(j)
N−k−j∑

m=max(0,h−j)
∆a
kj(m)εj+m(h) if a ≤ N − 2− k

εN−k(h) if a > N − 2− k

The second lines corresponds to the case in which the number of agents whose

actions are observed exceeds the number of remaining cooperators in the econ-

omy, i.e., a+ 2 > N − k. Clearly, in this case every remaining cooperator ob-

serves at least one defection. The transition to h additional defectors therefore

only depends on the random noise ε.

The first line, instead, corresponds to the case when the remaining coopera-

tors do not necessarily see a defection, i.e., the number of agents whose actions

are observed, a + 2, is not greater than the number of remaining cooperators

in the economy, N − k. The summation ∑N−j−k
m=max(0,h−j) considers the number

m ≤ N − k − j of cooperators who are not in mixed matches and indirectly

observes at least one defection. Conditional on having j = 0, . . . , J mixed

matches, the probability that m ≤ N − k − j cooperators indirectly observe
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a defection is ∆a
kj(m). Clearly, we need to consider all possible pairs (j,m)

leading to h new defectors; for example, if j ≥ h then we might have m = 0,

i.e., we might not need any indirect observation to reach h new additional

defectors. Conversely, if j < h then we need at least m = h − j cooperators

outside mixed matches that observe a defection somewhere in the economy

(and maybe more, due to randomness in transitions).

2 Reverting to cooperation

Here we extend the study of cooperative equilibrium with private monitoring

to the case in which defection is not an absorbing state, following [4]. Suppose

a public randomization device is available to players. At the start of each date,

the device randomly selects and makes public a number q̃t ∈ [0, 1] with uniform

probability. Defectors switch state if q̃t is sufficiently high, say, higher than

q ∈ (0, 1); everyone else remains in their state. Consequently, the strategy in

Definition 1 is modified as follows:

Definition 2. On t = 0, agent i is in state s = C and selects action C. On

all t > 0, agent i is either in state s = C or s = D and selects action s.

• If agent i is in state C in period t, then i selects action s = C and

switches state on t + 1 only if some agent in Oi(t) selected D and if

q̃t+1 < q. Otherwise, i remains in state C.

• If agent i is in state D in period t, then i switches state on t+ 1 only if
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q̃t+1 ≥ q. Otherwise, i remains in state D.

The key difference with the strategy in Definition 1 is that, out of equilibrium,

the economy can revert back to full cooperation, with probability 1− q.

We will show that the statements in Propositions 1 and 2 remain true the

basic difference amounts to replacing the discount factor β with an adjusted

discount factor qβ. In addition, we will show that relying on a public random-

ization device reduces the incentives to cooperate in equilibrium but increases

the incentives to punish off equilibrium.

Clearly, the continuation payoff in equilibrium is still v0. Consider out-

of-equilibrium situations in which there are k ≥ 1 defectors at the start of

some period, and fix one, say, agent i. Since decentralized punishment is

characterized by matrix Q, then using standard recursive methods the payoff

wk to defector i is

wk =
N∑
k′=k

Qkk′ [ηkk′πDC + (1− ηkk′)πDD + βqwk′ + β(1− q)v0], for k ≥ 1. (6)

The continuation payoff βqwk′ + β(1 − q)v0 accounts for the fact that the

economy may revert to cooperation with probability 1− q, while punishment

continues with probability q. Letting w := (w1, . . . , wN)T, we can write

wk = σkπDC + (1− σk)πDD + βqeT
kQw + β(1− q)v0, for k = 1, . . . , N.
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We can now prove a result similar to that reported in Theorem 2. Letting v̄0 de-

note a N−dimensional vector with all elements equal to v0, the off-equilibrium

payoffs can now be defined by

w = σπDC + (1− σ)πDD + βqQw + β(1− q)v̄0

⇒ w = (I − βqQ)−1[σπDC + (1− σ)πDD + β(1− q)v̄0],

where 1 is the N -dimensional unit vector. The contact rate has now an ad-

justed discount factor, βq, so we denote it

φk(βq) = (1− βq)eT
k (I − βqQ)−1σ, k = 1, . . . , N,

to make explicit the difference relative to the contact rate φk ≡ φk(β) defined

in Theorem 2. Noting that φk(x) = (1 − x)eT
k (I − xQ)−1σ is a decreasing

function of x ∈ (0, 1) for k = 1, . . . , N (see the Proof of Proposition 1 in the

Appendix), we have that φk(βq) ≤ φk(β) for all q ∈ (0, 1].

Consequently, the off equilibrium continuation payoff given that k defec-

tors are present is

wk = 1
1− βq [φk(βq)πDC + (1− φk(βq))πDD + β(1− q)v0], k = 1, . . . , N

where we have used the fact that eT
k (I − βqQ)−11 = 1

1− βq for all k. Note

that as q → 1 we have wk → vk for all k ≥ 1.
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To prove existence of equilibrium we must consider one-shot deviations

from the strategy in Definition 2 and simply substitute wk for vk in the relevant

expressions in Section 5.

In equilibrium a generic agent must choose C and not D, which holds if

v0 − w1 ≥ 0. Substituting for πCC , πDC , πDD we have

v0 − w1 = 1
1− βq [c− d− φ1(βq)(c+ g − d)]. (7)

From Theorem 2 we have lim
βq→1−

φ1(βq)
1− βq < ∞. From Proposition 1 we know

that there exists a value qβ = β∗ ∈ (0, 1) satisfying c− d = φ1(βq)(c+ g − d),

so that v0 − w1 ≥ 0 for all qβ ∈ [β∗, 1). Equivalently, it is suboptimal to

deviate in equilibrium for all β ∈
[
β∗

q
, 1
)

. Therefore, the possibility to use

a public randomization device makes it harder to sustain cooperation on the

equilibrium path. Intuitively, the possibility to revert to cooperation after a

defection increases the continuation payoff off-equilibrium, hence strengthens

the incentive to defect.

We now show that, off-equilibrium, the possibility to use a public ran-

domization device increases the incentive to follow the strategy proposed in

Definition 1. That is, it strengthens the incentives to punish a defection.

Let agent i be one of k ≥ 2 defectors, out of equilibrium. Agent i chooses
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D, whenever

N∑
k′=k

Qkk′ [ηkk′(c+ βqwk′−1 + β(1− q)v0) + (1− ηkk′)(d− l + βqwk′ + β(1− q)v0)]

≤
N∑
k′=k

Qkk′ [ηkk′(c+ g) + (1− ηkk′)d+ βqwk′ + β(1− q)v0]

The expression above differs from the corresponding expression in Section 5.1

in the continuation payoffs and the discount factor, now adjusted for the use of

the public randomization device. First, there can be reversion to cooperation,

with probability 1− q, in which case the payoff is v0. But these terms cancel

out from the two sides of the inequality. Second, if there is no reversion to

cooperation, then the continuation payoff is either wk′ , if the agent punishes

as he should or if he meets a defector, or wk′−1, if the agent does not punish

a cooperator. Rewrite the above inequality as

qβ
N∑
k′=k

Qkk′ηkk′(wk′−1 − wk′) ≤ σkg + (1− σk)l.

Deviating out of equilibrium is suboptimal for any β and l, if q is sufficiently

small. Alternatively, deviating out of equilibrium is suboptimal for any β and

q, when l is sufficiently large.

The inequality above is satisfied when

l ≥ l(qβ, k) := 1
1− σk

(c+ g − d)
N∑
k′=k

Qkk′ηkk′
qβ
(
φk′−1(qβ)− φk′(qβ)

)
1− qβ − σkg

 ,
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where we have used

wk′−1 − wk′ = c+ g − d
1− βq

[
φk′−1(βq)− φk′(βq)

]

Recalling that l(x, k) is a non-decreasing function of x ∈ (0, 1) (Proposition

2), it follows that l(qβ, k) ≤ l(β, k) for all q ∈ (0, 1], and for all k ≥ 1. This

means that using a public randomization device to revert to equilibrium makes

it easier to follow the actions prescribed in Definition 2, off the equilibrium

path. Put differently, off equilibrium punishment is incentive compatible even

if the cost from cooperating is small, and even if the population is large, as

long as agents can coordinate on reverting back to cooperation with sufficiently

high probability.
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